
Electronic Notes in Theoretical Computer Science 68 No. 6 (2004)
URL: http://www.elsevier.nl/locate/entcs/volume68.html 16 pages

About Fast and TReX accelerations

Christophe Darlot, Alain Finkel 1,2

LSV & ENS de Cachan
61,av. du président wilson, 94235 CACHAN CEDEX, France

Laurent Van Begin 3

Université Libre de Bruxelles
Blvd du Triomphe, 1050 Bruxelles, Belgium

Abstract

Fast and TReX tools are designed to analyse systems with infinite state spaces.
They both implement algorithms computing the set of reachable states of such
systems. Since the state space may be infinite, acceleration techniques are used . In
this paper, we study the differences between Fast and TReX acceleration techniques
and show that although Fast remains in Presburger logics while accelerating, TReX

can produce 1st order arithmetical formulas even when accelerating functions from
states belonging to a subset of Presburger.

Key words: Fast, TReX, Acceleration, Counter systems.

1 Introduction

During the last years, progress in model-checking techniques allowed to apply
automatic verification not only to finite state systems but also to infinite ones.
In this paper, we are interested in the state space exploration of a special class
of infinite state systems called parametric counter systems, i.e. finite automata
extended with unbounded counters. Such models are widely used to describe,
for instance, abstractions of cache coherency protocols [Del00], programs with
any number of threads [DRV02] and protocols like the TTP/C [BFL04].

More precisely, our issue is to compute for counter systems the exact (in-
finite) set of states reachable from a set of initial states in a fully automatic
way. Let us recall that achieving this goal allows us to automatically verify
safety properties. For this we mainly encounter two problems :

1 Email: darlot@lsv.ens-cachan.fr
2 Email: finkel@lsv.ens-cachan.fr
3 Email: lvbegin@ulb.ac.be

c©2004 Published by Elsevier Science B. V.

http://www.elsevier.nl/locate/entcs/volume68.html

• A suitable data structure to represent infinite sets of states must be defined;

• Since the the computation of the reachable state space for counter systems is
not guaranteed to terminate in general, several techniques must be defined
to force termination in practice.

The so-called acceleration technique is one of the most popular techniques
that have been investigated to ensure termination of the reachable state space
computation. Roughly speaking, the acceleration techniques consist in com-
puting the exact effect of iterating a control loop of a counter system an
arbitrary number of times, hence computing a (possibly) infinite set of states
in a finite number of steps (see [Boi99]).

Several acceleration techniques have been developed and implemented into
tools. In this paper, we set the focus on the acceleration techniques imple-
mented into the tools Fast [Fast] and TReX [Trex] 4 . The underlying tech-
nologies used by these tools are different: Fast uses Presburger arithmetics
(and Presburger automata) to represent infinite set of states while TReX uses
Parameterized Difference Bounded Matrices [AAB00]. As a consequence, the
acceleration techniques are completely different. One aim of this paper is to
compare them. First, we have to discuss the expressiveness of both models.
Particularly, we compare the symbolic representations used in these tools.
Second, the acceleration techniques could compute non-manipulable represen-
tations of sets, i.e. representations for which no algorithm can compute some
important operations or tests such as inclusion or emptiness. Hence, either a
semi-algorithm is used in practice (in this case, the algorithm is not guaran-
teed to terminatebe) or the test is approximated (then we are not guaranteed
to compute the exact set of reachable states). Since the computation of the
exact reachable state space allows a finer analysis of counter systems, we fo-
cus on the characterization of the cases where we are guaranteed to compute
manipulable representations.

The paper is organized as follows: Section 2 introduces the notations and
concepts used in the rest of the paper. In section 3, we define and compare
the input models and symbolic representations used in both tools. In Section
4, we briefly present in a common framework both acceleration techniques,
give some new results on TReX acceleration and benchmark both tools on a
common set of examples. Last, we give our conclusion in section 5.

2 Preliminaries

Definition 2.1 Let V be a set of variables such that | V |= n.

• The set of arithmetical terms over V is defined by the grammar:
t ::= 0 | 1 | x | t− t | t+ t | t ∗ t where x ∈ V.

4 Notice that the tool Lash (see [Lash]) also uses accelerations, but its acceleration tech-
nique is close to the one used in Fast, so it will not be discussed in this paper.

2

• A Presburger term is a term where no product of variables occurs.

• The set of 1st order arithmetical formulas over V is defined by the grammar
φ ::= t ≤ t | ¬φ | φ ∨ φ | ∃x.φ where t is an arithmetical term over V and
x ∈ V .

• A Presburger formula is a 1st order arithmetical formula with only Pres-
burger terms.

Examples:
• (y = x + x), is equivalent to y = 2 ∗ x hence this last formula will be

considered as a Presburger formula;

• (y = x ∗ x) is not a Presburger formula;

• (y = x ∗ x) ∧ (x = 1) is not a Presburger formula (nevertheless, there
exists an equivalent formula y = 1 which is in Presburger but there exists
no algorithm to decide wether a genereral arithmetical formula belongs to
Presburger arithmetics).

Definition 2.2 A set L ⊆ Z
n is linear if there exists B, V1, . . . , Vp ∈ Z

n, p ∈ N

such that L = (B, V1, . . . , Vp) = {B +
∑p

i=1 λiVi, λi ∈ Z}.

Notice that finite unions of linear sets and Presburger formulas are known
to represent the same sets [GS66].

In the following, we consider V = C ∪ P with C = {c1, . . . , cq} a set of
q counters, P = {p1, . . . , pr} a set of r parameters such that C and P are
disjoint (C ∩ P = ∅).

Notation: φ will always denote a quantifier-free first order arithmetical
formula over P and ψ will always denote a formula ψ =

∧

i,j∈1..q ci − cj ≺ tij
where ≺∈ {<,≤}, tij is an arithmetical term over P .

Definition 2.3 For all formula ψ, where tij ∈ Z for all terms tij, ψ is a DBM
formula. ∃p1, . . . , pr ∈ P.ψ is a Parametric DBM formula (PDBM formula).
∃p1, . . . , pq ∈ P.(ψ ∧ φ) is an Extended PDBM formula (EPDBM formula).

The DBM formulas, usually used to describe zones in hybrid systems, can
be encoded using special kind of matrices called Difference Bounded Matri-
ces. These representations allow an efficient (polynomial) implementation of
operations such as intersection or empty test in the case of DBM formula.
They have been extended in [AAB00] to handle parameters (PDBM) and
constrained parameters (EPDBM).

Let M be a matrix, we denote 〈M〉 its multiplicative monöıd (〈M〉 =
{Mk; k ≥ 0}).

Definition 2.4 An affine function f : N
n → N

n is a tuple f = 〈M,B,G〉
(sometimes denoted 〈Mf , Bf , Gf〉) where M ∈ N

n × N
n, B ∈ N

n, G (called
guard) is in Presburger and for every v ∈ N

n, v ∈ G⇒ f(v) = M · v +B.

Lets now define a restriction of affine functions called simple affine func-

3

tions. Informally, these functions can be seen as a set of counter assignments
of the form ci := cj + t where ci, cj ∈ C and t is a Presburger term over P .

Definition 2.5 An affine function f = 〈M,B,G〉 is simple if G is a PDBM

formula and M =





MC MP

0 Id



 with MP ∈ N
q ×N

r and MC ∈ N
q ×N

q is such

that each line contains exactly one “1” (all other elements equals to 0).

3 Models and Symbolic Representations

Models

Definition 3.1 A parametric counter system (PCS) is a tuple S = 〈Q,C, P,F , R, I〉
where Q is a finite set of locations, C a set of counters, P a set of parameters,
F a set of affine functions, R ⊆ Q×F×Q is a finite set of symbolic transitions
and I is a tuple 〈q ∈ Q, I ⊆ N

n〉 that describes the initial state with a control
state and a set of valuations for the variables in C ∪ P .

Fast and TReX both analyze PCS but the functions of F are affine func-
tions for Fast and simple affine functions for TReX. Moreover, I is described
by a Presburger formula in Fast and by a PDBM formula in TReX. Figure 1
shows an example of PCS with three counters x, y, z and no parameters (all
variables are assigned at least once).

S1 S2

x ≤ 7/x := x+ 2

x > 7/y := 0, z := 5

z := x
y := y + 3
x := y + 11/

Fig. 1. The Graph of a Parametric Counter System.

The semantics of PCS is defined as follows. A configuration of the PCS
S = 〈Q,C, P,F , R, I〉 is a pair 〈q, v〉 where q ∈ Q and v ∈ N

m is a valuation.
The transition relation→ between the configurations of S is defined as follows:
given two configurations 〈s1, v1〉 and 〈s2, v2〉 and a function f ∈ F , we have
〈〈q1, v1〉, f, 〈q2, v2〉〉 ∈→ if and only if there exist 〈q1, f, q2〉 ∈ R such that
v2 = f(v1).

Symbolic Representations

While analyzing parametric counter systems, the possibly infinite set of con-
figurations is represented using different symbolic representations:

4

Fast algorithm uses Presburger formulas over V = C ∪ P (there is no
distinction between parameters and counters). Fast uses automaton to en-
code and efficiently operate on Presburger formulas (see [Boi99] for further
details). However, the encoding of a Presburger formula into an automata is
non-elementary and the reverse operation is not possible in the general case.

TReX algorithm uses EPDBM formulas over the counters C and the pa-
rameters P . The set N ⊆ P of integer variables called iteration variables
in [AAB00], is used while accelerating in order to set constraints on the num-
ber of iterations of the control loops. EPDBM formulas ϕ = ψ∧φ are encoded
using both symbolic matrices (for ψ) and logical formulas 5 (for φ). The en-
coding and decoding of PDBM formulas from and to matrices can be done
in linear time. Since we here only consider PCS where the initial state is
described by a set of assignments {ci := ti}, both terms ci − cj ≤ ti,j and
cj − ci ≤ −ti,j always appear in the EPDM formulas. For this reason, we can
restrict their syntax to the following simpler form:

∧

i∈1..q ci = ti where ti is
an arithmetical term over P .

Now, lets compare the expressive power of these symbolic representations.
In order to ease the comparison of both tools, we define a new type of formula
called Presburger PDBM which is basically an EPDBM formula where no
product of variables occurs.

Definition 3.2 A Presburger PDBM formula is a formula ∃p1, . . . , pn ∈ P.(ψ∧
φl) where φl is a quantifier free Presburger formula over the parameters in P .

Proposition 3.3 PDBM formulas are strictly less expressive than Presburger
formulas.

Proof. This result is obvious because:

(i) Every PDBM formula is syntactically a Presburger formula;

(ii) There exist Presburger formulas that cannot be expressed by a PDBM
formula: i.e. the Presburger formula x 6= y cannot be expressed by a
PDBM formula since PDBM formula are known to describe convex sets.

2

Proposition 3.4 Presburger PDBM formulas and Presburger formulas are
equivalently expressive.

Proof.

(i) Every Presburger PDBM formula is syntactically a Presburger formula;

(ii) First, we show how to encode a linear set with a Presburger PDBM
formula. Let L = (B, {V1, . . . , Vr}) be a linear set with a base B =
(b1, . . . , bn) and a set of periods Vi = (vi1 , . . . , vin).

Let us consider the sets of counters C = {c1, . . . , cn} and the set of
parameters P = {p1, . . . , pn+r}. We define ψ ≡

∧n

i=1(ci = di) and φ =

5
TReX uses an external prover (Omega) to manipulate these formulas.

5

∧n

i=1(di = bi +
∑r

k=1(pn+k · vki
)). Then the Presburger PDBM ψ ∧ φ

defines (syntactically) the linear set L (since parameters are existentially
quantified in PDBM formulas).

Second, we show how to encode a finite union of linear sets into a
Presburger PDBM. The extension is obvious. Given the union of m
linear sets

⋃m

j=1 L
(j) with L(j) = (B(j), {V

(j)
1 , . . . , V

(j)
p }), we define φ′ as

follows:

φ′ =

q
∨

j=1

n
∧

i=1

(di = b
(j)
i +

r
∑

k=1

(pn+k · v
(j)
ki

)

The Presburger PDBM ψ∧φ′ defines the finite union of linear sets. So we
proved that any finite union of linear sets can be encoded by a Presburger
PDBM. Then, Presburger is included in Presburger PDBM.

2

Proposition 3.5 EPDBM formulas are strictly more expressive than Pres-
burger formulas.

Proof. The EPDBM formula ϕ = ψ ∧ φ with ψ ≡ (c1 = p1 ∧ c2 = p2) and
φ ≡ (p1 = p2 ∗ p2) represents the set{(c1, c2) | c1 = c2 ∗ c2} which is not a
Presburger set. 2

From the previous proposition, we can give the inclusion diagram given in
figure 2 which sums up the expressiveness of the different symbolic represen-
tations used in the tools Fast and TReX.

(TReX) DBM //PDBM //PresburgerPDBM //EPDBM

(Fast) Presburger Formula

Fig. 2. Inclusion Diagram of Fast and TReX Symbolic Representations

4 Study of Fast and TReX Acceleration Techniques

We call acceleration the process which given a function f and a set of states
S returns the (exact) set of states reached by applying f an arbitrary number
of times from S. More formally,

Accelerate(S, f) = f ∗(S) = {s′ | ∃n ∈ N, s ∈ S ∧ s′ = fn(s)}.

In this section, we briefly describe the respective algorithms of Fast and TReX

used to compute the reachable state space of a PCS. In each case, we detail the
acceleration technique and we expose the context (main algorithm) in which
it is used. More details about those algorithms can be found, respectively,
in [FL02] and [AAB00].

6

In the rest of the paper, we consider that the locations of a PCS are
represented by a counter l, i.e. l = i means that the PCS is in the location
si. So transitions of a PCS are viewed as (simple) affine functions. Let us say
that a PCS is flat if its control graph contains no nested loops.

4.1 Fast Acceleration Algorithm

The main algorithm of Fast is a classical forward fix-point algorithm extended
with acceleration techniques. More precisely, given a PCS S = 〈Q,C, P,F , R, I〉
and a natural number k, the algorithm works as follows. The (infinite) set of
valuations that we want to compute is represented by a Presburger formula
F . Two steps are performed:

(i) Initialization: First, F is defined to be a Presburger formula describing
the set of initial configurations of the PCS. Moreover, the set T of all
the possible compositions of functions in R of size lesser or equal to k is
computed;

(ii) Iteration: Then, while a fix-point is not reached, a function f ∈ T is
randomly chosen and F ← F ∪ AccelerateFast(F, f) is computed.

Notice that some heuristics are implemented in Fast to increase on the fly the
value of k if necessary to reach a fix-point (see [BFLP03]).

Fast acceleration technique is based on the fact that we can represent the
relation corresponding to any number of applications of an affine function f
by a Presburger formula provided 〈Mf〉 is finite. Notice that deciding whether
the monöıd of an affine function is finite is decidable [MS77].

Now we recall how to express f ∗ as a Presburger formula. We denote f
the function f where Gf is substituted by true. Since 〈Mf〉 is finite, there
exist two integers a ≥ 1 and b ≥ 1 such that Mf

a = Mf
a+b. The formula

v′ = f
i
(v)∧i ≥ 0 with the free variables v′, v and i is equivalent to the following

Presburger formula (where 0 is the vector where all dimensions equal to 0):

(

a−1
∨

r=0

[(v′ = f
r
(v)) ∧ (i = r)]

)

∨





b−1
∨

r=0

∃n ≥ 0





∧(v′ = f
a+r

(v) + n.Mf
a+r.f

b
(0))

∧(i = a+ r + n.b)









We define the acceleration formula A(f, F, a, b) which is a Presburger for-
mula with a free variable v′ and which takes the guards into account:

A(f, F, a, b) = ∃v, k.(v ∈ F∧k ≥ 0∧v′ = f
k
(v)∧(∀i.0 ≤ i < k ⇒ f

i
(v) ∈ Gf))

(1)

Theorem 4.1 (Fast correctness [FL02]) Let a, b ∈ N, f an affine function
such that 〈Mf〉 is finite and Ma = Ma+b then A(f, F, a, b) = f ∗(F).

Moreover, in the case where the function is a translation and the guard a
convex polyhedron, [BFL04] gives a new more efficient acceleration algorithm

7

Algorithm 1: Acceleration of Fast

function AccelerateFast (F : a Presburger formula, f : an affine function):
Presburger formula;

1 if 〈Mf 〉 is finite then

2 Compute a and b such that Mf
a = Mf

a+b;
3 return A(f, F, a, b);

(where Formula 1 is simpler). We call this acceleration AccelerateConvexFast.
Also notice that fast always termintate on flat PCS.

4.2 TReX Acceleration Algorithm

In order to compute the reachable state space of a PCS S = 〈Q,C, P,F , R, I〉 ,
TReX uses an in-depth first construction algorithm of a symbolic reachability
tree, i.e. a tree where each node is an EPDBM formula –the root node is
an EPDBM formula representing the set of initial states, and edges describe
the reachability relation between nodes. This tree construction is extended
with an acceleration technique (described further). During the construction
of the symbolic reachability tree denoted SRTTReX(S), each node (labelled by
a tuple 〈q ∈ Q,ϕ ∈ EPDM〉) is treated in two steps:

(i) Acceleration computation: First, TReX tries to perform accelerations on
the loops of the control graph. In order to detect the loops, TReX looks
back for a symbolic state ϕ′ labelled by the location q and from which
the current node is reachable in the symbolic reachability tree. If such a
node is detected, the acceleration function is called. Notice that TReX

compaoses the functions of the loop to obtain a single function. If a new
EPDBM formula is created, the in-depth first exploration resumes from
this formula;

(ii) Direct successor computation: Second, for each transition t ∈ R, the set
of configurations reached by firing t from the current node and denoted
postf (ϕ) is computed. This set is described by a (set of) EPDBM formula.
For each formula a new node is created and the in-depth first exploration
resumes recursively from these formulas;

Notice that the in-depth first explotation of the reachability tree allows to
discover on-the-fly the loops of the PCS and to compose the functions to be
accelerated. However, the size of the detected loops is bounded in TReX tool.

Given two EPDBM formulas ψ1 =
∧

i∈1..q ci = ti and ψ2 =
∧

i∈1..q ci = ki,
we define the following operations:

ψ2−̇ψ1 =
∧

i∈1..q

ci = ki − ti, ψ1+̇ψ2 =
∧

i∈1..q

ci = ki + ti

8

n(∈ N)×̇ψ1 =
∧

i∈1..q

ci = n · ti, ψ1=̇ψ2 =
∧

i∈1..q

ki = ti.

The function AccelerateTReX (Algorithm 2) works as follows: After one

Algorithm 2: Acceleration of TReX

function AccelerateTReX ((ψ0 ∧ φ0) :EPDBM formula,f : affine function):
EPDBM formula;

1 if f is a simple affine function then

2 (ψ1 ∧ φ1)← postf (ψ0 ∧ φ0) ;
3 (ψ2 ∧ φ2)← post2f (ψ0 ∧ φ0) ;
4 if (ψ1 ∧ φ1) 6= false ∧ (ψ2 ∧ φ2) 6= false then

5 ∆← ψ1−̇ψ0 /* effect of applying f from ϕ0 */ ;
6 ∆′ ← ψ2−̇ψ1 /* effect of applying f from ϕ1 */ ;
7 Let n ∈ N be a fresh iteration variable;
8 if C1 [and C2] then

9 return postf ((ψ0+̇(n×̇∆1)) ∧ φ0 ∧ n ≥ 0);

iteration of a control loop f , we iterate it a second time 6 and compare the
effect ∆1 of the first iteration with the effect ∆2 of the second iteration. For
this, two conditions are verified:

C1 ≡∀p1, . . . , pαp
∈ P.φ2 =⇒ ∆=̇∆′

C2 ≡∀n ≥ 0.post2f (ψ0+̇(n×̇∆)) ∧ φ0 ∧ n ≥ 0) =

postf (ψ0+̇((n+ 1)×̇∆)) ∧ φ0 ∧ n ≥ 0)

Informally, ∆1 = ψ1−̇ψ0 represents a distance between the symbolic states
ψ1 and ψ0, which is the effect of the loop. C1 says that the effect of the first
and second iteration of the loop are equal under the assumption φ2 and C2
says that each time we apply f , we add ∆ to the symbolic state. If C1 ∧ C2
is satisfied, we return a symbolic state expressing that if we iterate n times
the loop f from ϕ0, we obtain the effect given by n×̇∆1. Notice that the
computation of postf ((ψ0+̇(n×̇∆)) ∧ φ0 ∧ n ≥ 0) sets constraints on n (using
the guard of the function f). The correctness of this algorithm is given by the
following theorem:

Theorem 4.2 (TReX correctness [AAB00]) C2 is equivalent to

∀n.postn+1
f (ψ0 ∧ φ0) = postf ((ψ0+̇(n×̇∆)) ∧ φ0 ∧ n ≥ 0)

6 We give here a simplified version of the algorithm where applying post generates a single
EPDBM formula but it can be easily extended in the case of post generating several EPDBM
formula (this may happen after the EPDBM normalisation process, not described here).

9

We can notice that if we check only C1, we compute an upper-approxi-
mation of the reachability set. In the implementation of the tool TReX only
C1 is verified but in [AAB00], the authors claim that the acceleration is still
exact because the guards describe convex sets and accelerated simple affine
functions are translations.

4.3 Analysis of TReX acceleration technique

We detail in this section the cases where the TReX acceleration technique can
be used and the kind of formula obtained once the acceleration performed.

First, contrary to the case of Fast acceleration technique, the TReX ac-
celeration technique allows to accelerate any simple affine functions without
restriction about its monöıd:

Proposition 4.3 Given a PCS S = 〈Q,C, P,F , R, I〉 and an initial state ϕ0,
for each infinite path ϕ0 →

fω

(f ∈ F) of SRTTReX(S), there exist two integers
a and b such that AccelerateTReX(fa(ϕ0), f

b) will return (f b)∗(fa(ϕ0)).

Proof. See appendix. 2

Notice that this result is not effective since the acceleration test (C1), the
inclusion test and the empty test of TReX are undecidable. Nevertheless, if the
PCS does not contain non-Presburger constraints on parameters in its initial
state, i.e. if its initial state is described by a Presburger PDBM formula, the
acceleration test C1 will be effectively evaluated to true at least once until the
first acceleration occurs (since its result may introduce non-Presburger terms
as explained in next paragraph). Moreover, since the acceleration test C1 is
undecidable, the acceleration procedure of TReX is not recursive. However, if
we suppose we have an oracle for deciding the empty test, the inclusion test
and C1, TReX terminates on flat systems.

Remark 4.4 It seems that TReX does not terminate in general even if we
suppose we have an oracle (for example when used on a Petri net example
of [DFS98] where the language of the transitions labels is not regular).

Second, TReX acceleration result is in the general case a first-order formula,
even when accelerating a function with a finite monöıd from a Presburger
PDBM (see Proposition 4.5). Nevertheless there exists in that case a Pres-
burger formula equivalent to the resulting first-order formula. Moreover, TReX

always produces first-order formulas (even when accelerating from a Pres-
burger formula) when applied to functions with an infinite monöıd for some
initial states (see Proposition 4.6).

Proposition 4.5 There exist a DBM formula ϕ and a function f such that
〈Mf〉 is finite and AccelerateTReX(ϕ, f) is not a Presburger PDBM formula.

Proof. Let us consider the PCS shown in Figure 1 with the initial symbolic
state (s1, ψ ∧ φ) with ψ = x = 0 ∧ y = 0 ∧ z = 0 and φ = true (ψ is a simple

10

DBM because φ = true). By applying the TReX procedure on that PCS, we
build successively the following EPDBM formulas :

formula ψi φi

ϕ0 l = 1 ∧ x = 0 ∧ y = 0 ∧ z = 0 true

ϕ1 l = 1 ∧ x = 2 ∧ y = 0 ∧ z = 0 true

ϕ2 l = 1 ∧ x = 4 ∧ y = 0 ∧ z = 0 true

ϕ3 (Acceleration) l = 1 ∧ x = (2 + 2 · n0) ∧ y = 0 ∧ z = 0 0 ≤ n0 < 3

ϕ4 l = 2 ∧ x = (2 + 2 · n0) ∧ y = 0 ∧ z = 5 n0 = 3

ϕ5 l = 2 ∧ x = 11 ∧ y = 3 ∧ z = (2 + 2 · n0) n0 = 3

ϕ6 l = 2 ∧ x = 14 ∧ y = 6 ∧ z = 11 n0 = 3

ϕ7 (Acceleration) l = 2 ∧ x = (11 + 3 ∗ n1) ∧ y = (3 + 3 · n1) n0 = 3 ∧ n1 ≥ 0

∧z = (2 + 2 · n0 − 2 · n0 · n1 + 9 · n1)

First, TReX accelerates while looping on the location S1 (steps 0-2) and
generates the symbolic state ϕ3 (which is a Presburger PDBM). Then, when
looping on the location S2 (steps 4-6), AccelerateTReX computes:

(i) ∆ = ψ5−̇ψ4 = (∆l = 2− 2 ∧∆x = 11− (2 + 2 · n0) ∧∆y = 3− 0 ∧∆z =
(2 + 2 · n0)− 5) which is equivalent to ∆l = 0 ∧∆x = 9− 2 · n0 ∧∆y =
3 ∧∆z = 2 · n0 − 3, and

(ii) ∆′ = ψ6−̇ψ5 = (∆′
l = 2−2∧∆′

x = 14−11∧∆′
y = 6−3∧∆′

z = 11−(2+2·n0)
which is equivalent to ∆′

l = 0 ∧∆′
x = 3 ∧∆′

y = 3 ∧∆′
z = 9− 2 · n0.

The acceleration test (C1, line 9 of Algorithm 2) ∀n0.φ5 ⇒ ∆=̇∆′ succeeds
since ∀n0.n0 = 3⇒ ((9−2·n0 = 3)∧(3 = 3)∧(2·n0−3 = 9−2·n0) is true. Then
the state returned (line 10 of Algorithm 2) is ϕ7 = postf (ψ5+̇n1×̇∆∧φ5∧n1 ≥
0) which contains the non-Presburger terms “2 · n0 · n1”. Thus the result is
not a Presburger formula. 2

Proposition 4.6 For any function f such that 〈Mf〉 is infinite and Gf =
true, there exists a Presburger PDBM formula F such that AccelerateTReX(F, f)
is not a Presburger PDBM formula.

Proof. See appendix. 2

4.4 A few benchmarks on parametric counter systems

Figure 3 gives a few results on classical examples of counter systems, taken
from [Fast]. “-”means that no result is given within a reasonable time (about
half an hour). These benchmarks have been performed on a Xeon 2.4Ghz
with 1Gb RAM running Linux 2.4. Out of 31 models handled by Fast, only
14 could be translated to TReX entry model (PDBM guards or simple affine
functions are too restrictive for some models).

11

Example | C | | P | t(s) Fast t(s) TReX

Barber 8 0 1.0 0.1

rtp 9 0 1.1 0.1

Lamport 11 0 1.3 0.2

Peterson 14 0 2.3 0.5

Read-Write 13 0 4.6 0.9

Kanban 16 0 4.8 0.4

Dekker 22 0 9.9 7.5

Producer-Consumer 5 1 0.2 4.6

Ticket2i 6 3 0.5 134.2

Ticket3i 8 4 1.7 -

ICALP 98 Petri net 4 1 6.2 -

Multipoll 18 4 6.7 -

CSM 14 1 21.4 -

FMS 22 3 75.0 -

Swimming Pool 7 2 101.0 -

Fig. 3. Benchmarks on classical systems

We can notice that when applied on systems without parameters, TReX is
faster than Fast. A possible reason is that simple operations on DBM (such as
empty test or inclusion) can be done in polynomial time. However, even with
one parameter, TReX is much slower than Fast; The reason of this inefficiency
may be the call of external provers (Omega and Reduce) to handle parameters,
the normalization of the EPDBM which is a costly operation (performed by
case splitting on parameters values), the kind of specifications used (their
control graph mostly consists of one location with many functions looping on
it, which may cause TReX not to be as efficient as for specifications with more
important control graphs).

5 Conclusion

Figure 4 summaries the results given in the previous sections. The advan-
tage of the TReX acceleration technique is that the functions with a finite
or infinite monöıd can be sometimes accelerated. Moreover, the sequences of
transitions to accelerate are easily chosen by exploring the reachability tree
constructed by the TReX algorithm –in the case of Fast, such heuristics are

12

more difficult to define 7 , and a data structure especially designed to repre-
sent EPDBM formulas have been defined in [AAB00]. The drawback of this
technique is that contrary to the case of Fast acceleration, we are not guaran-
teed to obtain Presburger formulas when applying the acceleration technique.
When manipulating non-Presburger formulas, the satisfiability for example of
C1 becomes undecidable and TReX is then not guaranteed to compute the
exact set of reachable states in general. Moreover, the benchmarks showed
that TReX could not handle easily models with many parameters, which is
a problem since each acceleration step increase the number of parameters (in
the set N of iteration variables). So (E)PDBM do not seem to be a suitable
symbolic representations for the analysis of PCS.

Fast TReX

Guards Presburger PDBM

Functions Affine functions with finite monöıd Simple affine functions

Symb. Rep. Presburger EPDBM

⊆ of Symb. Rep. 3-EXP Undecidable

Acceleration 5-EXP Undecidable

Fig. 4. Fast and TReX Accelerations

References

[AAB00] A. Annichini, E. Asarin, and A. Bouajjani. Symbolic techniques for
parametric reasoning about counter and clock systems. In Proceedings of
the 12th International Conference on Computer Aided Verification (CAV’00),
volume 1855 of LNCS, pages 419–434. Springer, 2000.

[BFL04] S. Bardin, A. Finkel and J. Leroux FASTer acceleration of counter
automata in practice. will appear in Proc. 10th International Conference on
Tools and Algorithms for Construction and Analysis of Systems (TACAS 2004),
2004.

[BFLP03] S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. Fast: Fast Acceleration
of Symbolic Transition systems. In Proc. 15th Int. Conf. Computer Aided
Verification (CAV’2003), volume 2725 of Lecture Notes in Computer Science,
pages 118-121. Springer, 2003.

[Boi99] B. Boigelot. Symbolic Methods for Exploring Infinite State Spaces. PhD
thesis, Université de Liège, 1999.

7 They are actually based on criteria such as the maximum symbolic states sizes allowed
which are a priori not easy for the user to guess from a given PCS

13

[Del00] G. Delzanno. Automatic Verification of Parameterized Cache Coherence
Protocols. In Proc. 12th International Conference on Computer Aided
Verification (CAV 2000), volume 1855 of LNCS, pages 53–68. Springer, 2000.

[DFS98] C. Dufourd, A. Finkel, and Ph. Schnoebelen. Reset nets between
decidability and undecidability. In Proc. 25th Int. Coll. Automata, Languages,
and Programming (ICALP’98), Aalborg, Denmark, July 1998, volume 1443 of
LNCS, pages 103–115. Springer, 1998.

[DRV02] G. Delzanno, J-F. Raskin, and L. Van Begin. Towards the Automated
Verification of Multithreaded Java Programs. In Proc. 8th International
Conference on Tools and Algorithms for Construction and Analysis of Systems
(TACAS 2002), volume 2280 of LNCS, pages 173–187. Springer, 2002.

[Fast] FAST web. http://www.lsv.ens-cachan.fr/fast/.

[FL02] A. Finkel and J. Leroux. How to compose Presburger-accelerations:
Applications to broadcast protocols. In Proc. 22nd Conf. Found. of Software
Technology and Theor. Comp. Sci. (FSTTCS’2002), volume 2556 of Lecture
Notes in Computer Science, pages 145-156. Springer, 2002.

[GS66] s. Ginsburg and E. Spanier Semigroups, Presburger formulas and languages.
Pacific Journal of Mathematics, volume 16, 1966.

[Lash] LASH web.
http://www.montefiore.ulg.ac.be/~boigelot/research/lash/.

[MS77] A. Mandel and I. Simon. On finite semi-groups of matrices. Theoritical
Computer Science, 5(2):101–111, October 1977.

[Trex] TRex web. http://www.liafa.jussieu.fr/~sighirea/trex/.

A Proofs

Proof. [Proposition 4.3] Let f(X) = M.X + B be a simple affine function
(notice that 〈Mf〉 may be infinite) such that f is a loop of the control graph.
Let XC and XP be the respective vectors of variables and parameters defined
as follows:

XC =











c1

. . .

c|C|











, XP =











p1

. . .

p|P |











where p1, . . . , p|P | ∈ P and c1, . . . , c|C| ∈ C. We are only interested in com-
puting the counters values (since parameters values never change), thus let’s
consider the projection of f on C (called fC) fC(XC) = MC .XC + B′ with
B′ = MP .XP +B which is a constant term.

Notice that MC is a matrix such that each line contains at most one 1,
others values being 0, thus the monöıd of MC is obviously finite and then
∃a, b.Ma+b

C = M b
C .

14

Let ϕ0 →
f . . .→f . . . be an infinite path of the symbolic transition system

built by TReX. When TReX reaches fa+b(ϕ0), it will try to accelerate f b from
fa+b(ϕ0) (because it composes the functions that loops on a control state).

By hypotheses, fa+2b(ϕ0) is defined (because on an infinite path). We can
easily show that fn

C(x) = Mn
C .x +

∑n

k=1M
k−1
C B′. Let us calculate (∆′ − ∆)

with ∆ = fa+b
C (ϕ0)− f

a
C(ϕ0) and ∆′ = fa+2b

C (ϕ0)− f
a+b
C (ϕ0):

fa+b
C (ϕ0)− f

a
C(ϕ0) = (Ma+b

C .ϕ0 +
a+b
∑

k=1

Mk−1
C .B′)− (Ma

C .ϕ0 +
a
∑

k=1

Mk−1
C .B′)

= (Ma+b
C .ϕ0 −M

a
C .ϕ0) + (

a+b
∑

k=1

Mk−1
C .B′ −

a
∑

k=1

Mk−1
C .B′)

= 0 +
a+b
∑

k=a+1

Mk−1
C .B′ (becauseMa+b

C = M b
C)

fa+2b
C (ϕ0)− f

a+b
C (ϕ0) = (Ma+2b

C .ϕ0 +
a+2b
∑

k=1

Mk−1
C .B′)− (Ma+b

C .ϕ0 +
a+b
∑

k=1

Mk−1
C .B′)

= (Ma+2b
C .ϕ0 −M

a+b
C .ϕ0) + (

a+2b
∑

k=1

Mk−1
C .B′ −

a+b
∑

k=1

Mk−1
C .B′)

= 0 +
a+2b
∑

k=a+b+1

Mk−1
C .B′ (becauseMa+b

C = M b
C)

∆′ −∆ =
a+2b
∑

k=a+b+1

Mk−1
C .B′ −

a+b
∑

k=a+1

Mk−1
C .B′

=
a+2b
∑

k=a+b+1

Mk−1
C .B′ −

a+2b
∑

k=a+b+1

Mk−1
C .B′ (becauseMa+b

C = M b)

= 0

So ∆ = ∆′ is true. Moreover, the formula ∀P,N.φ =⇒ ∆ = ∆′ is also true
(whatever the value of φ !), so C1 is satisfied and TReX acceleration procedure
returns (at worst) a first order formula. 2

Proof. [Proposition 4.6] We call Term(ψ) the set of terms that occur in ψ.
Suppose that the theorem does not hold and there exists a function f with
an infinite monöıd, three EPDBM formulas ϕ1 = ψ1 ∧ φ1, ϕ2 = ψ2 ∧ φ2 and
ϕ3 = ψ3 ∧ φ3 and a symbolic tree constructed by TReX such that we have:
(i) a path from ϕ1 to ϕ2 in the tree corresponding to a control loop where
f corresponds to its effect on the variables, and (ii) a path from ϕ2 to ϕ3

corresponding the the same control loop.

Moreover, we have ∆ = ψ2−̇ψ1 with Term(∆) ⊆ Z, ∆′ = ψ3−̇ψ2 and
φ3 ⇒ ∆=̇∆′. Let x1 ∈ C such that the line corresponding to x1 in the matrices

15

of 〈Mf〉 is unbounded (¬(∃n ∈ N : ∀M ∈ 〈Mf〉 :
∑

x′∈C∪P | Mx1x′ |≤ n)). Let
x1 := x2 + t1 be the simple assignment of x1 corresponding to the effect of f
on x1. We consider two cases:

(i) If there exist x2, . . . , xn+1 ∈ C such that xj := xj+1 + tj is the simple
assignment corresponding to the effect of f on xj, for j such that 2 ≤
j ≤ n and xn+1 = xi with i such that 1 ≤ i ≤ n.

Suppose that ψ1 =
∧

x1,x2∈C x1 − x2 ≤ tx1x2
. We have that t0xj

≡
t0xj+1

+ tj − ∆0xj
for j such that i ≤ j ≤ n. It follows that t0xi

≡
t0xi

+ ti + . . .+ tn −∆0xi
− . . .−∆0xn

, hence ti + . . .+ tn ≡ d where d =
∆0xi

+. . .+∆0xn
. Since ∆0xj

∈ Z (i ≤ j ≤ n), we have that ti, . . . , tn ∈ Z.
Hence the effect of fn+k·j with 0 ≤ k ≤ n− i and j ≥ 1 on x1 corresponds
to a simple assignment of the form x1 := xn−k +

∑

l=1...i−1 tl + j · dk for
some dk ∈ Z. We conclude that, for a fixed k, the line corresponding to
x in the matrices of the functions fn+k·j is the same for all j ≥ 1, hence
the line corresponding to x in the matrices of 〈Mf〉 in bounded.

(ii) Otherwise, suppose that x2 := x3 + t2, . . . , xn−1 := xn + tn−1 are the
simple assignments corresponding to the effect of f on x2, . . . , xn−1 with
x1 6= x2 6= . . . 6= xn−1 6= xn and
(a) either xn := xn + tn is the simple assignment corresponding to the

effect of f on xn. We consider two cases.
tn ∈ Z. In that case, we have that xn := xn+(n′−n+2)·tn+t1+. . .+
tn−1 is the simple assignment corresponding to the effect of fn′

on
x1 for all n′ ≥ n. As a consequence, all the matrices corresponding
to the functions fn′

with n′ ≥ n have the same line corresponding
to x, hence the line corresponding to x in the matrices of 〈Mf〉 is
bounded.
tn 6∈ Z. We have t0xn

≡ t0xn
+ tn−∆0xn

, hence tn ≡ ∆0xn
. However,

since ∆0xn
∈ Z, we have tn 6≡ ∆0xn

.
(b) or xn := tn is the simple assignment corresponding to the effect of f

on xn. In that case, we have that xn := t1 + . . . + tn is the simple
assignment corresponding to the effect of fn′

on x1 for all n′ ≥ n.
As a consequence, all the matrices corresponding to the functions fn′

with n′ ≥ n have the same line corresponding to x, hence the line
corresponding to x in the matrices of 〈Mf〉 is bounded.

In all the cases, we conclude to a contradiction. 2

16

	Introduction
	Preliminaries
	Models and Symbolic Representations
	Study of Fast and TReX Acceleration Techniques
	Fast Acceleration Algorithm
	TReX Acceleration Algorithm
	Analysis of TReX acceleration technique
	A few benchmarks on parametric counter systems

	Conclusion
	References
	Proofs

