The Cost of Punctuality

Patricia Bouyer, Nicolas Markey, Joél Ouaknine, James Worrell

LSV — CNRS & ENS de Cachan — France

Oxford University Computing Laboratory — UK

1/21

Motivation

Context: verification of timed systems towards linear-time timed
temporal logics

2/21

Motivation

Context: verification of timed systems towards linear-time timed
temporal logics

1. linear-time timed temporal logics: interesting for specifying
properties of systems, but we cannot verify them! [AHO3]

2/21

Motivation

Context: verification of timed systems towards linear-time timed
temporal logics

1. linear-time timed temporal logics: interesting for specifying
properties of systems, but we cannot verify them! [AHO3]

2. MITL, a palliative to these negative results [AFHO6]
(MITL: disallows punctual constraints)

2/21

Motivation

Context: verification of timed systems towards linear-time timed
temporal logics

1. linear-time timed temporal logics: interesting for specifying
properties of systems, but we cannot verify them! [AH93]

2. MITL, a palliative to these negative results [AFHO6]
(MITL: disallows punctual constraints)
— punctuality is undecidable!

2/21

Motivation

Context: verification of timed systems towards linear-time timed
temporal logics

1. linear-time timed temporal logics: interesting for specifying
properties of systems, but we cannot verify them! [AH93]

2. MITL, a palliative to these negative results [AFHO6]
(MITL: disallows punctual constraints)
— punctuality is undecidable!

3. Safety-MTL: a decidable logic which partly allows punctuality
[OW0{5,6}]
However, it is non-primitive recursive!

2/21

Motivation

Context: verification of timed systems towards linear-time timed
temporal logics

1. linear-time timed temporal logics: interesting for specifying
properties of systems, but we cannot verify them! [AHO3]

2. MITL, a palliative to these negative results [AFHO6]
(MITL: disallows punctual constraints)
— punctuality is undecidable!

3. Safety-MTL: a decidable logic which partly allows punctuality
[OW0{5,6}]
However, it is non-primitive recursive!

4. we propose a tractable though powerful linear-time timed temporal
logic which allows punctuality...

2/21

Metric Temporal Logic

MTL: Metric Temporal Logic [Koymans 1990]
MTLS ¢ == a| -a | Ve | ere | oUp | oUsp

where [is an interval with integral bounds

3/21

Metric Temporal Logic

MTL: Metric Temporal Logic [Koymans 1990]
MTLS ¢ = a | —a | oVe | oA | oUiY | ¢Usp
where [is an interval with integral bounds

We interpret MTL formulas over timed words (this is the so-called
point-based semantics):

I | | | |
r T T T T

3/21

Metric Temporal Logic

MTL: Metric Temporal Logic [Koymans 1990]
MTLS ¢ = a | —a | oVe | oA | oUiY | ¢Usp
where [is an interval with integral bounds

We interpret MTL formulas over timed words (this is the so-called
point-based semantics):

I | | | |
r T T T T

We use classical shorthands, like F, G, X, etc...

3/21

Metric Temporal Logic

MTL: Metric Temporal Logic [Koymans 1990]
MTLS ¢ = a | —a | oVe | oA | oUiY | ¢Usp
where [is an interval with integral bounds

We interpret MTL formulas over timed words (this is the so-called
point-based semantics):

I | | | |
r T T T T

We use classical shorthands, like F, G, X, etc...
> G<2(. — le .)

3/21

Metric Temporal Logic

MTL: Metric Temporal Logic [Koymans 1990]
MTLS ¢ = a | —a | oVe | oA | oUiY | ¢Usp
where [is an interval with integral bounds

We interpret MTL formulas over timed words (this is the so-called
point-based semantics):

I | | | |
r T T T T

We use classical shorthands, like F, G, X, etc...

> G<2(. — le .)
> (eUs30)Upy(Fsre)

3/21

Interesting Fragments of MTL

MTLSp 2= a | ma | Ve | oAe | oUp | ¢Ujp

MTL

Interesting Fragments of MTL

LTLop u=a | -a | oVe | oAhp | ¢oUp | ¢pUp

Q///////,’///»Mﬂ
L

LT

[Pnueli77]

Interesting Fragments of MTL

MITLS @ == a | —a | oV | pAp | pUp | pUp

with / non-singular, i.e., with no “punctuality”

MTL
LTL —_ /
MITL

[AFH96)

Interesting Fragments of MTL

Bounded-MTL> ¢ == a | ma | Ve | oAp | ¢Ujp | oU ¢

with / bounded

Bounded-MTL -
MTL

LTL /
T i

Interesting Fragments of MTL

Safety-MTL2 ¢ == a | ma | Ve | pAe | U e | gaINJ,ga

with J bounded

Safety-MTL
Bounded-MTL \

MTL
LTL /
T i

Bounded-MTL + Invariance C Safety-MTL J

[OW05]

Interesting Fragments of MTL

Flat-MTL3 ¢ == a | ma | Ve | oAp | v Up | oU,

with / unbounded = ¢ € LTL

Safety-MTL
Bounded-MTL ™ \

MTL
T i

Interesting Fragments of MTL

coFlat-MTL3 @ == a | ma | oV | oAe | U | v U e

with / unbounded = ¢ € LTL

Safety-MTL
/
Bounded-MTL < \

coFlat-MTL ——— MTL

/
LTL
T L /

Bounded-MTL + Invariance C coFlat-MTL J

4/21

Some Examples of Formulas

» G (request — Fpo,1) (acquire N F—; re/ease)) is in coFlat-MTL, but
neither in Bounded-MTL, nor in MITL.

5/21

Some Examples of Formulas

» G (request — Fpo,1) (acquire N F—; re/ease)) is in coFlat-MTL, but
neither in Bounded-MTL, nor in MITL.

> pn = e A Double A Gpg 2n) Double where
Double = (o —Fo1 (e ANX 0)) A (o —F_y (e AN X 0))

is in Bounded-MTL.

5/21

Some Examples of Formulas

» G (request — Fpo,1) (acquire N F—; re/ease)) is in coFlat-MTL, but
neither in Bounded-MTL, nor in MITL.

> pn = e A Double A Gpg 2n) Double where
Double = (o —Fo1 (e ANX 0)) A (o —F_y (e AN X 0))

is in Bounded-MTL.

5/21

Some Examples of Formulas

» G (request — Fpo,1) (acquire N F—; re/ease)) is in coFlat-MTL, but
neither in Bounded-MTL, nor in MITL.

> pn = e A Double A Gpg 2n) Double where
Double = (o —Fo1 (e ANX 0)) A (o —F_y (e AN X 0))

is in Bounded-MTL.

-
-

5/21

Some Examples of Formulas

» G (request — Fpo,1) (acquire N F—; re/ease)) is in coFlat-MTL, but
neither in Bounded-MTL, nor in MITL.

> pn = e A Double A Gpg 2n) Double where
Double = (o —Fo1 (e ANX 0)) A (o —F_y (e AN X 0))

is in Bounded-MTL.

-
<+
-+

5/21

Some Examples of Formulas

» G (request — Fpo,1) (acquire N F—; re/ease)) is in coFlat-MTL, but
neither in Bounded-MTL, nor in MITL.

> pn = e A Double A Gpg 2n) Double where
Double = (o —Fo1 (e ANX 0)) A (o —F_y (e AN X 0))

is in Bounded-MTL.

-
<+
-+
<+

5/21

Some Examples of Formulas

» G (request — Fpo,1) (acquire N F—; re/ease)) is in coFlat-MTL, but
neither in Bounded-MTL, nor in MITL.

> pn = e A Double A Gpg 2n) Double where
Double = (o —Fo1 (e ANX 0)) A (o —F_y (e AN X 0))

is in Bounded-MTL.

-
<+
-+
<+
3

5/21

Some Examples of Formulas

» G (request — Fpo,1) (acquire N F—; re/ease)) is in coFlat-MTL, but
neither in Bounded-MTL, nor in MITL.

> pn = e A Double A Gpg 2n) Double where
Double = (o —Fo1 (e ANX 0)) A (o —F_y (e AN X 0))

is in Bounded-MTL.

-
<+
-+
<+
3

— enforces in polynomial space a doubly exponential variability

5/21

Some Examples of Formulas (cont'd)

» Half = F_; tt VvV X<1 F_itt
— may eliminate one over two actions

6/21

Some Examples of Formulas (cont'd)

» Half = F_; tt VvV X<1 F_itt
— may eliminate one over two actions

» the formula
e A Double A Gig 2y Double A Gian oni1y Half A F_pnin (@ A X tt)

hence enforces exact doubling and halfing...

6/21

Complexity Results

Over infinite timed words:

Model Checking Satisfiability
LTL PSPACE-C. [folklore] PSPACE-C. [folklore]
MITL EXPSPACE-C. [AFH96] | EXPSPACE-C. [AFH96]
Bounded-MTL
Safety-MTL Decidable [OWO06]
coFlat-MTL
MTL Undec. [AH93,0W06] Undec. [AH93,0W06]

7/21

Complexity Results

Over infinite timed words:

Model Checking Satisfiability
LTL PSPACE-C. [folklore] PSPACE-C. [folklore]
MITL EXPSPACE-C. [AFH96] | EXPSPACE-C. [AFH96]
Bounded-MTL
Safety-MTL | Non-Prim.-Rec. [forthc.] Non-Elem. [forthc.]
coFlat-MTL Undec. [OW06]
MTL Undec. [AH93,0W06] Undec. [AH93,0W06]

7/21

Complexity Results

Over infinite timed words:

Model Checking Satisfiability
LTL PSPACE-C. [folklore] PSPACE-C. [folklore]
MITL EXPSPACE-C. [AFH96] | EXPSPACE-C. [AFH96]
Bounded-MTL EXPSPACE-C. EXPSPACE-C.
Safety-MTL | Non-Prim.-Rec. [forthc.] Non-Elem. [forthc.]
coFlat-MTL EXPSPACE-C. Undec. [OWO06]
MTL Undec. [AH93,0W06] Undec. [AH93,0W06]

7/21

An Example

Assume one wants to verify formula

G (‘ —F_1 ‘)

8/21

An Example

Assume one wants to verify formula

G (‘ —F_1 ‘)

8/21

An Example

Assume one wants to verify formula

G (' —F_1 ‘)

Offline, we stack all time units and use a sliding window:

——

fooe oo o |

8/21

An Example

Assume one wants to verify formula

G (' —F_1 ‘)

Offline, we stack all time units and use a sliding window:

e

foleo oo o |

8/21

An Example

Assume one wants to verify formula

G (' —F_1 ‘)

Offline, we stack all time units and use a sliding window:

T

foee oo o |

8/21

An Example

Assume one wants to verify formula

G (' —F_1 ‘)

Offline, we stack all time units and use a sliding window:

—E

fooe oo o |

8/21

An Example

Assume one wants to verify formula

G (' —F_1 ‘)

Offline, we stack all time units and use a sliding window:

—

fooe oo o |

8/21

An Example

Assume one wants to verify formula

G (' —F_1 ‘)

Offline, we stack all time units and use a sliding window:

—e

fooe oo o |

8/21

An Example

Assume one wants to verify formula

G (' —F_1 ‘)

Offline, we stack all time units and use a sliding window:

—

fooe oo o |

8/21

Channel Automata

. channel ¢
A CQ?Ilng — |ack |ack |hup | —
server
clack
channel ¢,
" - |msg |stop | -
-

NB: channels are FIFO...

9/21

Extended Channel Automata
We extend channel automata with:
» renaming (a letter can be replaced non-deterministically by another
one);
> occurrence testing (check whether some letter appears on the

channel).
— CAROT

10/21

Extended Channel Automata
We extend channel automata with:
» renaming (a letter can be replaced non-deterministically by another

one);
> occurrence testing (check whether some letter appears on the
channel).
— CAROT
al,b! a?,b?

/

where /7 non-deterministically rename b to either b or

10/21

Extended Channel Automata
We extend channel automata with:
» renaming (a letter can be replaced non-deterministically by another

one);
> occurrence testing (check whether some letter appears on the
channel).
— CAROT
al,bl a?,b?
. @ d? @ d! »

/

where /7 non-deterministically rename b to either b or

We will be interested in the reachability problem for CAROTs when
we bound the number of cycles of the machine

10/21

al,b! a?,b?

d?

where 7 : b— bV

11/21

al,b! a?,b?

s (1)
T ~

where 7 : b— bV

Computation table, starting with d on the channel:

s|b!|s s t d? u dl'|v
vs alls s tu dl|v
vs s tu dl|v
s u dl' v

u

11/21

bI td7u

12/21

bI td7u
d?|u d!

v
Computation table with sliding window:
s bl s|b! s t d?luu uld vv vv vv v
v b? v s al s bl|s tld?ud vv vv v
vv viv valv s bl's td?ud vv v
Vv viv vv vv |v s uvu ud?ud v

12/21

bI td7u

v
Computation table with sliding window:
s bl s|b! s t d?luu uld vv vv vv v
v b? v s al s bl|s tld?ud vv vv v
vv viv valv s bl's td?ud vv v
Vv viv vv vv |v s uvu ud?ud v

We need to store a window and some extra information for the renaming
functions and the occurrence testing.

12/21

The cycle-bounded reachability problem for CAROTs is solvable in poly-

nomial space in the size of the channel automaton and polynomial space
in the value of the cycle bound.

(Can guess and verify a computation table using polynomial space.)

13/21

Application to Timed Temporal Logics

» Transform an MTL formula ¢ into an equivalent one-clock
alternating timed automaton A, [OW05]

G (' —F_ ')

14/21

Application to Timed Temporal Logics

» Transform an MTL formula ¢ into an equivalent one-clock
alternating timed automaton A, [OW05]

G (' —F_ ')

14/21

15/21

» See a behaviour of this automaton as the content of a FIFO channel

15/21

» See a behaviour of this automaton as the content of a FIFO channel

I | | | |
r T T T T

15/21

» See a behaviour of this automaton as the content of a FIFO channel

I | | | |
r T T T T

15/21

» See a behaviour of this automaton as the content of a FIFO channel

I | | | |
r T T T T

°
r,0 — r,0.6

15/21

» See a behaviour of this automaton as the content of a FIFO channel

I | | | |
r T T T T

° .
r,0 — r,006 —> r,0.7

N
s,0

15/21

x<2;0 x=1;e
»® x:=0 @ @

» See a behaviour of this automaton as the content of a FIFO channel

I | | | |
r T T T T

° . .

r,0 — r,006 - r,07 —> r,1.5
N N

s,0 5,0

5,0.8

15/21

x<2;0 x=1;e
»® x:=0 @ @

» See a behaviour of this automaton as the content of a FIFO channel

I | | | |
r T T T T

° . . .
r0 — r,06 — r,07 —> r,1.5 — r,1.7
N N

s,0 5,0 — 5,0.2

N

5,0.8 — t

15/21

x<2;0 x=1;e
»® x:=0 @ @

» See a behaviour of this automaton as the content of a FIFO channel

I | | | |
r T T T T

° . . .
r0 — r,06 — r,07 —> r,1.5 — r,1.7
N N

s,0 5,0 — 5,0.2

N

5,0.8 — t

15/21

x<2;0 x=1;e
»® x:=0 @ @

» See a behaviour of this automaton as the content of a FIFO channel

I | | | |
r T T T T

° . .
r0 — r,06 — r,07 —> r,1.5 — r,1.7
N N

s,0 5,0 — 5,0.2

15/21

x<2;0 x=1;e
»® x:=0 @ @

» See a behaviour of this automaton as the content of a FIFO channel

I | | | |
r T T T T

° . .
r0 — r,06 — r,07 —> r,1.5 — r,1.7
N N

s,0 5,0 — 5,0.2

15/21

x<2;0 x=1;e
»® x:=0 @ @

» See a behaviour of this automaton as the content of a FIFO channel

I | | | |
r T T T T

° . . .
r0 — r,06 — r,07 —> r,1.5 — r,1.7

N N
s,0 5,0 — 5,0.2
N
5,0.8 — t
[[[rtfse]]

15/21

x<2;0 x=1;e
»® x:=0 @ @

» See a behaviour of this automaton as the content of a FIFO channel

I | | | |
r T T T T

° . . .
r0 — r,06 — r,07 —> r,1.5 — r,1.7
N N

s,0 5,0 — 5,0.2

N

5,0.8 — t

[selralso]]

15/21

x<2;0 x=1;e
»® x:=0 @ @

» See a behaviour of this automaton as the content of a FIFO channel

I | | | |
r T T T T

° . . .
r0 — r,06 — r,07 —> r,1.5 — r,1.7
N N

s,0 5,0 — 5,0.2

N

5,0.8 — t

[[so[ral T]

15/21

x<2;0 x=1;e
»® x:=0 @ @

» See a behaviour of this automaton as the content of a FIFO channel

I | | | |
r T T T T

° . . .
r0 — r,06 — r,07 —> r,1.5 — r,1.7

N N
s,0 5,0 — 5,0.2
N
5,0.8 — t
[elsofrt[T 1]

15/21

» See a behaviour of this automaton as the content of a FIFO channel

L] . . L]
r0 — r,06 — r,07 —> r,1.5 — r,1.7
~ ~
5,0 5,0 — s5,0.2
S

5,0.8 — t

[ol T 1

From MTL to CAROTs

Every formula ¢ can be transformed into a CAROT that “accepts” the
models of ¢.

15/21

A Digression on Timed Automata

rn

n

o n X

16/21

A Digression on Timed Automata

y

n X,y €no, {y} <{x}

o

o n X

‘()/) ﬂ))l()<7 ﬂ))‘

16/21

A Digression on Timed Automata

y

n x€n,ye€n {x}<{y}

o

o n X

‘()<’ rl)l()/’ nD)‘

16/21

A Digression on Timed Automata

y

n X,y €n, {y} <{x}

o

o n X

‘(y’ rl)‘(x7 rl)‘

16/21

A Digression on Timed Automata

rn

n

n n X

The region graph can be simulated by a channel machine (with a single
bounded channel).

16/21

Back to coFlat-MTL

We want to bound the number of cycles needed by the CAROT to
achieve model-checking of coFlat-MTL, or more simply the satisfiability
of Flat-MTL.

Flat-MTLS ¢ == a | —a | oVeo | oAp | ¥ Ujp | U

with / unbounded = ¢ € LTL

17/21

Back to coFlat-MTL

We want to bound the number of cycles needed by the CAROT to
achieve model-checking of coFlat-MTL, or more simply the satisfiability
of Flat-MTL.

Flat-MTLS ¢ == a | ma | oV | oAe | ¥ U | oUe

with / unbounded = ¢ € LTL
A slice of the automaton:

{(aUb,1.6),((pUq) U (F_1 2),2.5),(G~3(pVq),4.1),((F<19) Ucy 2,3.9)}

17/21

Back to coFlat-MTL

We want to bound the number of cycles needed by the CAROT to
achieve model-checking of coFlat-MTL, or more simply the satisfiability
of Flat-MTL.

Flat-MTLS ¢ == a | ma | oV | oAe | ¥ U | oUe

with / unbounded = ¢ € LTL
A slice of the automaton:

{(aUb,1.6),((pUq) U (F_1 2),2.5),(G~3(pVq),4.1),((F<19) Ucy 2,3.9)}

Its encoding is:
{{(PUq)U(F-12),T),(G>3(pVq),L),((F<19) Ugsa, T)}

if we suppose the maximal constant is 4.

17/21

Back to coFlat-MTL

We want to bound the number of cycles needed by the CAROT to
achieve model-checking of coFlat-MTL, or more simply the satisfiability
of Flat-MTL.

Flat-MTLS ¢ == a | —a | oVeo | oAp | ¥ Ujp | U

with / unbounded = ¢ € LTL
A slice of the automaton:

{(aUb,1.6),((pUq) U (F_1 2),2.5),(G~3(pVq),4.1),((F<19) Ucy 2,3.9)}

Its encoding is:
{((pPUq) U (F12),T),(G>3(pVa),L),((F<19) Ucaa, T)}
if we suppose the maximal constant is 4.

T ~» active
1 ~~ inactive

17/21

A Ranking Function

We assume a linear order on pairs (¢, T) with ¥ non-LTL modal
subformula of ¢, and T€ {T, L} such that:

{ (¥, L)< (¥, T)
(¥, T') < (3, T) if ¢ subformula of 1

18/21

A Ranking Function

We assume a linear order on pairs (¢, T) with ¥ non-LTL modal
subformula of ¢, and T€ {T, L} such that:

{ (¥, L)< (¥, T)
(¥, T') < (3, T) if ¢ subformula of 1

rank(vy) = u.a where « highest active subformula, and v all inactive
subformulas (ordered with <) which are larger than «

18/21

A Ranking Function

We assume a linear order on pairs (¢, T) with ¥ non-LTL modal
subformula of ¢, and T€ {T, L} such that:

{ (¥, L)< (¥, T)
(¥, T') < (3, T) if ¢ subformula of 1

rank(vy) = u.a where « highest active subformula, and v all inactive
subformulas (ordered with <) which are larger than «
+ we order the ranks with the lexicographic order

18/21

A Ranking Function

We assume a linear order on pairs (¢, T) with ¥ non-LTL modal
subformula of ¢, and T€ {T, L} such that:

{ (¥, L)< (¥, T)
(¥, T') < (3, T) if ¢ subformula of 1

rank(vy) = u.a where « highest active subformula, and v all inactive
subformulas (ordered with <) which are larger than «
+ we order the ranks with the lexicographic order

Properties
» if v — 4/, then rank(y’) < rank(y)
» if v is active (resp. inactive) and 7/ is inactive (resp. active), and if
~v — ', then rank(y’) < rank(y)
» if o1y —*~', and duration(g) > M, then rank(y") < rank(7)

18/21

A Ranking Function

We assume a linear order on pairs (¢, T) with ¥ non-LTL modal
subformula of ¢, and T€ {T, L} such that:

{ (¥, L)< (¥, T)
(¥, T') < (3, T) if ¢ subformula of 1

rank(vy) = u.a where « highest active subformula, and v all inactive
subformulas (ordered with <) which are larger than «
+ we order the ranks with the lexicographic order

Properties
» if v — 4/, then rank(y’) < rank(y)
» if v is active (resp. inactive) and 7/ is inactive (resp. active), and if
~v — ', then rank(y’) < rank(y)
» if o1y —*~', and duration(g) > M, then rank(y") < rank(7)

Hence, 0 = 00 - 01 - - .- 02n+1 With 02; (resp. p2i+1) active (resp. inactive)
and Y7 duration(g2;) < (M +1) - || - 2/#!

18/21

Model Checking coFlatMTL

Applying the previous decomposition of runs and the complexity of
analyzing CAROTSs, we get the following result:

The model checking of coFlat-MTL is in EXPSPACE. I

active active active active
—_——H— —_—A— —t —A—

pure LTL pure LTL pure LTL pure LTL

19/21

Hardness

The satisfiability problem for Bounded-MTL is EXPSPACE-Hard. |

20/21

Hardness

The satisfiability problem for Bounded-MTL is EXPSPACE-Hard. I

Encode the halting problem of an EXPSPACE Turing machine:

> generate a doubly exponential number of events in one time unit

> on the next time unit, non-deterministically guess a computation of
the EXPSPACE Turing machine

» check it is correct (requires 2" time units, one for each cell of the
machine)

» half, and check that only one event remains

20/21

Conclusion

In this work, we have exhibited a subclass of MTL which:
» contains punctual constraints,
» contains invariance,

> is tractable in theory.

21/21

Conclusion

In this work, we have exhibited a subclass of MTL which:
» contains punctual constraints,
» contains invariance,

> is tractable in theory.

What needs to be done:
» check tractability in practice,

> extend to continuous semantics.

21/21

