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1 Introduction

A protocol specifies a set ables each of which is a template for a finite sequence
of actions that send or receive messages. Each role maythatiased any number of
times; the instances asessionsA trace of a protocol is a global sequence of actions
that is an interleaving of a finite number of sessions. A motdas many possible
traces, depending on how many sessions there are, and oarti®ilar interleaving.
Even when such an ordering of actions is fixed, there arenséitly (actually infinitely
many) possible instances of a trace with the same sequeradions, because the in-
truder may affect the content of the messages by interaggpéint messages and forging
received messages.

In this chapter, we introduakerivability constraintsSuch constraints representin a
symbolic and compact way which trace instances are possibken an interleaving of
actions is fixed. Then the existence of an attack can be esguiess the satisfiability of
the derivability constraints, together with the negatibtne security goal. For instance,
if the security goal is the confidentiality of some datahen the protocol is secure if
the derivability contraints, together with the derivalyilof s, is unsatisfiable. Hence,
deciding the satisfiability of a derivability constraindgiether with some other formula)
yields, as a particular case, an alternative to the decisigarithm described in the
previous chapter. We may however, in addition, considegratkcurity properties, that
can be expressed as properties of symbolic traces. Typiaatges of such properties
include agreement properties or timing properties.

Derivability constraints and their satisfiability were finstroduced in [33]. Since
then, the approach has been followed by many papers, whiml #re decidability
of the problem in many different settings, depending on tlyptographic primitives
and the supposed properties that they satisfy.éxclusive-or [19, 11], some algebraic
properties of modular exponentiation[10, 34, 15, 8], mdabéquational theories [24]).

In this chapter, we explain a method for simplifying deriVidyp constraints when
the security primitives consist in exclusive-or, symnegncryption/decryption and
pairing/unpairing. In principle, the same method can bdiagpo numerous other cryp-
tographic primitives, adapting however the underlyingafesimplification rules. The
procedure that we describe in this chapter is actually argéination of the known
procedures for such primitives [19, 11]: we provide with astpaint simplification al-
gorithm that transforms a constraint into finitely many ealént and simpler ones,
calledsolved formsThis allows us not only to decide the existence of a solytn
also to represent all solutions. Such a feature is used ipf¢t@leciding trace prop-
erties such as authentication and key cycles in securityppots, and also in [26] for
deciding game-theoretic security properties such as dipasaess. As far as we know,



the result presented here is new. Some proofs that are raledkin this chapter can be
found in [18].

Finally, we claim that our decision procedure is simple: wdy@ive a few trans-
formation rules that are applied to constraints until theyy solved. The difficult part
is then the design of a complete and terminating strategisnintroductory chapter,
we do not try to get the best performance. There are manylgessitimizations that
we discuss only briefly. We prove, however, the correctnessipleteness and termi-
nation of the constraint solving method, along the sames lase[16], but extending the
primitives with an exclusive-or operator.

Before introducing the derivability constraints in Sent® we discuss in Section 2
the intruder capabilities. The main idea of the constradhting technique is to search
for an intruder strategy, only considering strategies #nat‘optimal”. In other words,
an intruder may have several ways to compute a given messages of which are
simpler. Then, when solving the derivability constraimtg, only look for the last step
of an intruder’s proof that is “optimal”, until the constnais solved.

Outline. In Section 2, we review the various ways of describing theuphr's capa-
bilities. In Section 3, we introduce the constraint solvapgproach and its relationship
with the security analysis of protocols. In Section 4, weegivmore detailed exposi-
tion of the constraint solving method, in the case of symimetncryption, pairing, and
exclusive-or.

2 Intruder capabilities

2.1 Messages

In the formal setting that is considered in this chapter,sages aréermsthat are
built from a set offunction symbolsF. These function symbols allow us to represent
cryptographic primitives. Here is a sampling of typical étinon symbols. We will not
use all of them.

— pairing and projectiongz, y), 71 (z), andms (x);

— symmetric encryption/decryptiofjz[};, and{[z[},*;

asymmetric encryption/decryptiofjz[};, and{|z[},2;

private and public keys for asymmetric encryptidh(x), andpk(z).
signature and signature che¢k},, and[z],;

signature key and verification key for signatusg(z), andvk(x);
hash functionhash(z);

exclusive-orz @ y;

random numbers, symmetric keys:r, k, ...

The set of term§ (F) (or messages) is untyped in our definitions. A typed version
can be encoded using tags and possibly additional funcyioosls and rules. We as-
sume that typing and type-checking is performed in an eitpliay, which we believe
is the most conservative solution.



We may need to consider messages with unknown (arbitrang;mven a set of
variablesX, the set7 (F, X) is the set of terms built fronF and the variables it
We denote byvars(t) the set of variables that occursinWe also usesubstitutions
A substitutionoe = {z1 — t1,...,2, — t,} is the simultaneous replacementagf
with ¢; for everyl < ¢ < n. We require that ne; may occur in any;. We denote byo
the term that results from the application of the subsbtuti to the term.. Occasionally
it is convenient to regard as a conjunction of equationg = t; A ... A x,, = t,,. We
denote bytop(u) the top symbol of the term, i.e. the function symbol that occurs at
its root position.

2.2 Deductions

In a formal security analysis that follows the Dolev-Yao rebf®5], the intruder is as-
sumed capable of intercepting all messages in the netwodkdariving new messages
from prior messages by decomposing and composing them bilitg af an intruder to
create a message from others can be inferred either frotioredan an equational the-
ory or from deduction rules expressing possible intrudeive&ons. For example, the
intruder may derive: from {|a[};, and the keyk either by noticing thaf|{ja[};[},* = a
or by applying the deduction rule:

flanlts, 22
1

Deduction rules state that any instance of the conclusiorbeacomputed by the
intruder from a corresponding instance of the premisses.

Example 1.A possible set of deduction rules for asymmetric encryptmmatures and
pairing is described below. There are several small vagiahthese rules, which we do
not describe here.

X Yy x, T,

(z,y) *) <xy> Uy <yy> (U2)
Ty {2 dk(y) v

o A . (AD) e
r Y [x]sk(y) vk(y) t

= (S) - (V) =) (VK)

The balance between equations or deduction rules to spatifider capabilities
depends on the rest of the formalization, and on the alguosttihat will be used in the
analysis. There is no choice if the message algebra is a lgebra that has no de-
structors. In particular, in a free algebra, decrypt{pri},* and projectionr; ((z,y))
operations are not available, and intruder decompositapabilities are necessarily
modeled by deduction rules. The loss of generality entdilethe use of a free alge-
bra, and the cure for it, is discussed in [32] and [30]. As wk s@e below, there are



cryptographic primitives such as exclusive-or (see Exardpthat cannot be expressed
fully and satisfactorily with deduction rules. We need todabthem by the means of
an equational theory. An equational the@ris a set of equations between terms. Given
two termsu andw, we writeu =g v if the equationu = v is a consequence &f

Example 2.The equational theorfg, for the exclusive-or operator is defined by the
following equations:

T (ydz)=(rDy) ®2 TOYy=yodu
zhr=0 rP0==z

The symbokp is a binary function symbol whereéss a constant. The two first equa-
tions modeled the associativity and commutativity prapserof thed symbol whereas
the two last ones modeled the nilpotency and the factitiet neutral element.

For instance, consider three distinct constant symbpls andc. We have that
(a ®b) ®b=g, awhereasi © b #g, a @ c.

Having decided upon the split between deduction rules aret afsequations,
we can define thelerivability relation denotedl’ + w, that represents the intruder
capability to derive a messagdrom a set of available messadggs

Definition 1 (derivability relation). Thederivability relation- is defined as the least
relation such that, wheff' is a finite set of terms andand¢ are terms, we have that:

— T+ swhens € T
— T+ s when there is a termsuch that =g s andg Ft;
1 e

u n
— T F s if there is a deduction rule ——— and a substitutioro such
u
thats = uo andT + u,;o for everyi € {1,...,n}.

Example 3.Let T = {{lal}3, ;). vk(b), [ak(b)]sx(s) }- Using the rules given in Exam-
ple 1, we may model the deduction@from the set of term§ as follows:

[dk(D)]skpy  vk(D)
{lalpx) dk(b)

a

In many cases, equations liKd|=[}; [}, * = = can be oriented to form term rewriting
rules, in this casg{|z[}; [}, * — =. If the resulting term rewriting system é@nvergent
any termu has a unique normal forma|, which is obtained by applying the rewriting
rules in any order and as long as possible. In that ealses a canonical representative
of the equivalence class afwith respect to=g, i.e.u =g v if, and only if, u| = v].

If, in addition, there is no premisse of any deduction ruk thverlaps a left side of a
rewriting rule in a non-trivial way, we may simply apply a nualization step after each
deduction step.

In some cases, it is not possible to get a finite convergenttieg/system from the
set of equations, nor to turn the equations into finitely maeguction rules. A typical
example is the set of equations given in Example 2 and thavalbne to model the



exclusive-or operator. The associativity and commutgtproperties of thed symbol
prevent us from getting a convergent rewriting system. Ugusuch symbols are con-
sidered as varyadic: we may write ®- - -@u,,, Since the parentheses (and the ordering)
onuy,...,u, are irrelevant. Keeping such a flat representation is ussfute theAC
properties consist only in rearranging the argumentsofaperator, without changing
the structure of the message. This requires, however, antinfiyet recursive) set of
deduction rules, relying on an extended rewriting system.

From now on, we use only the deduction rules, rewrite rulad, equations dis-
played in Figure 1. For simplicity, we only keep symmetricetion and pairing, and
do not consider asymmetric encryption and signatures.chdtiat some exclusive-or
equations have been oriented into rewrite rules; this sailes is convergent (modulo
the equations): every termhas a unique normal form modulo associativity and com-
mutativity, which we writet|. The set of equations then only consists of permutative
equations (on flattened terms). We will omit the indei =g, leaving implicit both
the flattening and the possible permutation of arguments.

Deduction rules:

T1 - T
—— (XOR) foranyn € N
(1@ D xn)l
T 2 (w1, 22) (w1, 22)
(P) (Uy) (U2)
<l’1,]}2> T T2
L2 {zil}s, 22
— (SE) — = " (sD)
{|x1|}m2 X1
Rewrite rules: rTHrdy — y x@zx — 0 P00 — x

Equations: T1D - BTn=T,1) D DTy foranyn € Nand any permutation.

Fig. 1. Deduction rules, rewriting rules, and equations for entioyp pairing, and exclusive-or.

Example 4.Let T = {{lal}}q;, a @ {lc[}3, b D {cl};}. We show thafl" I ¢, using the
rules described in Figure 1. First, we show tiiat- {c[}; andT" F b. Indeed, the two
derivationsr; andmy described below are witnesses of these facts.

ae{cl;  be {ely
o Jabien T
a® {l; a
(XOR)
{el

(XOR)




ad{chy  bo{cl; OR)

Y O LY a®b (sD) a®{cly bd{cl (XOR)

a ad®b
(XOR)

Now, it is easy to see th&t F c.

2.3 Proofs

The intruder’s deductions are represented as tree pranifstlae previous example. We
formalize these notions here.

Definition 2 (proof). A proofr with respect to a set of deduction rulégand a con-
vergent rewriting systerR) is a tree whose nodes are labeled with terms and such that,
if a node is labeled with a ternt and its sons are labeled with terms, ..., t,, then

S1y---,5n i .
there is a deduction rule—n € 7 and a substitutiorr such thats,oc = t; for
S
everyl <i <nandsc| =t.

Thehypothesehyp(7) of a proofr are the labels of the leavesof Its conclusion
conc(w) is the label of the root of. The last deduction rullast() is the instance of
the deduction rule that yields the root. We say that a proof ofT" - w if hyp(wx) C T
andconc(w) = u. Finally, step(r) is the set of all labels of. A subproofof = is a
subtree ofr. It is also a proof.

Example 5.In Example 4, the proof; is such thastep(m) =T U {a @ b, a, {c[}}}
conc(m) = {cfip, hyp(m) = T = {{lafiq,, @ ® {clty, b & {c[i}}, andlast(m) is
an instance of th&OR deduction rule. More precisely, we have that:
a® {cf}; a
last(m ) = el - (XOR).
{lelts

The instances of the deduction rul@d;), (U,), and (SD) and instances of the
(XOR) for which the conclusion is not headed withare calleddecompositiongviore
generally, an instance of a deduction rule is a decompasitits conclusion is a sub-
term of the premisses and is irrelevant in the rewritingé&tiqmal steps. By convention,
if 7 is reduced to a leaf, then we also say that(r) is a decomposition.

Example 6.The following are instances of deduction rules, that ar@dgmsitions:

ladb]}s ¢ {a}; &b bde ¢
L@l < op) PO C xoR)
a®b {lalty
while the following are instances of deduction rules, thratraot decompositions:
a®b bde a®b}.@a {ladbl b
(XOR) {la @ bl}}, {la ® [} (XOR)

a®c a®b



An instance of a deduction rule ismpositionif its premisses are subterms of
the conclusion. Typical examples of compositions are alitistances of the deduction
rules(SE) and(P). Note that some instances of the deduction (X6R) are compo-
sitions, and some others are never compositions, nor dezsitigms.

Example 7.Consider the following three instances of the deductioe (4OR):

a®db b a b a®b bdec

a ad®b adc

The first instance is a decomposition, the second instareceasnposition whereas the
third one is neither a composition nor a decomposition.

2.4 Normal proofs

Typical results concerning the deduction rules show thattérm can be derived then
there is anormal proofof it. The notion of normal proof will depend on the intrudex-d

duction system, but it has the property to avoid any unnacgsetour. Normal proofs
allow us to restrict the search space when looking for aclatta

We define below the normal proofs for the deduction systerergin Figure 1.
We simplify the proofs according to the rules presented gufé 2. These rules sim-
ply gather together successi@9¢OR) deduction rules and otherwise, they only remove
useless parts of the proofs. They are (strongly) termigaimormal proofis a proof,
that is irreducible with respect to the rules of Figure 2. &tbrer equational axioms or
inference rules, there are also similar simplification aathgring rules [24]. There is
however no general procedure that yields an appropriaiemof normal proofs for
arbitrary equational theories.

“Locality” is a subformula property that holds on normal pfe. In the definition
that follows,St(T') is the set of subterms @f. Letu = u1 @ ... @ u,, be a term such
thattop(u;) # @ for everyi € {1,...,n}. Then, the strict direct subterms of also
called thefactorsof « and denotedact(u), are the individual arguments only.

Definition 3 (local proof). A local proofr of T' - « is a proof in which

— eitherlast(r) is a decomposition anstep(w) C St(7T)
— orelsestep(w) C St(T U {u}).

This general property of proof systems is ensured by ourfproonalization process:
Lemma 1. If = is a normal proof off" - u then~ is a local proof ofl" F w.

Proof. Let = be a normal proof of" + . Let us prove that is local by induction on
the size ofr, i.e. its number of nodes.

Base caself 7 is reduced to a leaf, thenc T andr is a local proof ofl" I~ w.

Induction stepWe distinguish two cases depending on whetast(r) is a decompo-
sition or not.



UL U W U1 Uj U Uj41 " Un

(XOR)
v ululuz+lujuj+1un
= (XOR)
v
V1 U
(XOR)
Uy -+ U (Y Ui41 " Un
(XOR)
U ul"'“i”l"'”'ﬂz”i-‘—l"'“n
= (XOR)
U
1 T ™ Ti4+1 Tn
— — = — s
ul e uz U uz+1 .. un :> —_—
(XOR) U
U
™ T1 Unt U
u Ul ™ Ul u s
P = - P = -
(u,u1) U (u1, u) U
(U1) (U2)
U U
T M
u (U5} 71'1 s
(SE) — = -
{l’u‘[}il u1 u
—  (SD)
U

Fig. 2. Proof normalization rules

1. If last(n) is not a decomposition, eithbyp(last(r)) are subterms of its conclusion
(e.g.an instance ofSE) or (P)) in which case we can simply use the induction
hypothesis, or else we have that

T e m
w:{— (XOR)
u

with conc(w;) ¢ St(u) for some.

Letu; = conc(r;) forj € {1,...,n}. We have thats = (u; & --- & up)]. By
proof normalization, for every, eitherlast(r;) is not a decomposition, and then
top(u;) # @ or elselast(r;) is a decomposition and, by induction hypothesis,
step(m;) € St(T). Consider an indek such thatu, is maximal (with respect to
the subterm relation) in the sty ..., u, }.



If last(ry) is not a decomposition, themop(uy) # @. Furthermore, thanks to the
rewriting rules for®, we are in one of the following cases:
— uy, is a strict subterm of some;. This is ruled out by the maximality assump-
tion onuy.
— uy = u; for somej # k. This is ruled out by the proof normalization rules.
— up = u. This is ruled out by the proof normalisation rules
— uy, € fact(u]) is a strict subterm of; (i.e,, it does not disappear in the normal-
isation ofu; @ ... D uy,).
Since only the last case is possible, every maximal terfwin. . . , u,, }, that is not
obtained by a decomposition, is a strict subterm.@fnd therefore, by induction
hypothesisstep(my) C St(ux) U St(T) C St(u) U St(7T).
It follows that for every maximal term ifuq, . .., u,}, we have thastep(r;) C
St(u) U St(T'). Then, for any termu;, there is a maximal term;, such thatu; €
St(uy) and thereforeSt(u;) U St(T") C St(ur) U St(T) C St(u) U St(T). It
follows that, for everyi, step(r;) C St(u) U St(T'), hencestep(r) C St(u) U
St(T).
. Assume now thalast(r) is a decomposition. We consider all possible rules for
last(r).
Case 1:The proofr ends with an instance ¢t);) (or (U)), i.e.

wz{ﬂwi)

u
with conc(m;) is either a paifu, v) or a pair(v, ). In both cases, in order to get
a term whose top symbol is a pairigst(7;) must be either a pairing rule or a
decomposition rule. The first case is ruled out sinde a normal proof. Hence we

can apply the induction hypothesis and concludestegi(m;) C St(T)). It follows
thatstep(r) C St(T).

Case 2:The proofr ends with an instance ¢6D), i.e.

. { ™ s

u

with conc(m) = {ul}$, conc(mz) = v. Sinceconc(m;) is headed with an en-
cryption symbol,last(71) must be either an instance ¢8E) or a decomposi-
tion. The first case is ruled out singeis a normal proof, henclast(m ) is a de-
composition. By induction hypothesi$ep(r;) C St(7'). In particular, we have
thatv € St(conc(m)) C St(T). Now, by induction hypothesis, we have that
step(mz) C St(T U {v}) C St(T). It follows thatstep(r) C St(T).

Case 3:The proofr ends with an instance ¢KOR), i.e.
7T1 .. 7'(""’
. { L ™ xoR)
u

Letwu; = conc(r;) for everyj € {1,...,n}. By hypothesis, we know thidst(r)
is a decomposition, thusp(u) # @ andu € fact(u;) for somej € {1,...,n}.

For everyj, last(w;) cannot be an instance of t{lOR) deduction rule, because
is a normal proof. Therefore, i&st(r;) is not a decomposition, thenp(u;) # &.



It must then be a subterm of somg, & # j (actually a strict subterm since
is a normal proof). Thus, the maximal terms{iny, ..., u,} with respect to the
subterm relation, are terms, such thatast(r;) is a decomposition. By induction
hypothesis, it follows that, for every € {1,...,n}, we have thastep(w;) C
St(T') and therefore we have thstiep(r) C St(T).

As a consequence, the derivation problemgivenT andu, the problem of decid-
ing whether is derivable fromil” or not, is in PTIME. We may indeed run a fixed point
computation algorithm on the s&t(7 U {u}). It will terminate in polynomial time,
as long as the one-step deducibility relation is decidabRTIME, which is the case
for our rules in Figure 1, as well as in many other cases (s#¢p.[Zhere are several
other such results for some classes of equational theaig$24, 9]). An overview of
equational properties that are relevant to security paitde given in [21].

3 Derivation constraints: definitions and examples

3.1 Introduction with an example

Consider the flawed handshake protocol example describ&@yure 3, temporarily
returning to a larger set of operations. We want to checlkafioted number of sessions
(let us call this thébounded scenaricase), whether or not there is an attack on the
protocol that compromises the secsetwhich the participanB generates and wishes
to share with the participamM. This security property turns out to be a trace property,
so that we can check it when we know which protocol traces assiple.

UlElaeca) M)

{Ish%

o

Fig. 3. Flawed handshake protocol

In the bounded scenario case, the number of messages teathenged is bounded.
However, as explained in Chapt®?, there are still an infinite number of possible mes-
sage instances. Hence the verification cannot be perforpmeddimple enumeration
of scenarii. The solution is to use a symbolic represemaifesequences of messages,
treating uninstantiated parameters as variables.

Let us show how it works on the handshake protocol describétdgure 3, when
there is one instance of the rafe(with agent parametersandc) and one instance of
the roleB (with agent parametetsanda). Therolesare simply threads, in which some
names are hidden: this corresponds to local random gemerat be more precise, we
consider two threads expressed in a spi-calculus style, peittern matching:



Alasc) : vk. send({[Flao - g€t ({2l}3)-
B(b,a) : vs. get ({|[2lsxta)Fny)- SENA({)2).

Note that, in this scenario, the nam@ccurs free in botti (a, c) and inB(b, a). It
cannot be renamed in any of the two threads: the nasteigedby these threads. Let us
see informally what the threatl(a, c) does in more detail. Firstit hasc as parameters:
it is a program executed on behalf of an agemivho wishes to communicate with
Givena andc, it generates a fresh kdy(the vk construction). Then it constructs the
first encrypted message and sends it. Next, it waits for soe®sage containing the
encryption of some valug with k. When the message is received, it tries to decrypt
it with k. If this succeeds, then it retrieves the messag®therwise, if the decryption
fails, the program aborts (this is not specified here). Theath B(b, a) works in a
similar way: first it waits for a message encrypted with itsxquublic key, and extracts a
valuez signed byu. If the sighature checks, it sends back the nonce (seceeyrypted
with the (supposed) key.

Then, these roles are composed, using parallel compagsitéone hiding and pos-
sibly replication, to buildscenarii For instanceA(a, ¢)||B(b, a) is a scenario where
there is one instance of the rafe(with agent parameteisandc) and one instance of
the roleB (with agent parametefsanda).

The operational semantics of such threads is describedigintlg different fla-
vors) in several papers such as [1, 39, 37]. The importahifesare that each of these
threads is executed concurrently in a hostile environnraessages that are sent over
the network can be intercepted and modified by an intrudegr&fbre, what an agent
gets is the message that has been forged by the intruder fiooutrent knowledge
and the messages that circulated on the network. It is olteo§tope of this chapter
to define a precise operational semantics of such a proogsisral(see Chapté&y?).

It is not always sufficient to consider a small system coimgjstf only one thread per
role, for security analysis. Conditions under which sucllésystems are sufficient are
given by Lowe and others [29, 35, 2].

In this scenario, we assume that the kek$a), pk(b), pk(c), vk(a), vk(b), vk(c)
are public, hence available to all agents, including theuder. The other keys are pri-
vate: they are normally held by their owners only. In thisrapée, we suppose thatis
compromised: this means that the secret l&(s) andsk(c) are also available to the
intruder. Finally, the intruder knows the names of the agiemamelya, b andc. Thus,
the total initial intruder knowledge is the set of terms:

Tinit = {pk(a), pk(b), pk(c), vk(a), vk(b), vk(c), dk(c), sk(c), a, b, c}.

The next step is to construct the parallel composition ofwesessions. The paral-
lel composition has no more than six possible traces, wiriekhe various interleavings
of the two ordered message actions of each of the two ses$iogsneral, if there are
two sessions of lengthn andn, respectively, the number of interleavings is the num-
ber of combination€’(m + n, m). However, not all of the interleavings aselvable
A trace is solvable if, and only if, there is a substitution its variables such that the
message: in eachget (u) action is derivable by the intruder from the intruder’siedit



knowledge plus the messages that have been sent ins@iad actions. This condition
generates derivation constrainfor each received message.

Coming back to our running example, one of the interleaving i

send({|[klsk(a) i) ) 98t ({[2]sk(a) e )- SENA({5}2), get ({|z[}7)

Is it solvable? There are twget actions, hence two derivation constraints:

?
Tinit, {| [k]sk(a) |};k(c) - {| [Z]sk(a) |};k(b)
71ini1:7 {| [k]sk(a) |};k(c)7 {|S|}Sz '_ {|$|}?€

Note that the set of terms on the left of each derivation caimdtis actually a union
Tinit U ..., but it simplifies the notation to write these sets as comapasated lists. The

C:

?
difference between a derivation constraint, denoted Iby«, and a derivation, denoted
by T' + u, is that the constraint asks for a substitutiosuch thatl'o + uo.

Example 8.The constraints i€ are simultaneously satisfied by the substitution
o={zw+—k, x> s}

The fact that the second constraint is satisfied is obviowkedd, a normal proof of
{sl}3. F {sl}3, is actually reduced to a leaf. The fact that the first

|n|ta {| sk(a) |}pk(
t)ed takes some effort to see. A normadfpritnessing this fact is

constraint is satis
described below.

{1k sk(a) pxce) sk(c)
(]sk(a) pk(b)
{| [k]sk(a) |};k(b)

We still have to ask whether this trace violates the secgatyl of the protocol. It
does, because the intruder can obfaimom [k].x(,) and thens from {|z[};. There is a
trick to help us figure this out: we add a ralgs) = get (s) to the protocol and the
scenario. An artificial role of this kind, introduced to testecrecy property, is called a
listener This means that the actigret (s) must be included in each trace. This causes

?

a new constraint to be generated, of the f@im, ... ks

A substitution satisfying all the constraints, includihgstone, will demonstrate that
the secret can be read by the intruder. This reduces detection of sgeielations to
the basic constraint solution problem.

Before proceeding with the method for solving constrawesyemark that there are
some easy optimizations that relieve us from consideriegygvossible trace. If both of
the traces...get (u). send(v’).... and....send(v'). get (u).... are possible, we can
discard the first one, because any substitution that satisfeeconstraints arising from
the first will also satisfy the second. Also, if a trace hassemutivesend actions, their
order is irrelevant, so one particular order is sufficiemisTmeans that, when counting



(or generating) interleavings, one need only consider tiraber and order ofet
actions in each session. By a similar argument, a listert@ramay always be placed
last in a trace.

The basic constraint solving approach, therefore, has tages: the first is to gen-
erate a sufficient set of traces, and the second is to gerardtattempt to solve the
constraint system arising from each trace. An alternapye@ach is used in [20]: while
generating traces, attempt to solve the current partiadtcaimt system each timegeet
action is added to a trace. If there is no solution, the ddraae need not be extended,
eliminating a subtree of trace continuations. This appniazan lead to more solution
attempts in the worst case, but in practice it usually sawasiderable time. Constraint
differentiation [4] offers another kind of optimization.

3.2 Derivation constraints

We can now formally define the notion of a derivation constraystem, which is not
specific to our set of primitives/deduction rules.

Definition 4 (derivation constraint system).A derivation constraint systeéconsists
of a conjunction of equations and a sequence of derivatiosizaints:

? ?
TiFur Ao ATy F g Ay =11 Ao A Sy =t
whereTy, ..., T, are finite sets of terms. Moreover, we assume that:

— Monotonicity:0 C 71 C Ty --- C T,
— Determinacyforeveryi € {1,...,n}, foreveryu € T;, we have thafu,, ..., u;—1 }U
P + u, whereP is a finite set of ground terms.

We just saw, with the handshake protocol, how a sequenceiohtien constraints
arises from a candidate trace of a protocol scenario. A cainsisequence arising this
way always satisfies the two properties mentioned abovepioe finite seP of ground
terms, that represents the initial knowledge of the agents.

The first condition states that the intruder knowledge isdasing along the proto-
col execution. The second condition states that the messaggich is emitted at some
stage, can be computed from all data that are possibly &laia this stage. We do not
commit here to any particular program that computeBut only state that such a pro-
gram must exist, if we assume that the corresponding agsradeess to all data. This
is a reasonable assumption, that only rules out non-deatéstigichoices and possibly
some encodings of complex operations.

Let us remark that the monotonicity and determinacy cooétimply two impor-
tant properties:

— Origination: for everyi € {1,...,n}, for everyz € wvars(T;), there must be a
j < isuch thate € vars(u;). In particular, we have thatars(77) = (. Indeed,
if © ¢ {uy, - -,u;—1}, thenz ¢ vars(u) for any termu that can be deduced from

{ul, e ,ui,l} U P



— Stability by instantiationif C is a derivation constraint system, then, for every
substitutiorns, we have thaf€o is also a derivation constraint system.

These two properties are actually what we need, and theyg ceplace the determi-
nacy property, yielding a more general (yet less naturdipiien of constraint systems
(see also [34]).

Example 9.Consider the following sets of derivation constraints:
? ?
Si=akFz ANbFy
? ? ?
Sp=a, btz Aa b {ylstx A a b {yls.zty
? ?
Ss=a,b-{z[}; Na, b xlky
? ?

Si=a,bF{{z, )} N a, b xty

The setS; is not a derivation constraint system since it violates tlmmatonicity
property. The sef is not a derivation constraint system, since it violategeinacy
(actually, it violates origination). The s&% is not a derivation constraint system since
is not derivable from{|z[}; U P for any set of ground term®. Intuitively, the agent
receiving{|z[}; cannot retrievey and cannot retrieve without having the key. This set
of derivation constraints could still be handled since fisfigs the origination and any
instance of it also satisfies the origination. Las8y,is a derivation constraint system.
In particular, we have thdf(z, y)}5, k - .

In addition to these constructions, we may need to introchewe variables along
with constraint simplifications. In order to keep the setafisons, we may add exis-
tential quantifiers for these new variables, in front of adgion constraint system.

Actually, we may consider some additional formulas withyaslight modifications
of the constraint solving technique. Typically, we may wistadd disequalities, either
because our threads contain conditionals or because wemésipress agreement prop-
erties. The constraint solving algorithm is not modifiedijlithe end; we only need to
add a simple test as a last step (see [16]). Similarly, meshiy@constraints (expressing
forinstance typing information) or timing constraints denadded with minor changes.

Definition 5 (solution). Given a convergent set of rewrite rules (possibly modulo as-
sociativity and commutativity) and a set of derivation sutbat describe the intruder

2

capabilities (as in Figure 1), @olutionof a set of derivation constrainté = 77 +
?

ui A --- AT, F uy,, together with a set of equatiols is a substitutiors of its free

variables such that, for every T;0| F u;o| and, for every equation Zvin £, we
have thatuo | = vo].

Example 10.Consider the following derivation constraint system (withequation):

a®{c3, b {cf} F

?
{lal: a @ flehy, b ety F ¢
The substitutio{ z — a @ b} is a solution. A witness of the fact thatsatisfies the last
derivation constraint is given in Example 4.

C:



3.3 Solved constraints

A variablez is solvedin a derivation constraint systefhif it occurs as a member of an
equationz K u, and nowhere else in the derivation constraint system. fabkrz is

?
pre-solvedf it occurs in a derivation constraifit - x such that: ¢ vars(T) and does

?
not occur in any termy, such thafl” F « is a derivation constraint such tHat C 7'. A
derivation constraint systethis solvedif it is of the form

? 7
Zlétl/\.../\zm;tm/\Tl|—J,‘1/\.../\Tn|—$n

wherezy, ..., z, are solved variables and, . . ., z,, are pre-solved variables. In par-
ticular, this implies that, . . . , x,, are distinct variables.

Lemma 2. A solved constraint system has always at least one solusictudlly, in-
finitely many solutions if it is not a trivial system).

? ?
Proof. LetT; + z4,...T, F x, be the derivation constraints that occur in the system,
and assume thd; C ... C T,,. We construct a solution by induction an

Base casen = 0. In such a case, the equational part defines a substitutadrista
solution of the constraint.

Induction stepif n > 1, first chooser;o = t; € Ty and replacer; with ¢; in the
?

remainder of the constraint. After removing the constraint: ¢,, the resulting system
is still a derivation constraint system and it is still savsince the variables; are
distinct). Then we apply the induction hypothesis.

This lemma can be easily extended, considering additideabdality (resp. mem-
bership) constraints [16]. For instance, if we wish to de@dsecurity property that can
be expressed with equalities (typically an agreement ptppehen, as explained in
introduction, we consider the derivation constraint systogether with the negation
of these equalities. It is satisfiable if and only if the s@gysroperty can be violated.
If the derivation constraint is in solved form and there igmdal disequality, then the
above lemma implies that there is a solution, hence the ggquoperty is violated. In
other words, it suffices to simplify the derivation congttaiinto solved forms (which
may yield some replacements of the variables in the diséyymrt) and then check
the satisfiability of the disequality part.

This idea can be applied to other security properties thaeesgent or confiden-
tiality, as long as they can be expressed with a formula ors#éimee variables as the
variables of the derivation constraints.

4 Solving a derivation constraint system

4.1 Constraint reduction

Constraint reductiorfsee [33]) is a relatively straightforward and efficient wayolve
a derivation constraint system arising from a candidatéeogai trace. It solves a system
iteratively by reducing individual constraints until thestem is solved.



Each reduction step should Beundin the sense that any solution of the reduced
constraint system is a solution of the original system. Athestep, several reductions
may be possible. Hence, reduction sequences form a brantthin Some paths may
lead to a failure, while others yield solved forms, henceiohs. A desirable property
is thecompletenessf the reduction rules: i# is a solution ofC, then there is a possible
reduction ofC into a constraint syste, of whicho is a solution. In other words, there
is a path in the tree that will yield a solved constraint systd whicho is a solution.

We could simply get a sound and complete set of constraintctexh rules by
guessing the last intruder computation step. For instanaesystem with only symmet-

?

ric encryption and pairing, given a constraint- « such that: is not a variable, for any
solutiong, the last step in the proof dfo - uo must be a pairing (this is only possible
if u is a pair) or an encryption (this is only possibleifs a ciphertext), or a decryption
or a projection, or a trivial step (this is only possible.if belongs tdl'c). This yields

a naive set of reduction rules, that is displayed in Figure 4.

? 2
, ) ) Rs: Tru ~ Jz. TH (z,u)
Ri: Tk (uiu) ~ TEuiATkFuz R,. T}?—uWHm.Tl?—(u,x)
? ?

: s ? : ? ? ?
Ro: ThH{ull, ~» ThuATFu2 Ry, Thu ~ Jz. THE{ul; ATH2

Re: Tz AT Fz ~ Tra ifTCT
Rr: Thau ~ tZu ifteT

Fig. 4. Naive constraint reduction rules

The two first rules correspond to pairing and encryption. ffinee following rules
correspond to projections and decryption. Then, the lastisractually the only one
that builds a solution: we guess here that the proof is cotegjes (the instance of)
u belongs to (the corresponding instanceBf)In addition to such rules, we need an
equality constraint solving rule:

tZu AC—oACo if o = mgu(t,u)

We do not include it in Figure 4 since this rule is a deternticisimplification rule: it
may be applied to any constraint without considering argraditive simplification. By
conventiong =_1 is a failure if the two terms are not unifiable.

Unfortunately, such rules are too naive: while sound andpieta, they will not
terminate, as the three rules that correspond to projexcdod decryption (nameRs,
R4 andRj5) can be repeatedly applied any number of times. That is whglaveot aim
at reproducing any possible intruder’s computation, bly eame of its computations,
and at least one for each resulting term. This results ingugie same set of rules
as the above one, however restricting the three rBlgR, and,R5; while keeping



completeness. This is, in essence, what is performed ingbisidn procedures based
on constraint solving.

We now give a complete and terminating procedure, inclughirignitives such as
exclusive-or.

4.2 A constraint solving procedure for exclusive-or

We display in Figure 5 a set of constraint simplification sufer a theory of exclusive-
or, pairing and symmetric encryption. The simplificatiotesuexactly reflect the in-
truder capabilities. They must be applied “don’t know”stis a non-deterministic pro-
cedure, in which all possible applicable rules must be amred if we wish to get a
completeness result.

? ?
Ax: T}—twtiu ifueT
?
C: T}—f(t1,...,tn)WT}—t1 o ANTEiy if f#£6&
Cg: T}—uGBvWTI—u/\T}—v
D, : TFthl—( )/\tiu if (u,v) € St(T)
Dnr, : T}—tWTI—( )/\t—v if (u,v) € St(T)
Ddec : T}—thl—{| |}v/\T}—v/\t—u if Julls € St(T)

Dg : T}—tWTI—vl/\ /\Tl—vn/\t—m@ . B v
|fv1,...,une St(T)
? ?
Geq: Thrud®v ~ TFwdvAu=uw if we St(T)U St(v)
andtop(u) € {{_[}*, (1,0}

Fig. 5. Constraint transformation rules

In addition to these rules, equational constraints are I#fiegh and the resulting
substitutions are applied to the rest of the constraint:

Us: ¢cné— \/ Colro

o €mgu(€)

Here,mgu(€&) denotes a complete set of most general unifieis wioduloEg,. Such a
set is finite and has even more properties, as we will see iheéhema 8. Contrary to
the case of encryption and pairing only, the set of miniméfiens, though finite, may
not be reduced to a singleton.

Example 11.The equatiofz, z) ®(y, y) L (a, a)® (b, b) has two most general unifiers
o1 ={x+— a,y— b}andos = {x +— b,y — a}.



In addition, we simplify the constraints with the rules
? ? ?
Si:TFu AT Fu — Tru if T CT’

? ? ?
So: Ttz ANTyFuy - ANTybFuy,

? ? ?
- Tkrzx AN Tyzbtu; -+ AT, ztku,
if T1,...,T, are all left hand sides such tHAtC T;, andx ¢ T;.

We also use two simplifications of right members of constsaifi the formz & ¢:

? ? ? ?
XRi:T'FaANTFx2dt - T'FaANT Rt if T/ CT

? ?
XRy:Tha@®t — Iy ThFyAr—ydt
if x ¢ vars(T) U vars(t) andXR; cannot be applied

By convention, newly quantified variables should not ocaevusly in the con-
straint.

The rules of Figure 5 concerning pairing and symmetric guiion are very similar
to the naive rules of Figure 4. The only differences are ttle sbnstraints, that impose
the newly introduced terms to be already subterms of thet@ins We will show that
this is complete. On the other hand, this gives an upper bouantthe possible right
members of the constraints, allowing us to derive a terrimigattrategy.

Example 12.Consider the constraint system given in Example 10 and fachw =
{z — a®b} isasolution. Lel; = {a®{c[};, b {c[};} andl> = T3 U{{al}5}. We
have the following transformation sequence that leads trigation constraint system
in solved form for whicho is still a solution. For sake of simplicity, trivial equatis
are omitted.

"
? T1 Fax
? ? TWFx ?
Ty x Ty ? To,xta®{cl};
? 7Sy ? WDdec TQ,J,‘ F {|C|}Z ~Dg ?
To e To,x k¢ ? T,z a
Tg,l"‘b ?
TQ,IL‘"b
?
? T1 Fa ?
T\ Fx ? ThFzx
? To,xFa ?
“Ax y To,zFa ~7De ? Ax Ty, z b a ~7AX
? To,z b ad{c; ?
To,z kb ? T,z Fb®{cl};
TQaa"_b@ﬂC'}z
?
? T+ x ?
T1 Fa Tl Fa ?

? ?
7 “Ddec Y T2,z k- {al}l TS AT o
?

7 ?
To,xFa 7 To,z - {lal};,
To,x Fx



The rules can actually be refined, for instance preventmg fapplying successively
twice Dg on a same constraint (two consecutiveules never occurs in a normal proof).
Some of the rules (for instan€&q) might even be unnecessary.

It is not very difficult to show that the simplification rul&s, S, XR;, XRs, U pre-
serve the set of solutions, hence we may eagerly (and detistivally) apply these
rules:

Lemma 3 (soundness and completeness of simplification rule§ he simplification
rulesU, Sq, Sz, XR1, XR, are sound and complete: they preserve the set of solutions.

Then the rules of the Figure 5 are applied to simplified déidvaconstraints. It
remains now to prove three main properties:

1. The rules do transform the derivation constraints intavdéon constraints, and
they do not introduce new solutions. This is stated in the ina.

2. If a derivation constraint system is not in solved forngrthfor every solutiomr,
there is a rule that can be applied and that yields anothestiont, of whicho is a
solution; this is theeompletenesiesult, which we eventually prove in Corollary 1.
This shows that every solution of a derivation constraintloa eventually retrieved
from a solved form.

3. There is a complete strategy such that there is no infieij@ence of transforma-
tions. We will prove this last result Section 4.4.

Lemma 4 (soundness of transformation rules)The rules of Figure 5 are sound: they
transform a constraint systeéinto a constraint systerd’ such that any solution @f’
is also a solution of.

4.3 Completeness of the transformation rules

The completeness would be straightforward for a set of nailes such as the rules
displayed in the Figure 4. We imposed however additiondticti®ns, typically that,
for decompositions, we may only consider the subterm& oThis reflects the fact
that we may restrict our attention to normal proofs. Howgweer terms now contain
variables. Thanks to Lemma 1,7fis a normal proof off o | - uo| such thatast(r)

is a decomposition, thestep(r) € St(T'¢|). This does not necessarily mean that
hyp(last(r)) are instances of terms i8t(7'), becauseSt(To]) € St(T)o|. The
main difficulty for showing the completeness is to get an agalf Lemma 1, however
lifted to terms with variables. This is what we start in LemBy&owever with a slightly
weaker conclusion.

Lemmab. Let T" be a finite set of termsy be a ground term in normal form and
o be a substitution mapping the variablesBfto ground terms in normal form. We
assume moreover that, for everye vars(T), there is al, C T and a proofr,, , of

Tyo| - zo, such thatast(r, ) is not a decomposition and, for eveyye vars(T}),
we have thafly, C T,. Letw be a normal proof of'c| - w.

=

If last() is a decomposition, then



— either there ist € vars(T") and a subproofr’ of 7, , such thattonc(n’) = v and
last(#’) is not a decomposition
— orelseu € St(T)o|

For everyu € fact(u), we have that eithef'o | - uy, or elseu; € St(T)o].

It is actually not sufficient to consider normal proofs to wtihe completeness of
our transformation rules. We have to consider normal prtads arealien-free In an
alien-free proof, we control the premisses of the instanfé&se XOR deduction rule.

T e T,
A proof 7 of T'o| F w is alien-freeif, for every subproofl— (XOR)

(%
of =, for everyi, eitherconc(m;) € St(T")o| orconc(rw;) € fact(v).

Lemma 6. LetT be a finite set of terms; be a substitution mapping the variablesiof
to ground terms in normal form and be a ground term in normal form. We assume
that, for every variabler € vars(T), there is al,, C T and a normal proofr,, , of
Tyo| F zo such thatast(r, ) is not a decomposition and, for everye vars(T,), we
have thatl}, C T,. We assume moreover here thats(T) C T andvars(T,) C T,
for every variable.

If 7 is a normal proof ofl'c| + wu, then there is a normal alien-free proafof

To| b u.

Example 13.Consider the following derivation constraint system.

?
a, b,C@d, f7g|—x
?
a,b,cd®d, f,g, c®e k, {x@d}},zF (a,b)De

Leto = {z — (g,b)®cadd(f,9)}, To = {a,b,cdd, f, g}, andT = T, U
{c®e, k, {zdd}s,z}. We have thafx} = vars(T) C T, and() = vars(Ty) C Ty.
The proofr, , described below is a proof df,o| - xzo that does not end with a
decomposition.
a b f g
Tx,o = c®d <aab> <fa g>
c®d® {a,b) @ (f,9)

Let mg be the following proof ofl's I {a, b) & e.

fa o dliol K I

o = (x@d)al C@e <f7g>
(a,b) ®e

The proofn is a proof in normal form whose last step is not a decompasitio
According to Lemma 5, for every; € {{a,b), e}, we have that eithef'c| - uy, or
uy € St(T)o|. Indeed, we have th&to F (a,b), ande € St(T')o]|. Howeverm is



not alien-free sincéf, g) is neither in St(7')o nor a factor of(a, b) @ e. An alien-free
proofrj, of To| - (a,b) @ e is given below:

a b {z®d}iol k
Ty = xo c®d {a,b) che (z®d)o]
(a,b) e

Lemma 7. There is a mapping from derivation constraint systems and substitutions
to a well-founded ordered set such that, for every derivatonstraint systenC and
every solutions of C, eitherC is in solved form or else there is a constraint syst&m
such thatC ~ C’, ¢ is a solution o', andu.(C, o) > u(C’, o).

Note that this lemma does not prove the termination of ougsusince we only
show that,for every solutiors, the derivation sequences of whiehis a solution is
finite. There might be however an infinite sequence of sahstieach yielding a longer
derivation sequence than the previous ones.

As a consequence of this lemma, we get a completeness satiftg that, for every
solutiono of C, there is a solved system that can be derived f€oamd of whicho is a
solution:

Corollary 1 (completeness)If C is a derivation constraint system aads a solution
of C, then there is a solved derivation constraint systgmsuch thatC ~* €’ ando is
a solution ofC’.

4.4 Termination

The termination can be ensured by a complete strategy onlg®application, as long
as unification reduces the number of variables. This prgpertrue, at least, for the
combination of a free theory and the exclusive-or theory.

Lemma 8. Suppose thaf is a set of equations over the disjoint combination of the
theory of {¢,0} and a free theory with (at least) symmetric encryption anitipg.
Then either€ has no solution, or every substitution is a solutionfofor else there

is a finite complete seb’ of unifiers of€ such that, for anyw € X, we have that
|vars(Eo)| < |vars(E)|.

Proof (sketch):

To establish this result, we rely on the procedure desciibf] for combining disjoint
equational theories. Given a system of equations, wedelbe the maximal number
of independent equations i, i.e. we only consider equations that are not a logical
consequence of the other equations (with respect to thedmyed equational theory).
Then, we show that the difference betweenand the number of variables, is non-
decreasing. This allows us to conclude. a

This says that the number of new variables introduced by dlhstgution is less
than the number of variables eliminated by the substitufitre examples below show
that it is sometimes needed to introduce new variables.



Example 14.We consider two sets that are made up of one equation only.

—Let& = {z = f(x @ y)}. This set has mgu = {z — f(z),y — f(z) ® =}
wherez is a new variable. We have that

lvars(Eo)| = |z| =1 < 2 = |{z, y}| = vars(E).

—Leté& = {z = f(x Dy) ® z}. This set has mga = {z — f(z') ® z,y —
f(z") @ 2’ @ z} wherez' is a new variable. We have that

lvars(Eo)| = {2’ 2} = 2 < 3 = {z,y, 2}| = |vars(E)|.

We use the following strategy: the rulgsS,, S, XR1, XR; are applied eagerly (in
?
this order) and then the rules of Figure 5 are applied to atcaingT - « such that,
?

for anyT’ C T and every constrairif’ + v, we have that is a variable that does not
occur inT”. According to the results of the previous section, thistegg preserves the
completeness.

Let V(C) be the pairn, m) such that: is the number of unsolved variables ©f
andm is the number of variables ¢fthat are neither solved nor pre-solved. Such pairs
are ordered lexicographically.

Lemma 9. LetC andC’ be two derivation constraint systems such tat~ C’, we
have thatV(C) > V(C’).

Proof (sketch):

Let us consider successively the transformation ruleutfiol the simplification rules,
for which the statement is not straightforward.

— When applyingU, either the equation is trivial (in which ca3¥C) remains con-
stant), or the equation is unsatisfiable (in which cHé@) is decreasing), or else,
thanks to Lemma 8, there are more variables that becomedsitiaa variables that
are introduced. Hence the first componenv¢€) is strictly decreasing.

— When applyingXRs, followed by a replacement afwith y @ ¢, the number of un-
solved variables is constant (vas unsolved before applying the rule and becomes
solved after the replacement with® t). The number of non-pre-solved variables
is strictly decreasing since was not pre-solved before the rule and, are both
pre-solved after applying the rule.

— The other rules do not introduce new variables: the first camept ofV(C) can
only decrease or remain constant. According to our strategyonly situations in
which the number of pre-solved variables could decreasé&va transformation

?

rule is applied to a constraifit - x wherez is a variable. This may happen with
the rulesAx, D, D, Dgec, D, that mimic decompositions. But, in these cases,
at least one non trivial equation is added, which yieldsradipplyingU, a strict
decreasingness of the first componeny¢f).



O

Now, if a transformation preserv@y(), then there is no simplification By, XR;, XRs
that takes place at this step (except trivial equations Ifficgtions), and the side con-
ditions of the rules ensure that no new subterm appears. ptedsely, let7 (C) =
St(C)U{u|Fv,u s v e St(C)}, then we have the following lemma.

Lemma 10. LetC andC’ be two derivation constraint systems such tat> C’ and
V(C) =V(C'), thenT (") CT(C).

It suffices then to cut looping branches in order to get a teating and complete
procedure: according to Lemma 9, from any infinite transfation sequence we may
extract an infinite transformation sequert¢e~+ C; ~+ --- ~» C, ~+ --- on which
V(Cy) = V(C1) = -+ = V(C,) = ---. Then, according to Lemma 10, the set of
subterms in any derivation constraint system of the sequinicounded by the set of

N
subterms of the original constraint syst&i; Now, each individual constraifft - «

can appear only once in any constraint system, thanks.tdherefore, there are only
finitely many derivation constraint systems that can betlmrite the set of subterms
(more precisely the s&f(C)) is fixed. This means that any infinite sequence of trans-
formations must be looping.

Now, remains to justify that cutting the loops still yields@nplete procedure. The
reason is that, according to the lemma 7, for every solutionCy, there is a sequence
Co ~ Cy ~ -+ ~ C, such thatr is a solution ofC,, andu(Co, o) > u(Cy, o), hence
the sequence does notinclude any loop, since the orderingeasures is well-founded.

As a conclusion of this section, we get a termination result:

Theorem 1 (Termination). There is a complete strategy such that any simplification
sequence is finite and yields a solved form.

The termination proof does not give much information abaumnplexity. Further-
more, the strategy is quite rough and can be refined: thetid sosne work to do, if we
wish to get the shortest simplification sequence. For ingtave would need to avoid
repeating several times the same simplifications (as exgdan [16]).

With such an additional work, the simplification of constitai might yield a NP
decision procedure for the satisfiability of derivation straint systems.

4.5 Further results

The constraint solving approach to the security of proteeas introduced in [33]. In
the case of symmetric and asymmetric cryptography, it has Baown to yield a NP
decision procedure (for the existence of an attack) in [B6t.the same set of crypto-
graphic primitives as the one we have shown in this chapteiihout exclusive-or,
a full constraint solving procedure, preserving all sans, is given in [16]. Such a
procedure allows us to decide more trace properties (suabithentication, key cycles,
timeliness).

Extensions of decision results (for secrecy) to other gies have been extensively
studied. For exclusive-or there are two concurrent putiioa [19, 11]. However, these



results only provide decision results. In this respectpiteeedure that we gave in this
chapter is a new result, since it preserves all solutionspuid be used for deciding
other security properties.

The second most popular equational theories are modelirtg pharithmetic, in
particular modular exponentiation. There is no hope to ggdreeral decision result for
the full arithmetic, as unification is already undecidaflee first fragment considers
some properties of modular exponentiation that are suffié@ modeling some clas-
sical protocols [31, 10, 12]. In case of an Abelian group thigihve constraint solving
approach is also proved to yield a decision procedure [38,34s is extended, yet
considering a richer fragment of arithmetic in [8].

There are many more relevant equational theories, as Heddri [21]. For instance
homomorphism properties are considered in [23, 24], bligdiegures in [22, 6],... Some
classes of equational theories are considered, relyingaamstraint solving approach
in [24, 9].

Finally, we complete the tour by mentioning combinationsletision procedures:
for disjoint theories [13], hierarchical combinations [d more [8].

All these works make use of techniques similar to derivationstraint solving,
but they also use a “small attack property”, showing thag, dferivation constraint is
satisfiable, then there is a small solution. This kind of Itealows us to restrict the set
of solutions that has to be considered; the constraintsghiles (or their counterparts)
then do not necessarily preserve the solutions, but onlgepve the small solutions,
hence the satisfiability. In this chapter (as in [16, 9]), wentva step further, preserving
the set of all solutions.

4.6 Software resources

There are a few specialized theorem provers that can delalseine algebraic prop-
erties of cryptographic primitives [5, 7, 40]. There arevalgays of getting rid of some
equational axioms, and then using the verifiers that arggdedifor free term algebras
[17,27,28]. Only some [33,4,40] are (currently) reallyyieh on constraint solving

techniques. But the recent theoretical advances in thssraay, in the next few years,
yield new tools based on these techniques.

5 Research directions

Much is known at this stage about the foundations of secpriyocol analysis. The ba-
sic decidability and complexity results are known. Sevspacialized software tools,
and methods for applying more general tools, are availalitb, staggering improve-
ments in performance compared with a decade ago: secondadrs hours to analyze
most protocols. More attention is needed now to the presentaf the best algorithms,
so that future students, tool developers, and analystdwiible to build on clear and
useful knowledge rather than tricks hidden in software.
There is always a need to extend analysis approaches tommrerkinds of cryp-

tographic primitives, such as bilinear pairings, used liptt curve cryptography, and



zero-knowledge proofs. Another persistent demand is talleamore kinds of secu-
rity goals, such as anonymity, fair exchange, group key mement, and properties
expressed in terms of observational equivalence.

Observational equivalence deserves a special attentialtols one to state some
stronger security properties, typically that an attackernot learn anything relevant,
because the process is indistinguishable from an idealepsom which all relevant
informations have been shuffled or hidden.

The constraint solving approach is relevant for decidingieaiences of processes.
It requires however significant new insights since the gairst solving method that
we described in this chapter is complete only wwihat an attacker can deduce, but
not w.r.t. howit can be deduced. On the other hand, if an attacker has diffevays
to deduce a given message in two different experiments, tilel clistinguish between
them.

At this stage in the development of security protocol aria)yee most useful chal-
lenge for the research community might not be research abatlrather a transfer of
the state of the art to the state of practice. A collaboratfoesearchers, educators, and
tool builders may be necessary to create texts, expectatim software that exhibits
the best of what is possible and explains how to use it. Aftisrkind of consolidation
step, it will be easier to see what is most important to do.next
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A Unification

We sketch here the proof of Lemma 8 that states that the nuofibariables introduced
by a mgu is always smaller than the number of variables tleategrlaced by the mgu,
hence unifying terms may only reduce the number of variables

Lemma 8. Suppose thaf is a set of equations over the disjoint combination of the
theory of {¢,0} and a free theory with (at least) symmetric encryption anitipg
Then either€ has no solution, or every substitution is a solutionfofor else there

is a finite complete seb’ of unifiers of€ such that, for anyw € X', we have that
|vars(Ea)| < |vars(E)|.

Proof (sketch):
We rely on the procedure described in [3] for combining digj@quational theories.



Given a system of equations, we tet be the maximal number of independent equa-
tions in £. A set of equationg is independentf any equation in is not a logical
consequence of the other equations.{. the considered equational theory). We wish to
keep the following invariant: the difference betwegnand the number of variables,
is non-decreasing.

In a first step, using variable abstraction, every propetesubis replaced by a fresh
variable, adding a side equation.

f(s1,. s 8y 8n) ;tAEWheresi ¢ X,
is replaced by3z.z = s, AF(S1, @y, 8p) < tAE{s; — z}.

This step cannot decreasg — ny since every new variable corresponds to a new
equation.

The next step in the unification algorithm consists in gugssiqualities, theories
in which variables are instantiated, and an ordering i&@g&iri on variables: a quasi-
ordering on variable¥ v is associated with the problem and each variatiteassigned
a theoryr(z). Then we need only consider solutionsuch that:

—z =y yif,and only if xo = yo
— x>y yif,and only ifyo € St(zo)
— the top symbol ofco is in 7(z).

This step only introduces equations, therefore cannoedsens — ny,.

Finally, in each pure theory, we solve the equations (witteang restriction). In the
case of all symbols but exclusive-or, each unification probtan be reduced to a single
most general unifier, without introducing new variablegl #re ordering restriction will
simply discard some of the solutions. The measwrecan only increase with such a
procedure and,, can only decrease, thug — ny, cannot decrease.

Then, it only remains to prove the lemma for pueunification problems (with
ordering restrictions). Remove trivial equalities andkpgcmaximal variable: (w.r.t.
> x) of the problem. Ifr(z) is not@®, then there is no solution. Otherwise, consider
an equatiore @ v = 0 in the unification problem, assign= u and replace: with «
in the remainder of the equations. The measwrds preserved by this step and,
cannot increase. Hence the measugse- ny, cannot decrease. Moreover, the repeated
application of this rule yields either a unifier or a failuedéence of solution). a

B Completeness

We split Lemma 5 into two Lemmas (Lemma 11 and Lemma 12) thgtneeed sepa-
rately.

Lemma 11. Let T" be a finite set of terms; be a ground term in normal form and
o be a substitution mapping the variables’Bfto ground terms in normal form. We
assume moreover that, for everyc vars(T'), there is aI, ¢ T and a proofr, , of

=

T,ol F zo, such thatast(r, ) is not a decomposition and, for eveyye vars(Ty),
T, CT,.

Then, for every normal prooef of To | F w, if last() is a decomposition, then



— either there ist € vars(T") and a subproofr’ of 7, , such thattonc(n’) = v and
last(#’) is not a decomposition
— orelseu € St(T)o|

Proof. We letry be a normal proof of 'o | - u. We prove the lemma by induction on
(T, |mo|) where the first component is ordered by inclusion, the secongponent is
the size of the proofy. If last(rw) is an axiom, therconc(wy) € T'o|. This allows
us to conclude. Otherwise, we distinguish cases, depermirige last inference rule
in .

T T

last (7p) is an instance of the(SD) rule. In such a case, we have that =
u

with conc(m;) = {ul}$, andconc(ms) = v. Sincerny is a normal prooflast(m ) is a
decomposition and, by induction hypothesis, we are in orieefollowing cases:

1. There is a variable € vars(T") and a subproof, of r, , such thatonc(r) =
{lul}s andlast(r) is not a decomposition. Sint&st(r,) is not a decomposition, it
must be an encryption. Let be the immediate subproof af,, whose conclusion
is u. The proofr’ is a subproof ofr,. . Furthermore, eithdast(n’) is a decompo-
sition and we conclude by induction hypothesis (usihgC T') or else it is not a
decomposition and we get the desired conclusion.

2. We have thaflul}; € St(T")o]. In such a case, there exists& St(T") such that
to = {ul}s. We may assumer.l.0.g.thatt is not a variable: it € vars(T), we
fall in Case 1. Thert = {|t1[};, andt; € St(T') is such that,0| = u, hence
ue St(T)o].

The case where, ends with an instance of a projection rule can be done in daimi
way.

. . 7T1 DR 7Tn
last (7o) is an instance of the XOR) rule. In such a case, we have that=

with u; = conc(m;), (u1 @ - - ® uy,)| = w andtop(u) # @. There is an index guch
thatu; = u @ v;. Furthermore, since the progf is in normal fromJast(r;) cannot be
an instance of th¥OR rule, hence it must be a decomposition. By induction hypsithe
we are in one of the following two cases:

1. There is a variable and a subproof’ of 7, , such thatconc(n’) = u, and
last(n’) is not a decomposition. Consider a variabkuch thaff, is minimal {w.r.t.
inclusion) and there is@ and a subproot” of ,, , such thatonc(s”) = u ® w
andlast(n"") is not a decomposition. Sind¢ast(7") is not a decomposition, it must

/

)
’
T m

be an instance 0fOR rule. Letr” = (XOR). There is then a proof

u w
o € {nl,...,n,} of eitherT,o| - u (caegea) orT,o| Fu® w' for somew’
(caseb).
In the first case (cassg, eitherlast(r,) is a composition, and we meet the first item
of the conclusion, or elskast(n) is a decomposition (it cannot be an instance of
the XOR rule since the proof is in normal form), in which case we maglaphe
induction hypothesis (sincg, C 7).



In the second case (casg last(n() must be a decomposition (since the proof is
in normal form). Then, by induction hypothesis, eithes w’ € St(T,)o] or
else there is a variable such thatl;, C T, and a subproof”’ of m, , such that
conc(n”") = u ® w’ andlast(nx"") is not a decomposition. This last case cannot
occur, thanks to the minimality assumption®n Then, eithew, € St(7,.)o], or
else thereis aterm®w” € St(T,) suchthato = uo| @ w” for somew™ . But,
again, this case cannot occur, by minimalitylgf ‘

2. Thereisaterm; € St(T)suchthat; = t;0]. Lett; =t} @- - &tk where each’
is not headed withp. If u = t{ol for somej, we get immediately the conclusion.
Otherwise, there is an index such that{ is a variabley andyo = v @ w; ; and
we are back to the case 1.

Lemma 12. Let T" be a finite set of termg, be a ground term in normal form and
be a substitution mapping the variablesioto ground terms in normal form such that
To| F u. We assume moreover that, for eveng vars(T), thereis al, C T and a
proof 7, » of T,o| + zo, such thatast(r, ) is not a decomposition and, for every
y € vars(Ty), we have thaf, C T,.

Let7 be a normal proof of'o| + u. For everyu; € fact(u), we have that either
Tol - uy,orelseuy € St(T)o].

Proof. Let g be a normal proof of'o| F u. We prove the lemma by induction on
T (ordered by inclusion).We distinguish again cases depenain the last rule ofrg.
Note that if 7y ends with an instance of a composition rule different from (KOR)
rule, then we have théact(u) = {u}. SinceT's] + u, the result trivially holds.

’7"'1 .. 7'rm
last (mp) is an instance of the(XOR) rule. In such a casejy = — XOR

U
with v; = conc(n;) for everyj. Letu; € fact(u). Since(vy & ... ® v,,)| = u, there

existsj andw; such that eithev; = u; or elsev; = uy ® wj. In the first case, we get
the desired conclusidlic| F uy. Consider now the second case. Since the proofis in
normal form,last(;) can only be a decomposition. Hence, by Lemma 11, we are in
one of the following two cases:

1. v; € St(T)ol. Lett; € St(T) be such that;o| = v;. Then either there is a
variabley such thalyo = u; @ s for somes and, sincél’, C 7', it suffices to apply
the induction hypothesi§iyo| - uy oruy € St(T,)o|. Otherwiset; = s; © s
ands;o| = uy, in which caseiy € St(T)o].

2. There is a variable and a subproofr’ of 7, , such thatconc(n’) = v; and
last(n’) is not a decomposition. Sincg, C T, we may apply the induction hy-
pothesis ta;. We obtain thall’,o | - uy oruy € St(T;)o|.

last (7o) is an instance of the(SD) rule. Again, by Lemma 11, there are two cases:

1. Thereis & € St(T) such thatu = to]. If ¢ is a variable, theio| F u and
we may apply the induction hypothesis. Otherwise; t; & - - - & t,,, and either
there is aj such that;o| = uy (in which cases; € St(T)o]) or else there is a
Jj such that; is a variabler andzo = uy @ v for somev. By assumption, there
isaTl, C T suchthatl,o| F uy @ v and we may apply the induction hypothesis:

=

eitherT,o| F uy orelseuy € St(T,)o|.



2. Thereis & C T such thafl’o| + v and we may apply the induction hypothesis.

The case whergy ends with an instance of a projection rule or is reduced tafa le
can be done in a similar way.

We sketch the proof of the following lemma that is actuallytersg version of
Lemma 6. The transformation allowing us to transform a ndmnaof into an alien-
free proof is quite complex. Several examples are providted the proof sketch.

Lemma 13. LetT be a finite set of terms; be a substitution mapping the variables of
T to ground terms in normal form andbe a ground term in normal form. We assume
that, for every variabler € vars(T), there is al,, C T and a normal proofr,, , of
Tyo| F zo such thatast(r, ) is not a decomposition and, for everye vars(Ty), we
have thatl}, C T,. We assume moreover here thats(T) C T andvars(T,) C T,
for every variable.

If 7o is a normal proof ofl’'c| + u, then there is a normal alien-free proafof
Tol F wu. Furthermore, if the last rule ofry is not a decomposition, then we may
chooser such that the last rule af is not a decomposition.

Proof (sketch):
Consider a normal proofy of T'o | - u. We prove the lemma by induction ¢, |7g|).
If the last rule ofrg is not an instance gXOR) rule, we may simply apply the induction
hypothesis to the immediate subproofs and possibly noeeiatie only normalization
steps that may take place here, return subproofs of thenafigroof, hence preserve
alien-freeness. Furthermore, such normalisation stepstly occur when the last rule
of 7y is a decomposition.
T e T

Assume now thaty = — (XOR). Letw; = conc(w;) and assume by
induction hypothesis that eaef % alien-free and in normal form. Let moreovey ,
be an alien-free normal proof afr, whose las rule is not a decomposition, for every
x € vars(T) (such a proof exists by induction hypothesis). For everg St(T)o |,
we lett; € St(T) be such that;o| = v;.

We construct now the proof as follows. We first apply a transformation, yielding
a proofr(, such that, for every, eithertop(v;) # @ or elsev; € St(T)o|. For this
preliminary transformation, assume that, for soine ¢ St(7)o] andtop(v;) = .
Sinceny is in normal formJast(;) is a decomposition. Then, thanks to Lemma 5, there
is a variablex; € wvars(T) such that, for some subproef of 7., ,, conc(n}) = v;
! /!
i1

T, .
andlast(!) is not a decomposition. Let, = 2™ (XOR) and, for every

V4
j €{1,...,m;}, letv; ; = conc(w; ;). Then, sincer,, , is alien-free, for every, we
have that; ; € St(T.,)o| U fact(v;). In particular, for everyj, v; ; € St(T)o| or
top(vj ;) # ®. Furthermore, we have thitst(; ;) # ©.

Now consider the proofy, obtained fromr, by replacing the subproofs; such
thattop(v;) = @ andv; ¢ St(T)o| with the proof sequences ; --- =, and
removing the duplicates. The new proof is in normal form amtisfies that all conclu-
sions of the premisses are either not headed witr are in St(T")o .



Now let us come back to the constructionmfWe let A and E be the least multisets
such that:

1. if v € hyp(last(ng)) andv € fact(u) thenv € E;if v € hyp(last(n;)) and
v e St(T)ol.Letw € St(T) such that = wo|. Thenw € A andv € E.
2. If t € A and there exists such that = x & ¢’ with hyp(last(r, ,)) = & then
—zo € E,
— if v € hyp(last(r,,,)) andv € fact(u) thenv € E;
— if v € hyp(last(r;,»)) andv € St(T)o]. Letw € St(T") such thaw = wo .
Thenw € Aandv € E.

For everyw € FE, there is an alien-free normal proof % | F w. Remember that
x € T foreveryz € vars(T'). Furthermore, for every € E, eitherw is a factor ofu or
w € St(T)ol. It remains to show thaP,, . ; w)| = u. Then the proofr consisting
in xoring the terms ink' (and using the alien-free proofs of each of them) will sgtisf
the requirements of the lemma (after possibly removing tiidates).
O

Example 15.Consider the following constraint system:

?
a, b,C@d, fvgl—x
?
a, ba C@d7 fa 9, 0@67 k? {|Z‘@d|}7€,]} F <CL,b> De
Leto = {z — {(a,b) DcDdD(f,9)}, T = {a, b, c® d, f, g}, andT = T, U
{c®e, k, {zdd}s,z}. We have thafz} = vars(T) C T, and() = vars(Ty) C Ty.

The proofr, , described below is a proof df,o| - xzo that does not end with a
decomposition.
a b f g

Te,oc = cdd <aab> <fa g>
c®d®(a,b) @ (f,9)
Letu = (a,b) @ e andmy be the following proof ofl's - w.

fz o dliol K I

o = (x@d)al C@e <f7g>
(a,by e

The proofry is not alien-free because of the presence of the tgfm). Applying
our transformation, we will obtain the following alien-&@roof ofu:

a b {z®djol k
T = zo c®d {(a,b) cde (z®d)o]

Actually, during the transformation, we compute:



—A={coe (zdd),cdd}, and
- E={cde,(xdd)ol|,z0,{a,b),cdd}.

Example 16.Consider the following constraint system:

?
Tyd:efa, bcde, g, fOghy
?

T, a, b code g fEgdof k {yoe)s,yrz
def ?

T:Cl, b,c@e, gaf@gad@f) k? {|y@e|}sk7 y) {|x®d|}2,x|—c

Leto = {z — c® {(a,b) Dd; y — cDe® (a,b) ® f} and consider the following
proofs:

a b lyoeliol &
Tyo=qc®e (a,b) fDg g Moo = (y ®e)ol do f
c@ed(a,b)df c®(a,b)®d

We have a proof of 'o | ¢ as shown below:
{z®d}iol k a b
(z @ d)o] (a,b)

C
However, this proof is not alien-free. Actually, during tinensformation, we compute:

- A={z®d dd fyde,cde, fDg,g}, and
- E={(x@d)al,xa,d@f,(y@e)al,y,c@e,f@g,g}.

Thanks to our transformation, such a proof will be transfedras follows:

{zodljol & {lyoeliol &
(z®d)ol ro (y@e)ol yo dof g [®g cDe

Cc

Lemma 7. There is a mapping from derivation constraint systems and substitutions
to a well-founded ordered set such that, for every derivationstraint systenC and
every solutiors of C, eitherC is in solved form or else there is a constraint syst&ém
such thatC ~ C’, ¢ is a solution o/, and (C, o) > u(C’, o).

Proof. LetC = C1 A --- AC,, A E be a derivation constraint andbe a solution of®

?
such that every constraint @) is of the formT; - ¢; ; andT; C ... C T;,. A variable
of C is solvedif it is a member of an equation if.



Thessizeof a (normal) proofr of T;o| + uo] is the pair(j, |r|) wherej is the
minimal index such thatyp(w) C T;o| and|r| is the number of inference rules in the
proofr.

?
A constraintl’ - u is solved inC (w.r.t. o) if w is a variableu ¢ T and there is a
minimal size alien-free proof of T'o | - uo | such thatast(r) is not a decomposition.
We say that’; is solved(w.r.t. o) if:

1. C;—; is solved (ori = 1), in which casepars(T;) C T; by simplification and
origination.

?
2. everyT; - t; ; inC; is solved.

We letC, be the conjunction of solved; andC,, be the first unsolved;. We define
w(C, o) as the triple(n,, N¢, M(C)) where:

— n,, is the number of unsolved variables@f
— N¢isn — i, i.e.the number of “blocks” irC that are neither i€, norinC,;

?
— M(C) is the multiset of the pairh(u), c(m)) for T' - w an unsolved constraint
in C,, whereb(u) is the size ofu if (u ¢ St(T) andVv.u & v ¢ St(T')) and0
otherwise and(r) is a minimal size of an alien-free normal proofB6 | - uo|.

Note thatc(r) is well defined, thanks to Lemma 6: for evene vars(T'), we have
thatz € T thanks to the simplification rules and there i$,aC T and an alien-free
normal proofr,, , of T,o| F zo such thatast(r, ) is not a decomposition and, for
everyy € vars(T,), we have thaf,, C T, thanks to origination and sincg is solved.

?
Consider now an unsolved constraifit « in C,, and a minimal size alien-free
normal proofr of T'o | - uo].

We first consider the cases in which= x®v for some variable. Since constraints
are supposed to be eagerly simplified, theg vars(T) or x € wvars(v) (otherwise
?

(XRy) applies). Ifz € vars(T), then there is a constraifft, - « in C,, hence(XR;)
applies. We are left to consider the case where- = @ t(z) ® v wheret(x) is a
term in whichz occurs and such thabp(t(z)) # @. Consider such a variable,
that is maximalw.r.t. the ordering>, defined on variables by >, y if, and only if
yo € St(xo). Letuo| = u1 @ ... ® u, Wheretop(u;) # @ for everyi € {1,...,n}.
We distinguish two cases:

— Case li(x)o] ¢ {ui,...,un}. In such a case, either there are ters’ such
thatu = z @ t(z) ® v’ ® v andi(z)o| = vw'o| andu’ # t(z) or else there is
a variabley such thatu = = @ y @ t(z) ® v’ andyo = t(z)o| & v'. This latter
case would yieldy >, x, which contradicts the maximality assumptiononin
? ?

the former casel’ - u ~ T - = ® v’ A t(z) = u’ with the Geq rule, of whiche is
a solution. Furthermore, after simplification, the numbfesrsolved variables has
strictly decreased, thanks to Lemma 8.



— Case 2:it(z)o] € {ui,...,u,}. In such a case, sinc€o| + wuo, thanks to
Lemma 5, eithe's| - t(x)o| or elset(x)o] € St(T)o]. In the latter case,
? ?

as before, we have that- u ~ T F 2 @& w & v At(z) = w with the Geq rule, and
sincew # t(zx) (sincex ¢ vars(T)), after simplification and thanks to Lemma 8,
the number of unsolved variables has decreased. In the fa@se s is a solution

? ?
of T+ t(x) AT - 2@ v. Applying Cg to the systeng yields a systeng’, of which
o is a solution and such tha{C’, o) < u(C, o). Indeed, the measures andN¢
can only decrease (or remain constant). Furthermorg, St(7") (and for anyv,
u® v ¢ St(T)), as it contains a variable that does not occufirhenceb(u) is
the size ofu. We have thab(t(z)) < b(u) andb(z @ v) < b(u), which implies
M(C") < M(C).

Now, assume that is not of the formz @ v, wherex is a variable, and consider a
minimal size alien-free normal proafof T'o| F uo|. Let (j,n) be the size ofr. We
distinguish cases, dependinglast(r).

last (7) is an axiom, a decryption or a projection. Consider for instance the decryp-
T T9

tion case (the other cases are similar). In such a case, veethair = !
uo

with conc(m;) = {Juc] [}, andconc(rs) = k. Sincer is in normal formJast(m; )

is a decomposition and, by Lemma 5, eitflero | [}5 € St(7})o] or else there is

a variablexr € vars(T};) and a (alien-free) subproaf of r, ,, whose last step is

not a decomposition and such tlwanc(n’) = {Juc|[}5. In the latter case, there is

aT, ¢ T; andT,o| F uc|, which contradicts the minimality of the size of We

consider now the first case.

Lett € St(T;) be such thato| = {juc|]};. If t is a variablez, then, by as-

sumption, there is &, C 7 such thatl’,o - xo. Furthermore, there is an alien-

free proof whose last rule is not a decomposition. It follawat 7,0| + wuo],
which contradicts the minimality of. Thent is not a variable. We have that

?
t = {t1]};, € St(T) andty € St(T'). We may apply the rul®gec to 7' - u
?

? ?
(and toC), yieldingT F {{t1[};, AT Ft2 Au < 1,, either reducing the number of
unsolved variable of (if u # ¢1) or b(u) (if w ¢ St(7T")) or the size of the proofs
(|| is replaced by proof sizes at mast |, |w2|).

last (7) is an encryption or a pairing. First, we have that cannot be a variable, since
?

T F u is assumed to be unsolved. Hence we havedhat f(ui,...,u,). Then
hyp(last(7)) = {uiol,...,u,ol}. We may apply the rule replacing inM(C)
a tuple(b(u), N) with n pairs, whose first componentt;) < b(u) and second

components are strictly smaller thah
7T1 “ee 7Tn
last () is an instance of the(XOR) rule. We have thatr = ———— (XOR),

uo |
We may assume w.l.0.g. that= u; & . . . ® u,, where eachop(u;) # @ for every
i € {1,...n}. We also know that each is not a variable and we can assume that
u; # uy, for everyi # k.



If, for somesi, k, we have thaCOnc(m) = ukal then we have thafjo | F uko|.

In such a case, we can apply,: T l— u -~ T l— ug AT l— (u ® ug)|. We have
thatC ~~ C’, of which ¢ is a solution. Furthermorey(C’,0) < u(C, o), since
b(ug) < b(u) andb((u & ux)l) < b(u) and the (minimal) sizes of the (alien-
free, normal) proofs ofiyo| and ((u @ ux)|)o]| are strictly smaller: the size of
7, IS strictly smaller than the size af and the size of the proaf, in which 7y, is
removed, is strictly smaller than the size of the preof

Otherwise, by alien-freeness, for eveérywe have thatonc(w;) € St(T)o| and
we may apply thég rule. At least the multiset of proof sizes is decreasing¢if n
the previous components).



