
Complexité avancée - TD 8

Benjamin Bordais

December 02, 2020

We recall the definition of the Arthur-Merlin hierarchy.

Definition 1 An Arthur and Merlin triplet is the data of (M,A, D) where M is a Merlin
function, that is a function with the size of the output polynomial in the size of the input,
possibly not computable, a randomized Turing machine A running in polynomial time and
a language D ∈ P. Then, for all w ∈ {A,M}∗, let us denote by k the number of times A
appears in the word w. We consider the following algorithm induced by the word w (with
n = |w| and r1, . . . , rk k random tapes of size polynomial in n).

protw(M ;x, r1, . . . , rk) :
imp = x
i = 0
for j = 1 , . . . , n :

if wj = A then (i = i +1, qj = A(imp , ri) ; imp = imp # ri # qj)
else (yj = M(imp) ; imp := imp # yj)

accept if (imp ∈ D) , else reject

We denote prot[A,M]D(x, r1, . . . , rk) = > if the previous algorithm accepts, otherwise
prot[A,M]D(x, r1, . . . , rk) = ⊥.

Now, AM[f] for a proper function f denotes the class of languages L such thatthere
exists an Arthur and Merlin triplet (M,A, D) such that for any x of size n, letting w ∈
{A,M}f(n):

1. Completeness: if x ∈ L then Pr[protw[A,M]D(x, r1, . . . , rk) = >] ≥ 2/3

2. Soundness: if x /∈ L then for any Merlin’s functionM ′, Pr[protw[A,M ′]D(x, r1, . . . , rk) =
⊥] ≥ 2/3

Note that this is not the definition of the course where the error rate is exponentially
small with regard to a polynom. We use this definition to simplify as it is enough for
these exercises.

Exercise 1 Another way to see MA and AM

Prove the following:

• A language L ∈ AM if and only if there exists a language D ∈ P and a polynom p
such that:

– x ∈ L⇒ Prr∈{0,1}p(|x|) [∃y ∈ {0, 1}p(|x|), (x, r, y) ∈ D] ≥ 2/3

– x /∈ L⇒ Prr∈{0,1}p(|x|) [∃y ∈ {0, 1}p(|x|), (x, r, y) ∈ D] ≤ 1/3

1

• A language L ∈MA if and only if there exists a language D ∈ P and a polynom p
such that:

– x ∈ L⇒ ∃y ∈ {0, 1}p(|x|), P rr∈{0,1}p(|x|) [(x, r, y) ∈ D] ≥ 2/3

– x /∈ L⇒ ∀y ∈ {0, 1}p(|x|), P rr∈{0,1}p(|x|) [(x, r, y) ∈ D] ≤ 1/3

Solution:
This follows directly from the definition of the Arthur-Merlin hierarchy.

Exercise 2 Arthur-Merlin protocols

Prove the following statements, directly from definition of the Arthur-Merlin hierarchy:

• M = NP;

• A = BPP;

• NPBPP ⊆MA;

• AM ⊆ BPPNP.

Solution:

• Notice that for a language L:

L ∈M⇔ ∃D ∈ P,∃p poly, L = {x | ∃y, |y| < p(|x|) ∧ x#y ∈ D}. This corresponds
exactly to the certificate definition of NP (cf. Homework 02).

• Obvious, just have to write the two definitions:

BPP ⊆ A : For L ∈ BPP with the machine M associated as in the definition of BPP,
consider the language D = Σ∗#Σ∗#> ∈ P, and A which simulates the machine
M and write the answer.

A ⊆ BPP : We can just simulate A and check (in polynomial time) that it is in D.

• Let L ∈ NPBPP, then there exists a polynom p and a language L′ ∈ PBPP such that
L = {x | ∃y, |y| ≤ p(|x|), x#y ∈ L′}. Moreover we know from the previous TD
that PBPP = BPP, and from the previous answer that A = BPP. Therefore we have
L′ ∈ A such that L = {x | ∃y, x#y ∈ L′}. That is, L ∈MA.

• Let L be in AM, we have (M,A, D) given by the definition of AM, with an error
at, say 1/3. Define A′ the probabilistic Turung machine s.t. for an input x and a
random word r, A′(x, r) = x#r#A(x, r). Moreover, consider a polynom p bounding
the size of the output of the Merlin functions considered (in particular M) and define
D′ = {x |∃y, |y| ≤ p(|x|), x#y ∈ D} ∈ NP since D ∈ P. Let Mo be the probabilistic
oracle machine which simulates A′ and call the oracle for the language D′ on the
answer, accepting with the BPP way. It follows that:

– If x ∈ L, Pr[Mo(x, r) = >] = Pr[x#r#A(x, r) ∈ D′] = Pr[∃y, |y| ≤
p(|x|), x#r#A(x, r)#y ∈ D] ≥ 2

3 (it’s the definition of AM)

– If x /∈ L, Pr[Mo(x, r) = ⊥] = Pr[x#r#A(x, r) /∈ D′] = Pr[∀y, |y| ≤
p(|x|), x#r#A(x, r)#y /∈ D] = 1 − Pr[∃y, |y| ≤ p(|x|), x#r#A(x, r)#y ∈
D] ≥ 2

3

2

Then L ∈ BPPNP

Exercise 3 Collapse of the Arthur-Merlin hierarchy

Recall that, for each w ∈ {A,M}∗, the class w is the class of languages recognized by
Arthur-Merlin games with protocol w.

(a) Without using any result about the collapse of the Arthur-Merlin hierarchy, prove
that for all w0, w1, w2 ∈ {A,M}∗, we have w1 ⊆ w0w1w2.

(b) Now assume that for all w ∈ {A,M}∗, one has w ⊆ AM. Prove the following
statement: For all w ∈ {A,M}∗ such that w has a strict alternation of symbols,
and |w| > 2, we have w = AM.

Solution:

• For w0, w1, w2 ∈ {A,M}∗, we consider the language Dw0w1w2 of words of the shape
x#x0#x1#x2 with the correct number of # symbol in each word x0, x1 and x2 that
is given by the size of w0, w1, and w2 respectively. Furthermore, we consider the
projection function φw0w1w2 : Dw0w1w2 → Dw1 such that φ(x#x0#x1#x2) = x#x1.

Now, let L ∈ w1 and (M,A, D) the associated Merlin triplet. Consider the new
Merlin function M ′ such that, for all x#x0#x1 ∈ Dw0w1 , we have M ′(x#x0#x1) =
M(x#x1) and the new Arthur functionA′ ensuringA′(x#x0) = ε andA′(x#x0#x1) =
A(x##x1) for all x#x0#x1 ∈ Dw0w1 . Furthermore, we set D′ = φ−1w0w1w2

[D∩Dw1].
Then, A and D′ are polynomial, the size of the output of M is polynomial. That is,
the language L is decided by the Arthur-Merlin triplet (M ′,A′, D′) for w = w0w1w2.
In fact, L ∈ w0w1w2.

• Let w be such a word in {A,M}∗. We already know that Π ⊆ AM, Moreover
w = AMAΠ′ or w = MAMΠ′. In both cases, we can conclude with the previous
question that AM ⊆ w

Exercise 4 The BP operator

We say that a language B reduces to language C under a randomized polynomial time
reduction, denoted B ≤r C, if there is a probabilistic polynomial-time Turing machine
M such that for every x, Pr[M(x) ∈ C ⇔ x ∈ B] ≥ 2

3 .
Recall the definition of BP ·C: L ∈ BP ·C iff there exists a probabilistic Turing machine

A running in polynomial time and a language D ∈ C s.t. for all input x:

• if x ∈ L then Pr[A(x, r) ∈ D] ≥ 2
3

• if x /∈ L then Pr[A(x, r) /∈ D] ≥ 2
3

1. Show that BP · C = {L | L ≤r L
′, for some L′ ∈ C}

2. Show that co(BP · C) = BP · co(C) and if C ⊆ C′, then BP · C ⊆ BP · C′

3. Show that BPP is closed under randomized polynomial time reduction.

4. Give a criterion on C so that: BP · (BP · C) = BP · C.

3

The class BP · NP

1. Show that BP · P = BPP

2. Recall the proof that BP · NP = AM

3. Show that BP · NP = {L | L ≤r SAT}

4. Show that BP · NP ⊆ ΣP
3 (with a direct proof)

5. (bonus) Show that if 3SAT ≤r 3SAT then PH collapses to the third level.

Solution:

1. This comes directly from the definition of BP · C.

2. For a language L, we have:

L ∈ co(BP · C)⇔ L̄ ∈ BP · C
⇔ ∃L′ ∈ C, L̄ ≤r L

′

⇔ ∃L′ ∈ C, ∃ a PTM M, P rr[x ∈ L̄⇔M(x, r) ∈ L′] ≥ 2/3

⇔ ∃L′ ∈ C, ∃ a PTM M, P rr[x ∈ L⇔M(x, r) ∈ L̄′] ≥ 2/3

⇔ ∃L′ ∈ C, L ≤r L̄′

⇔ ∃L′′ ∈ coC, L ≤r L
′′

⇔ L ∈ BP · co(C)

The second fact is straightforward.

3. Let B ∈ BPP, we know that we can have MB a PTM which decides B with an error
lower than 1

12 . Let C ≤r B, we have M a probabilistic polynomial-time Turing
machine such that for every x, Pr[C(M(x, r)) = B(x)] ≥ 2

3 . Let MC be the PTM
which simulates, for an input x and two random words r and r′, MB(M(x, r′), r).
Then:

• If x ∈ C, P [MC(x, r) = ⊥] = P(r′,r)[MB(M(x, r′), r) = ⊥] ≤ Pr′ [C(M(x, r′)) 6=
B(x)] + Pr[MB(y, r) = ⊥ | y ∈ B] ≤ 1

3 + 1
12 ≤

5
12

• If x /∈ C, P [MC(x, r) = >] = P(r′,r)[MB(M(x, r′), r) = >] ≤ Pr′ [C(M(x, r′)) 6=
B(x)] + Pr[MB(y, r) = > | y /∈ B] ≤ 1

3 + 1
12 ≤

5
12

Therefore C ∈ BPP

4. Having BP·(BP·C) = BP·C amounts to show that if L ≤r L
′ ≤r L

′′ then L ≤r L
′′ for

all L,L′, and L′′. To prove this result, one may want to compose both reductions,
but by doing so, we would only obtain a probability of not making a mistake above
2/3×2/3 = 4/9 < 2/3. If we assume that C is democratic, then one can use also here
majority voting to increase the threshold 2/3 arbitrarily close to 1 while keeping a
polynomial algorithm. Then, if the error rate of both reductions if less than 1/10,
then the error rate of the composition is less than 1− 9/10 ∗ 9/10 = 19/100 ≤ 1/3.

4

The class BP · NP

1. This is straightforward, for instance for the inclusion ⊇:

Let L ∈ BPP, we have A a PTM given by the definition of BPP, we just simulate
it with A′ which won’t accept or reject but will write > or ⊥. Let D = {>}. By
definition of BPP:

• If x ∈ L, P [A(x, r) ∈ D] = P [A′(x, r) = >] ≥ 2
3

• If x /∈ L, P [A(x, r) /∈ D] = P [A′(x, r) = ⊥] ≥ 2
3

Therefore BPP ⊆ BP · P.

2. The solution is in the course p.31, and it’s the same construction that AM ⊆ BPPNP.

3. By definition, we have BP · NP ⊇ {L | L ≤r SAT} since SAT ∈ NP. Let us
now prove that for every languages L,L′, L′′, we have that if L ≤r L

′ ≤l L
′′ then

L ≤r L
′′. Consider the probabilistic Turing machine M for the first reduction (i.e.

Pr[M(x) ∈ L′ ⇔ x ∈ L] ≥ 2
3), and the Turing machine M′ running logarithmic

space for the second reduction (i.e. M′(M(x)) ∈ L′′ ⇔ M(x) ∈ L′). We consider
the probabilistic Turing machineM′′ running in polynomial time that, on an input
x, computes M′′(x) = M′(M(x)) (note that |M(x)| ≤ p(|x|) for some polynom
p). Then, we have M′′(x) ∈ L′′ ⇔ M′(M(x)) ∈ L′′ ⇔ M(x) ∈ L′. Hence,
Pr[M′′(x) ∈ L′′ ⇔ x ∈ L] = Pr[M(x) ∈ L′ ⇔ x ∈ L] ≥ 2

3 . It follows that for
L ∈ BP · NP, there exists L′ ∈ NP such that L ≤r L

′ with L′ ≤l SAT since SAT is
NP-complete. It follows that L ≤r SAT and BP · NP ⊆ {L | L ≤r SAT}.

4. We proceed very similarly to the proof that BPP ⊆ Σp
2. That is, consider L ∈ BP·NP

decided with error 1/2n in polytime p(n) by a probabilistic Turing machineM. For
x ∈ Σ∗, we denote Rx = {r ∈ {0, 1}p(n) | M(x, r) accepts}. We use the facts:

• If Rx ≥ (1−1/2n)·2p(n), then there exists t0, . . . tp(n)/n such that R⊕t0, . . . , R⊕
tp(n)/n covers {0, 1}p(n);

• If Rx ≤ (1/2n) · 2p(n), then for all t0, . . . tp(n)/n such that R⊕ t0, . . . , R⊕ tp(n)/n
does not cover {0, 1}p(n).

We get that for L ∈ BP·NP, we haveM a non-deterministic Turing machine running
in polynomial time and q a poly. such that: x ∈ L ⇔ ∃t0...tq(n)/n ∀r ∈ {0, 1}q(n)∨

i≤q(n)/nM(x, r ⊕ ti). The only difference wth the case BPP is that the Turing

machine M is non-deterministic. Therefore, we get that L ∈ ΣP
3 .

In fact BP · ΣP
i ⊆ ΣP

i+2 for all i ≥ 0.

Exercise 5 The PP class

The first 3 questions were already there in the last TD. Only question 4 is new.
The class PP is the class of languages L for which there exists a polynomial time

probabilistic Turing machine M such that:

• if x ∈ L then Pr[M(x, r) accepts] > 1
2

• if x /∈ L then Pr[M(x, r) accepts] ≤ 1
2

5

Also define PP< as the class of languages L for which there exists a polynomial time
probabilistic Turing machine M such that:

• if x ∈ L then Pr[M(x, r) accepts] > 1
2

• if x /∈ L then Pr[M(x, r) accepts] < 1
2

1. Show that BPP ⊆ PP and NP ⊆ PP;

2. Show that PP = PP< and that PP is closed under complement;

3. Consider the decision problem MAJSAT:

(a) Input: a boolean formula φ on n variables

(b) Output: the (strict) majority of the 2n valuations satisfy φ.

Show that MAJSAT ∈ PP. In fact, MAJSAT is PP-complete.

One may also consider the decision problem MAXSAT:

(a) Input: a boolean formula φ on n variables, a number K

(b) Output: more than K valuations satisfy φ.

Show that MAXSAT is also PP-complete (to prove that MAXSAT ∈ PP one may
reduce MAXSAT to MAJSAT).

4. Show that MA ⊆ PP.

Solution:

1. • A language L ∈ BPP is recognized by a PTM M such that if x ∈ L then
Pr[M(x, r) accepts] ≥ 2

3 and if x /∈ L then Pr[M(x, r) accepts] ≤ 1
3 . It

follows that L ∈ PP.

• The class PP is closed under logspace reduction. It suffice to show that SAT ∈
PP. Consider now a probabilistic Turing machine with an input that is a
formula φ. According to the first bit of the random tape, it either accepts or
reads what remains of the random tape for a valuation and accepts if and only
if it satisfies φ. Then, if φ ∈ SAT, we have Pr[M(x, r) accepts] > 1

2 , otherwise
Pr[M(x, r) accepts] = 1

2 .

2. Trivially, we have PP< ⊆ PP. Now, consider L ∈ PP and its associated Turing
machine M running in polynomial time p. Without loss of generality, we assume
that the alphabet of the random tape is of size 2, hence the probability of a random
word for M on an input x such that |x| = n is 2−p(n). Therefore, if x ∈ L then
Pr[M(x, r) accepts] ≥ 1

2 + 1
2p(n) . Now, we construct another Turing machine M ′

that runs M on an input. If M would reject, M ′ rejects too, and if M would accept
then M ′ rejects with probability 1

2p(n) (for instance, by reading a word in the random
tape of length p(n)and accepting only if there are only 0s). Then:

• if x ∈ L: Pr[M(x, r) accepts] ≥ (12 + 1
2p(n)) ·(1− 1

2p(n)) = 1
2 + 1

2p(n)+1 − 1
22·p(n) >

1
2

• if x /∈ L: Pr[M(x, r) accepts] ≤ 1
2 · (1−

1
2p(n)) < 1

2

6

That is, L ∈ PP<. The stability under complement then follows by inverting the
accepting and rejecting states.

3. A probabilistic Turing machine that checks that a valuation read on the random
tape satisfies the formula decides MAJSAT for PP. Then, MAJSAT can be reduced to
MAXSAT in logarithmic (as one has to write on the output tape the number 2n−1+1
in binary, which consists in a 1, n− 2 0s and then a 1). Therefore, MAXSAT is also
PP-hard. Let us now show that MAXSAT ∈ PP. To do so, let us reduce MAXSAT to
MAJSAT. Consider an instance (φ, i) of MAXSAT with 0 ≤ r1 < r2 < . . . < rk ≤ n
such that 2n − i = 2n−r1 + . . . + 2n−rk (the values n − rj refers to the 1s in the
binary decomposition of 2n − i). Let us denote x1, . . . , xn the variables of φ. Then,
we consider the formula ψ as:

ψ = (x1 ∧ . . . ∧ xr1)

∨ (¬x1 ∧ . . . ∧ ¬xr1 ∧ xr1+1 ∧ . . . ∧ xr2)

∨ · · ·
∨ (¬x1 ∧ . . . ∧ ¬xrk−1

∧ xrk−1+1 ∧ . . . ∧ xrk)

We can see there are exactly 2n−rj valuations satisfying the j-th line of ψ. With the
negation at beginning of the lines, no valuation satisfies two lines of ψ. Therefore,
there are exactly 2n−r1 +. . .+2n−rk = 2n−i valuations satisfying ψ. Consider now a
fresh variable y and the formula: φ′ = (y∧φ)∨(¬y∧ψ). Then, we have φ′ computable
in polynomial time from φ and φ is satisfied by more than i valuations if and only if
φ′ is satisfied by more than half of valuations, i.e. φ ∈ MAXSAT⇔ φ′ ∈ MAJSAT.

4. Consider the characterization MA of exercise 1. Let L ∈MA and the corresponding
Arthur-Merlin (M,A, D). Here, once y is fixed (which the result of the Merlin map
M whose size is bounded by the polynom p), we can repeat the experience – that
is, iterate 36 · q(|x|) · log(2) calls to the Arthur probabilistic Turing machine – and
use majority voting and the Chernoff bound to have the error rate below 1/2q(|x|)

for all polynom q. This new probabilistic Turing machine works in polynomial time,
specifically 36 ·q(|x|) · log(2) ·p(|x|), which is also the length of the random tape used
by this new Turing machine on an input (x, y) of size |x| + p(|x|). Let q = p + 2,
u = 36 · q · log(2), and D′x = {(r1, . . . , ru(|x|), y) | |y| = p(|x|) ∧ ∀i ∧ |ri| = p(|x|) ∧
the majority of the ri ensures (x, ri, y) ∈ D}. Note that deciding if (r, y) ∈ D′x can

be done in polynomial time. Then,

• x ∈ L⇒ ∃y ∈ {0, 1}p(|x|), P rr∈{0,1}u(|x|)·p(|x|) [(r, y) ∈ D′x] ≥ 1− 1/2p(|x|)+2

• x /∈ L⇒ ∀y ∈ {0, 1}p(|x|), P rr∈{0,1}u(|x|)·p(|x|) [(r, y) ∈ D′x] ≤ 1/2p(|x|)+2

Let us now consider the size of the set D′x. If x ∈ L, we have:∑
y∈{0,1}p(|x|)

∑
r∈{0,1}u(|x|)·p(|x|)

[(r, y) ∈ D′x] ≥ 2u(|x|)·p(|x|) · (1−1/2p(|x|)+2) ≥ 2u(|x|)·p(|x|)−1

If x /∈ L, we have:∑
y∈{0,1}p(|x|)

∑
r∈{0,1}u(|x|)·p(|x|)

[(r, y) ∈ D′x] ≤ 2p(|x|)·2u(|x|)·p(|x|)·(1/2p(|x|)+2) = 2u(|x|)·p(|x|)−2

Therefore, we have x ∈ L⇔ |D′x| ≥ 2u(|x|)·p(|x|)−1.

7

Consider now the following randomized polynomial time algorithm on an input |x|:
according to the first random bit, either it accepts with probability 1 − 1/2p(|x|)+1

(for instance by reading p(|x|) + 1 bits and rejecting iff all are 0s) or it chooses
randomly (and uniformly) an instance (r, y) of D′x and accepts if (r, y) ∈ D′x. Then,
if we denote by px the probability of accepting, it ensures:

px =
1

2
· (1− 1

2p(|x|)+1
) +

1

2
· |D′x|

2p(|x|)+u(|x|)·p(|x|)

Hence:

x ∈ L⇔ |D′x|
2p(|x|)+u(|x|)·p(|x|) ≥

1

2p(|x|)+1
⇔ px ≥

1

2

It follows that L ∈ PP.

8

