
Laboratoire Spécification & Vérification

École Normale Supérieure de Cachan
61, avenue du Président Wilson
94235 Cachan Cedex France

Constraint solving techniques and
enriching the model with equational

theories

Hubert Comon-Lundh, Stéphanie Delaune, Jon Millen

November 2010

Research report LSV-10-18

Constraint solving techniques and enriching the model
with equational theories

Hubert Comon-Lundh, Stéphanie Delaune and Jon Millen

1 Introduction

A protocol specifies a set ofroles, each of which is a template for a finite sequence
of actions that send or receive messages. Each role may be instantiated any number of
times; the instances aresessions. A traceof a protocol is a global sequence of actions
that is an interleaving of a finite number of sessions. A protocol has many possible
traces, depending on how many sessions there are, and on the particular interleaving.
Even when such an ordering of actions is fixed, there are stillmany (actually infinitely
many) possible instances of a trace with the same sequence ofactions, because the in-
truder may affect the content of the messages by intercepting sent messages and forging
received messages.

In this chapter, we introducederivability constraints. Such constraints represent in a
symbolic and compact way which trace instances are possible, when an interleaving of
actions is fixed. Then the existence of an attack can be expressed as the satisfiability of
the derivability constraints, together with the negation of the security goal. For instance,
if the security goal is the confidentiality of some datas, then the protocol is secure if
the derivability contraints, together with the derivability of s, is unsatisfiable. Hence,
deciding the satisfiability of a derivability constraint (together with some other formula)
yields, as a particular case, an alternative to the decisionalgorithm described in the
previous chapter. We may however, in addition, consider other security properties, that
can be expressed as properties of symbolic traces. Typical examples of such properties
include agreement properties or timing properties.

Derivability constraints and their satisfiability were first introduced in [33]. Since
then, the approach has been followed by many papers, which show the decidability
of the problem in many different settings, depending on the cryptographic primitives
and the supposed properties that they satisfy (e.g.exclusive-or [19, 11], some algebraic
properties of modular exponentiation [10, 34, 15, 8], monoidal equational theories [24]).

In this chapter, we explain a method for simplifying derivability constraints when
the security primitives consist in exclusive-or, symmetric encryption/decryption and
pairing/unpairing. In principle, the same method can be applied to numerous other cryp-
tographic primitives, adapting however the underlying setof simplification rules. The
procedure that we describe in this chapter is actually a generalization of the known
procedures for such primitives [19, 11]: we provide with a constraint simplification al-
gorithm that transforms a constraint into finitely many equivalent and simpler ones,
calledsolved forms. This allows us not only to decide the existence of a solution, but
also to represent all solutions. Such a feature is used in [16] for deciding trace prop-
erties such as authentication and key cycles in security protocols, and also in [26] for
deciding game-theoretic security properties such as abuse-freeness. As far as we know,

the result presented here is new. Some proofs that are not detailed in this chapter can be
found in [18].

Finally, we claim that our decision procedure is simple: we only give a few trans-
formation rules that are applied to constraints until they are solved. The difficult part
is then the design of a complete and terminating strategy. Inthis introductory chapter,
we do not try to get the best performance. There are many possible optimizations that
we discuss only briefly. We prove, however, the correctness,completeness and termi-
nation of the constraint solving method, along the same lines as [16], but extending the
primitives with an exclusive-or operator.

Before introducing the derivability constraints in Section 3, we discuss in Section 2
the intruder capabilities. The main idea of the constraint solving technique is to search
for an intruder strategy, only considering strategies thatare “optimal”. In other words,
an intruder may have several ways to compute a given message,some of which are
simpler. Then, when solving the derivability constraints,we only look for the last step
of an intruder’s proof that is “optimal”, until the constraint is solved.

Outline. In Section 2, we review the various ways of describing the intruder’s capa-
bilities. In Section 3, we introduce the constraint solvingapproach and its relationship
with the security analysis of protocols. In Section 4, we give a more detailed exposi-
tion of the constraint solving method, in the case of symmetric encryption, pairing, and
exclusive-or.

2 Intruder capabilities

2.1 Messages

In the formal setting that is considered in this chapter, messages areterms that are
built from a set offunction symbolsF . These function symbols allow us to represent
cryptographic primitives. Here is a sampling of typical function symbols. We will not
use all of them.

– pairing and projections:〈x, y〉, π1(x), andπ2(x);
– symmetric encryption/decryption:{|x|}s

y, and{|x|}−s
y ;

– asymmetric encryption/decryption:{|x|}a
y, and{|x|}−a

y ;
– private and public keys for asymmetric encryption:dk(x), andpk(x).
– signature and signature check:[x]y , and[x]−y ;
– signature key and verification key for signature:sk(x), andvk(x);
– hash function:hash(x);
– exclusive-or:x ⊕ y;
– random numbers, symmetric keys:n, r, k, . . .

The set of termsT (F) (or messages) is untyped in our definitions. A typed version
can be encoded using tags and possibly additional function symbols and rules. We as-
sume that typing and type-checking is performed in an explicit way, which we believe
is the most conservative solution.

We may need to consider messages with unknown (arbitrary) parts; given a set of
variablesX , the setT (F ,X) is the set of terms built fromF and the variables inX .
We denote byvars(t) the set of variables that occurs int. We also usesubstitutions.
A substitutionσ = {x1 7→ t1, . . . , xn 7→ tn} is the simultaneous replacement ofxi

with ti for every1 ≤ i ≤ n. We require that noxi may occur in anytj . We denote bytσ
the term that results from the application of the substitutionσ to the termt. Occasionally
it is convenient to regardσ as a conjunction of equationsx1 = t1 ∧ ... ∧ xn = tn. We
denote bytop(u) the top symbol of the termu, i.e. the function symbol that occurs at
its root position.

2.2 Deductions

In a formal security analysis that follows the Dolev-Yao model [25], the intruder is as-
sumed capable of intercepting all messages in the network, and deriving new messages
from prior messages by decomposing and composing them. The ability of an intruder to
create a message from others can be inferred either from relations in an equational the-
ory or from deduction rules expressing possible intruder derivations. For example, the
intruder may derivea from {|a|}s

k and the keyk either by noticing that{|{|a|}s
k|}

−s
k = a

or by applying the deduction rule:

{|x1|}
s
x2

x2

x1

Deduction rules state that any instance of the conclusion can be computed by the
intruder from a corresponding instance of the premisses.

Example 1.A possible set of deduction rules for asymmetric encryption, signatures and
pairing is described below. There are several small variants of these rules, which we do
not describe here.

x y
(P)

〈x, y〉

〈x, y〉
(U1)

x

〈x, y〉
(U2)

y

x y
(AE)

{|x|}a
y

{|x|}a
pk(y) dk(y)

(AD)
x

x
(PK)

pk(x)

x y
(S)

[x]y

[x]sk(y) vk(y)
(V)

x

x
(VK)

vk(x)

The balance between equations or deduction rules to specifyintruder capabilities
depends on the rest of the formalization, and on the algorithms that will be used in the
analysis. There is no choice if the message algebra is a free algebra that has no de-
structors. In particular, in a free algebra, decryption{|x|}−s

y and projectionπi(〈x, y〉)
operations are not available, and intruder decomposition capabilities are necessarily
modeled by deduction rules. The loss of generality entailedby the use of a free alge-
bra, and the cure for it, is discussed in [32] and [30]. As we will see below, there are

cryptographic primitives such as exclusive-or (see Example 2) that cannot be expressed
fully and satisfactorily with deduction rules. We need to model them by the means of
an equational theory. An equational theoryE is a set of equations between terms. Given
two termsu andv, we writeu =E v if the equationu = v is a consequence ofE.

Example 2.The equational theoryE⊕ for the exclusive-or operator is defined by the
following equations:

x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z x ⊕ y = y ⊕ x
x ⊕ x = 0 x ⊕ 0 = x

The symbol⊕ is a binary function symbol whereas0 is a constant. The two first equa-
tions modeled the associativity and commutativity properties of the⊕ symbol whereas
the two last ones modeled the nilpotency and the fact that0 is a neutral element.

For instance, consider three distinct constant symbolsa, b, andc. We have that
(a ⊕ b) ⊕ b =E⊕ a whereasa ⊕ b 6=E⊕ a ⊕ c.

Having decided upon the split between deduction rules and a set of equationsE,
we can define thederivability relation, denotedT ⊢ u, that represents the intruder
capability to derive a messageu from a set of available messagesT .

Definition 1 (derivability relation). Thederivability relation⊢ is defined as the least
relation such that, whenT is a finite set of terms ands andt are terms, we have that:

– T ⊢ s whens ∈ T ;
– T ⊢ s when there is a termt such thatt =E s andT ⊢ t;

– T ⊢ s if there is a deduction rule
u1 . . . un

u
and a substitutionσ such

thats = uσ andT ⊢ uiσ for everyi ∈ {1, . . . , n}.

Example 3.Let T = {{|a|}a
pk(b), vk(b), [dk(b)]sk(b)}. Using the rules given in Exam-

ple 1, we may model the deduction ofa from the set of termsT as follows:

{|a|}a
pk(b)

[dk(b)]sk(b) vk(b)

dk(b)

a

In many cases, equations like{|{|x|}s
y|}

−s
y = x can be oriented to form term rewriting

rules, in this case{|{|x|}s
y|}

−s
y → x. If the resulting term rewriting system isconvergent,

any termu has a unique normal formu↓, which is obtained by applying the rewriting
rules in any order and as long as possible. In that case,u↓ is a canonical representative
of the equivalence class ofu with respect to=E, i.e. u =E v if, and only if, u↓ = v↓.
If, in addition, there is no premisse of any deduction rule that overlaps a left side of a
rewriting rule in a non-trivial way, we may simply apply a normalization step after each
deduction step.

In some cases, it is not possible to get a finite convergent rewriting system from the
set of equations, nor to turn the equations into finitely manydeduction rules. A typical
example is the set of equations given in Example 2 and that allows one to model the

exclusive-or operator. The associativity and commutativity properties of the⊕ symbol
prevent us from getting a convergent rewriting system. Usually, such symbols are con-
sidered as varyadic: we may writeu1⊕· · ·⊕un, since the parentheses (and the ordering)
on u1, . . . , un are irrelevant. Keeping such a flat representation is useful, since theAC

properties consist only in rearranging the arguments of a⊕ operator, without changing
the structure of the message. This requires, however, an infinite (yet recursive) set of
deduction rules, relying on an extended rewriting system.

From now on, we use only the deduction rules, rewrite rules, and equations dis-
played in Figure 1. For simplicity, we only keep symmetric encryption and pairing, and
do not consider asymmetric encryption and signatures. Notice that some exclusive-or
equations have been oriented into rewrite rules; this set ofrules is convergent (modulo
the equations): every termt has a unique normal form modulo associativity and com-
mutativity, which we writet↓. The set of equations then only consists of permutative
equations (on flattened terms). We will omit the indexE in =E, leaving implicit both
the flattening and the possible permutation of arguments.

Deduction rules:

x1 · · · xn

(XOR)
(x1 ⊕ · · · ⊕ xn)↓

for anyn ∈ N

x1 x2

(P)
〈x1, x2〉

〈x1, x2〉
(U1)

x1

〈x1, x2〉
(U2)

x2

x1 x2

(SE)
{|x1|}

s
x2

{|x1|}
s
x2

x2

(SD)
x1

Rewrite rules: x ⊕ x ⊕ y → y x ⊕ x → 0 x ⊕ 0 → x

Equations: x1 ⊕ · · · ⊕ xn = xτ(1) ⊕ · · · ⊕ xτ(n) for anyn ∈ N and any permutationτ .

Fig. 1.Deduction rules, rewriting rules, and equations for encryption, pairing, and exclusive-or.

Example 4.Let T = {{|a|}s
a⊕b, a ⊕ {|c|}s

b, b ⊕ {|c|}s
b}. We show thatT ⊢ c, using the

rules described in Figure 1. First, we show thatT ⊢ {|c|}s
b andT ⊢ b. Indeed, the two

derivationsπ1 andπ2 described below are witnesses of these facts.

π1 =























a ⊕ {|c|}s
b

{|a|}s
a⊕b

a ⊕ {|c|}s
b b ⊕ {|c|}s

b
(XOR)

a ⊕ b
(SD)

a
(XOR)

{|c|}s
b

π2 =























{|a|}s
a⊕b

a ⊕ {|c|}s
b b ⊕ {|c|}s

b
(XOR)

a ⊕ b
(SD)

a

a ⊕ {|c|}s
b b ⊕ {|c|}s

b
(XOR)

a ⊕ b
(XOR)

b

Now, it is easy to see thatT ⊢ c.

2.3 Proofs

The intruder’s deductions are represented as tree proofs, as in the previous example. We
formalize these notions here.

Definition 2 (proof). A proofπ with respect to a set of deduction rulesI (and a con-
vergent rewriting systemR) is a tree whose nodes are labeled with terms and such that,
if a node is labeled with a termt and its sons are labeled with termst1, . . . , tn, then

there is a deduction rule
s1, . . . , sn

s
∈ I and a substitutionσ such thatsiσ = ti for

every1 ≤ i ≤ n andsσ↓ = t.

Thehypotheseshyp(π) of a proofπ are the labels of the leaves ofπ. Its conclusion
conc(π) is the label of the root ofπ. The last deduction rulelast(π) is the instance of
the deduction rule that yields the root. We say thatπ is a proof ofT ⊢ u if hyp(π) ⊆ T
andconc(π) = u. Finally, step(π) is the set of all labels ofπ. A subproofof π is a
subtree ofπ. It is also a proof.

Example 5.In Example 4, the proofπ1 is such thatstep(π1) = T ∪ {a ⊕ b, a, {|c|}s
b},

conc(π1) = {|c|}s
b, hyp(π1) = T = {{|a|}s

a⊕b, a ⊕ {|c|}s
b, b ⊕ {|c|}s

b}, andlast(π1) is
an instance of theXOR deduction rule. More precisely, we have that:

last(π1) =
a ⊕ {|c|}s

b a
(XOR)

{|c|}s
b

.

The instances of the deduction rules(U1), (U2), and (SD) and instances of the
(XOR) for which the conclusion is not headed with⊕ are calleddecompositions. More
generally, an instance of a deduction rule is a decomposition if its conclusion is a sub-
term of the premisses and is irrelevant in the rewriting/equational steps. By convention,
if π is reduced to a leaf, then we also say thatlast(π) is a decomposition.

Example 6.The following are instances of deduction rules, that are decompositions:

{|a ⊕ b|}s
c c

(SD)
a ⊕ b

{|a|}s
b ⊕ b b ⊕ c c

(XOR)
{|a|}s

b

while the following are instances of deduction rules, that are not decompositions:

a ⊕ b b ⊕ c
(XOR)

a ⊕ c

{|a ⊕ b|}s
k ⊕ a {|a ⊕ b|}s

k ⊕ b
(XOR)

a ⊕ b

An instance of a deduction rule is acompositionif its premisses are subterms of
the conclusion. Typical examples of compositions are all the instances of the deduction
rules(SE) and(P). Note that some instances of the deduction rule(XOR) are compo-
sitions, and some others are never compositions, nor decompositions.

Example 7.Consider the following three instances of the deduction rule (XOR):

a ⊕ b b

a

a b

a ⊕ b

a ⊕ b b ⊕ c

a ⊕ c

The first instance is a decomposition, the second instance isa composition whereas the
third one is neither a composition nor a decomposition.

2.4 Normal proofs

Typical results concerning the deduction rules show that ifa term can be derived then
there is anormal proofof it. The notion of normal proof will depend on the intruder de-
duction system, but it has the property to avoid any unnecessary detour. Normal proofs
allow us to restrict the search space when looking for an attack.

We define below the normal proofs for the deduction system given in Figure 1.
We simplify the proofs according to the rules presented in Figure 2. These rules sim-
ply gather together successive(XOR) deduction rules and otherwise, they only remove
useless parts of the proofs. They are (strongly) terminating: anormal proof is a proof,
that is irreducible with respect to the rules of Figure 2. Forother equational axioms or
inference rules, there are also similar simplification and gathering rules [24]. There is
however no general procedure that yields an appropriate notion of normal proofs for
arbitrary equational theories.

“Locality” is a subformula property that holds on normal proofs. In the definition
that follows,St(T) is the set of subterms ofT . Let u = u1 ⊕ . . . ⊕ un be a term such
that top(ui) 6= ⊕ for everyi ∈ {1, . . . , n}. Then, the strict direct subterms ofu, also
called thefactorsof u and denotedfact(u), are the individual argumentsui only.

Definition 3 (local proof). A local proofπ of T ⊢ u is a proof in which

– either last(π) is a decomposition andstep(π) ⊆ St(T)
– or elsestep(π) ⊆ St(T ∪ {u}).

This general property of proof systems is ensured by our proof normalization process:

Lemma 1. If π is a normal proof ofT ⊢ u thenπ is a local proof ofT ⊢ u.

Proof. Let π be a normal proof ofT ⊢ u. Let us prove thatπ is local by induction on
the size ofπ, i.e. its number of nodes.

Base case:If π is reduced to a leaf, thenu ∈ T andπ is a local proof ofT ⊢ u.

Induction step:We distinguish two cases depending on whetherlast(π) is a decompo-
sition or not.

u1 · · ·ui u ui+1 · · ·uj u uj+1 · · · un

(XOR)
v

⇒
u1 · · · ui ui+1 · · ·uj uj+1 · · ·un

(XOR)
v

u1 · · ·ui

v1 · · · vm

(XOR)
v ui+1 · · ·un

(XOR)
u

⇒
u1 · · ·ui v1 · · · vm ui+1 · · ·un

(XOR)
u

π1

u1 · · ·

πi

ui

π

u

πi+1

ui+1 · · ·

πn

un

(XOR)
u

⇒
π

u

π

u

π1

u1

(P)
〈u, u1〉

(U1)
u

⇒
π

u

π1

u1

π

u
(P)

〈u1, u〉
(U2)

u

⇒
π

u

π

u

π1

u1

(SE)
{|u|}s

u1

π
′
1

u1

(SD)
u

⇒
π

u

Fig. 2.Proof normalization rules

1. If last(π) is not a decomposition, eitherhyp(last(π)) are subterms of its conclusion
(e.g.an instance of(SE) or (P)) in which case we can simply use the induction
hypothesis, or else we have that

π =

{ π1 · · · πn
(XOR)

u

with conc(πi) /∈ St(u) for somei.
Let uj = conc(πj) for j ∈ {1, . . . , n}. We have thatu = (u1 ⊕ · · · ⊕ un)↓. By
proof normalization, for everyj, eitherlast(πj) is not a decomposition, and then
top(uj) 6= ⊕ or elselast(πj) is a decomposition and, by induction hypothesis,
step(πj) ⊆ St(T). Consider an indexk such thatuk is maximal (with respect to
the subterm relation) in the set{u1, . . . , un}.

If last(πk) is not a decomposition, thentop(uk) 6= ⊕. Furthermore, thanks to the
rewriting rules for⊕, we are in one of the following cases:

– uk is a strict subterm of someuj. This is ruled out by the maximality assump-
tion onuk.

– uk = uj for somej 6= k. This is ruled out by the proof normalization rules.
– uk = u. This is ruled out by the proof normalisation rules
– uk ∈ fact(u↓) is a strict subterm ofu (i.e., it does not disappear in the normal-

isation ofu1 ⊕ . . . ⊕ un).
Since only the last case is possible, every maximal term in{u1, . . . , un}, that is not
obtained by a decomposition, is a strict subterm ofu and therefore, by induction
hypothesis,step(πk) ⊆ St(uk) ∪ St(T) ⊆ St(u) ∪ St(T).
It follows that for every maximal term in{u1, . . . , un}, we have thatstep(πk) ⊆
St(u) ∪ St(T). Then, for any termui, there is a maximal termuk such thatui ∈
St(uk) and thereforeSt(ui) ∪ St(T) ⊆ St(uk) ∪ St(T) ⊆ St(u) ∪ St(T). It
follows that, for everyi, step(πi) ⊆ St(u) ∪ St(T), hencestep(π) ⊆ St(u) ∪
St(T).

2. Assume now thatlast(π) is a decomposition. We consider all possible rules for
last(π).

Case 1:The proofπ ends with an instance of(U1) (or (U2)), i.e.

π =

{ π1
(Ui)

u

with conc(π1) is either a pair〈u, v〉 or a pair〈v, u〉. In both cases, in order to get
a term whose top symbol is a pairing,last(π1) must be either a pairing rule or a
decomposition rule. The first case is ruled out sinceπ is a normal proof. Hence we
can apply the induction hypothesis and conclude thatstep(π1) ⊆ St(T). It follows
thatstep(π) ⊆ St(T).

Case 2:The proofπ ends with an instance of(SD), i.e.

π =

{ π1 π2
(SD)

u

with conc(π1) = {|u|}s
v, conc(π2) = v. Sinceconc(π1) is headed with an en-

cryption symbol,last(π1) must be either an instance of(SE) or a decomposi-
tion. The first case is ruled out sinceπ is a normal proof, hencelast(π1) is a de-
composition. By induction hypothesisstep(π1) ⊆ St(T). In particular, we have
that v ∈ St(conc(π1)) ⊆ St(T). Now, by induction hypothesis, we have that
step(π2) ⊆ St(T ∪ {v}) ⊆ St(T). It follows thatstep(π) ⊆ St(T).

Case 3:The proofπ ends with an instance of(XOR), i.e.

π =

{ π1 · · · πn
(XOR)

u

Let uj = conc(πj) for everyj ∈ {1, . . . , n}. By hypothesis, we know thatlast(π)
is a decomposition, thustop(u) 6= ⊕ andu ∈ fact(uj) for somej ∈ {1, . . . , n}.
For everyj, last(πj) cannot be an instance of the(XOR) deduction rule, becauseπ
is a normal proof. Therefore, iflast(πj) is not a decomposition, thentop(uj) 6= ⊕.

It must then be a subterm of someuk, k 6= j (actually a strict subterm sinceπ
is a normal proof). Thus, the maximal terms in{u1, . . . , un} with respect to the
subterm relation, are termsuj , such thatlast(πj) is a decomposition. By induction
hypothesis, it follows that, for everyj ∈ {1, . . . , n}, we have thatstep(πj) ⊆
St(T) and therefore we have thatstep(π) ⊆ St(T).

As a consequence, the derivation problem,i.e.givenT andu, the problem of decid-
ing whetheru is derivable fromT or not, is in PTIME. We may indeed run a fixed point
computation algorithm on the setSt(T ∪ {u}). It will terminate in polynomial time,
as long as the one-step deducibility relation is decidable in PTIME, which is the case
for our rules in Figure 1, as well as in many other cases (see [24]). There are several
other such results for some classes of equational theories (e.g.[24, 9]). An overview of
equational properties that are relevant to security protocols is given in [21].

3 Derivation constraints: definitions and examples

3.1 Introduction with an example

Consider the flawed handshake protocol example described inFigure 3, temporarily
returning to a larger set of operations. We want to check, fora fixed number of sessions
(let us call this thebounded scenariocase), whether or not there is an attack on the
protocol that compromises the secrets, which the participantB generates and wishes
to share with the participantA. This security property turns out to be a trace property,
so that we can check it when we know which protocol traces are possible.

A
{|[k]sk(A)|}

a
pk(B)

// B

◦ ◦
{|s|}s

k
oo

Fig. 3.Flawed handshake protocol

In the bounded scenario case, the number of messages that areexchanged is bounded.
However, as explained in Chapter??, there are still an infinite number of possible mes-
sage instances. Hence the verification cannot be performed by a simple enumeration
of scenarii. The solution is to use a symbolic representation of sequences of messages,
treating uninstantiated parameters as variables.

Let us show how it works on the handshake protocol described in Figure 3, when
there is one instance of the roleA (with agent parametersa andc) and one instance of
the roleB (with agent parametersb anda). Therolesare simply threads, in which some
names are hidden: this corresponds to local random generation. To be more precise, we
consider two threads expressed in a spi-calculus style, with pattern matching:

A(a, c) : νk. send({|[k]sk(a)|}
a
pk(c)). get({|x|}s

k).

B(b, a) : νs. get({|[z]sk(a)|}
a
pk(b)). send({|s|}s

z).

Note that, in this scenario, the namea occurs free in bothA(a, c) and inB(b, a). It
cannot be renamed in any of the two threads: the name issharedby these threads. Let us
see informally what the threadA(a, c) does in more detail. First it hasa, c as parameters:
it is a program executed on behalf of an agenta, who wishes to communicate withc.
Givena andc, it generates a fresh keyk (theνk construction). Then it constructs the
first encrypted message and sends it. Next, it waits for some message containing the
encryption of some valuex with k. When the message is received, it tries to decrypt
it with k. If this succeeds, then it retrieves the messagex. Otherwise, if the decryption
fails, the program aborts (this is not specified here). The threadB(b, a) works in a
similar way: first it waits for a message encrypted with its own public key, and extracts a
valuez signed bya. If the signature checks, it sends back the nonce (secret)s encrypted
with the (supposed) keyz.

Then, these roles are composed, using parallel composition, name hiding and pos-
sibly replication, to buildscenarii. For instance,A(a, c)‖B(b, a) is a scenario where
there is one instance of the roleA (with agent parametersa andc) and one instance of
the roleB (with agent parametersb anda).

The operational semantics of such threads is described (in slightly different fla-
vors) in several papers such as [1, 39, 37]. The important features are that each of these
threads is executed concurrently in a hostile environment:messages that are sent over
the network can be intercepted and modified by an intruder. Therefore, what an agent
gets is the message that has been forged by the intruder from his current knowledge
and the messages that circulated on the network. It is out of the scope of this chapter
to define a precise operational semantics of such a process algebra (see Chapter??).
It is not always sufficient to consider a small system consisting of only one thread per
role, for security analysis. Conditions under which such small systems are sufficient are
given by Lowe and others [29, 35, 2].

In this scenario, we assume that the keyspk(a), pk(b), pk(c), vk(a), vk(b), vk(c)
are public, hence available to all agents, including the intruder. The other keys are pri-
vate: they are normally held by their owners only. In this example, we suppose thatc is
compromised: this means that the secret keysdk(c) andsk(c) are also available to the
intruder. Finally, the intruder knows the names of the agents, namelya, b andc. Thus,
the total initial intruder knowledge is the set of terms:

Tinit = {pk(a), pk(b), pk(c), vk(a), vk(b), vk(c), dk(c), sk(c), a, b, c}.

The next step is to construct the parallel composition of thetwo sessions. The paral-
lel composition has no more than six possible traces, which are the various interleavings
of the two ordered message actions of each of the two sessions. In general, if there are
two sessions of lengthm andn, respectively, the number of interleavings is the num-
ber of combinationsC(m + n, m). However, not all of the interleavings aresolvable.
A trace is solvable if, and only if, there is a substitution for its variables such that the
messageu in eachget(u) action is derivable by the intruder from the intruder’s initial

knowledge plus the messages that have been sent in priorsend actions. This condition
generates aderivation constraintfor each received message.

Coming back to our running example, one of the interleaving is:

send({|[k]sk(a)|}
a
pk(c)),get({|[z]sk(a)|}

a
pk(b)),send({|s|}s

z),get({|x|}s
k)

Is it solvable? There are twoget actions, hence two derivation constraints:

C =







Tinit, {|[k]sk(a)|}
a
pk(c)

?

⊢ {|[z]sk(a)|}
a
pk(b)

Tinit, {|[k]sk(a)|}
a
pk(c), {|s|}s

z

?

⊢ {|x|}s
k

Note that the set of terms on the left of each derivation constraint is actually a union
Tinit ∪ ..., but it simplifies the notation to write these sets as comma-separated lists. The

difference between a derivation constraint, denoted byT
?

⊢ u, and a derivation, denoted
by T ⊢ u, is that the constraint asks for a substitutionσ such thatTσ ⊢ uσ.

Example 8.The constraints inC are simultaneously satisfied by the substitution

σ = {z 7→ k, x 7→ s}.

The fact that the second constraint is satisfied is obvious. Indeed, a normal proof of
Tinit, {|[k]sk(a)|}

a
pk(c), {|s|}s

k ⊢ {|s|}s
k is actually reduced to a leaf. The fact that the first

constraint is satisfied takes some effort to see. A normal proof witnessing this fact is
described below.

{|[k]sk(a)|}
a
pk(c) sk(c)

[k]sk(a) pk(b)

{|[k]sk(a)|}
a
pk(b)

We still have to ask whether this trace violates the securitygoal of the protocol. It
does, because the intruder can obtaink from [k]sk(a) and thens from {|x|}s

k. There is a
trick to help us figure this out: we add a roleC(s) = get(s) to the protocol and the
scenario. An artificial role of this kind, introduced to testa secrecy property, is called a
listener. This means that the actionget(s) must be included in each trace. This causes

a new constraint to be generated, of the formTinit, ...
?

⊢ s.

A substitution satisfying all the constraints, including this one, will demonstrate that
the secrets can be read by the intruder. This reduces detection of secrecy violations to
the basic constraint solution problem.

Before proceeding with the method for solving constraints,we remark that there are
some easy optimizations that relieve us from considering every possible trace. If both of
the traces....get(u). send(u′).... and....send(u′). get(u).... are possible, we can
discard the first one, because any substitution that satisfies the constraints arising from
the first will also satisfy the second. Also, if a trace has consecutivesend actions, their
order is irrelevant, so one particular order is sufficient. This means that, when counting

(or generating) interleavings, one need only consider the number and order ofget
actions in each session. By a similar argument, a listener action may always be placed
last in a trace.

The basic constraint solving approach, therefore, has two stages: the first is to gen-
erate a sufficient set of traces, and the second is to generateand attempt to solve the
constraint system arising from each trace. An alternative approach is used in [20]: while
generating traces, attempt to solve the current partial constraint system each time aget
action is added to a trace. If there is no solution, the partial trace need not be extended,
eliminating a subtree of trace continuations. This approach can lead to more solution
attempts in the worst case, but in practice it usually saves considerable time. Constraint
differentiation [4] offers another kind of optimization.

3.2 Derivation constraints

We can now formally define the notion of a derivation constraint system, which is not
specific to our set of primitives/deduction rules.

Definition 4 (derivation constraint system).A derivation constraint systemC consists
of a conjunction of equations and a sequence of derivation constraints:

T1

?

⊢ u1 ∧ · · · ∧ Tn

?

⊢ un ∧ s1
?
= t1 ∧ . . . ∧ sm

?
= tm

whereT1, . . . , Tn are finite sets of terms. Moreover, we assume that:

– Monotonicity:∅ (T1 ⊆ T2 · · · ⊆ Tn,
– Determinacy:for everyi ∈ {1, . . . , n}, for everyu ∈ Ti, we have that{u1, . . . , ui−1}∪
P ⊢ u, whereP is a finite set of ground terms.

We just saw, with the handshake protocol, how a sequence of derivation constraints
arises from a candidate trace of a protocol scenario. A constraint sequence arising this
way always satisfies the two properties mentioned above, forsome finite setP of ground
terms, that represents the initial knowledge of the agents.

The first condition states that the intruder knowledge is increasing along the proto-
col execution. The second condition states that the messageu, which is emitted at some
stage, can be computed from all data that are possibly available at this stage. We do not
commit here to any particular program that computesu, but only state that such a pro-
gram must exist, if we assume that the corresponding agent has access to all data. This
is a reasonable assumption, that only rules out non-deterministic choices and possibly
some encodings of complex operations.

Let us remark that the monotonicity and determinacy conditions imply two impor-
tant properties:

– Origination: for every i ∈ {1, . . . , n}, for everyx ∈ vars(Ti), there must be a
j < i such thatx ∈ vars(uj). In particular, we have thatvars(T1) = ∅. Indeed,
if x /∈ {u1, · · · , ui−1}, thenx /∈ vars(u) for any termu that can be deduced from
{u1, · · · , ui−1} ∪ P .

– Stability by instantiation:If C is a derivation constraint system, then, for every
substitutionσ, we have thatCσ is also a derivation constraint system.

These two properties are actually what we need, and they could replace the determi-
nacy property, yielding a more general (yet less natural) definition of constraint systems
(see also [34]).

Example 9.Consider the following sets of derivation constraints:

S1 = a
?

⊢ x ∧ b
?

⊢ y

S2 = a, b
?

⊢ x ∧ a, b, {|y|}s
a

?

⊢ x ∧ a, b, {|y|}s
a, x

?

⊢ y

S3 = a, b
?

⊢ {|x|}s
y ∧ a, b, x

?

⊢ y

S4 = a, b
?

⊢ {|〈x, y〉|}s
k ∧ a, b, x

?

⊢ y

The setS1 is not a derivation constraint system since it violates the monotonicity
property. The setS2 is not a derivation constraint system, since it violates determinacy
(actually, it violates origination). The setS3 is not a derivation constraint system sincex
is not derivable from{|x|}s

y ∪ P for any set of ground termsP . Intuitively, the agent
receiving{|x|}s

y cannot retrievey and cannot retrievex without having the key. This set
of derivation constraints could still be handled since it satisfies the origination and any
instance of it also satisfies the origination. Lastly,S4 is a derivation constraint system.
In particular, we have that{|〈x, y〉|}s

k, k ⊢ x.

In addition to these constructions, we may need to introducenew variables along
with constraint simplifications. In order to keep the set of solutions, we may add exis-
tential quantifiers for these new variables, in front of a derivation constraint system.

Actually, we may consider some additional formulas with only slight modifications
of the constraint solving technique. Typically, we may wishto add disequalities, either
because our threads contain conditionals or because we wishto express agreement prop-
erties. The constraint solving algorithm is not modified, until the end; we only need to
add a simple test as a last step (see [16]). Similarly, membership constraints (expressing
for instance typing information) or timing constraints canbe added with minor changes.

Definition 5 (solution). Given a convergent set of rewrite rules (possibly modulo as-
sociativity and commutativity) and a set of derivation rules that describe the intruder

capabilities (as in Figure 1), asolutionof a set of derivation constraintsC = T1

?

⊢

u1 ∧ · · · ∧ Tn

?

⊢ un, together with a set of equationsE , is a substitutionσ of its free

variables such that, for everyi, Tiσ↓ ⊢ uiσ↓ and, for every equationu
?
= v in E , we

have thatuσ↓ = vσ↓.

Example 10.Consider the following derivation constraint system (withno equation):

C =







a ⊕ {|c|}s
b, b ⊕ {|c|}s

b

?

⊢ x

{|a|}s
x, a ⊕ {|c|}s

b, b ⊕ {|c|}s
b

?

⊢ c

The substitution{x 7→ a⊕ b} is a solution. A witness of the fact thatσ satisfies the last
derivation constraint is given in Example 4.

3.3 Solved constraints

A variablex is solvedin a derivation constraint systemC if it occurs as a member of an

equationx
?
= u, and nowhere else in the derivation constraint system. A variablex is

pre-solvedif it occurs in a derivation constraintT
?

⊢ x such thatx /∈ vars(T) and does

not occur in any termu such thatT ′
?

⊢ u is a derivation constraint such thatT ′ (T . A
derivation constraint systemC is solvedif it is of the form

z1
?
= t1 ∧ . . . ∧ zm

?
= tm ∧ T1

?

⊢ x1 ∧ . . . ∧ Tn

?

⊢ xn

wherez1, . . . , zm are solved variables andx1, . . . , xn are pre-solved variables. In par-
ticular, this implies thatx1, . . . , xn are distinct variables.

Lemma 2. A solved constraint system has always at least one solution (actually, in-
finitely many solutions if it is not a trivial system).

Proof. Let T1

?

⊢ x1, . . . Tn

?

⊢ xn be the derivation constraints that occur in the system,
and assume thatT1 ⊆ . . . ⊆ Tn. We construct a solution by induction onn.

Base case:n = 0. In such a case, the equational part defines a substitution that is a
solution of the constraint.

Induction step:If n ≥ 1, first choosex1σ = t1 ∈ T1 and replacex1 with t1 in the

remainder of the constraint. After removing the constraintT1

?

⊢ t1, the resulting system
is still a derivation constraint system and it is still solved (since the variablesxi are
distinct). Then we apply the induction hypothesis.

This lemma can be easily extended, considering additional disequality (resp. mem-
bership) constraints [16]. For instance, if we wish to decide a security property that can
be expressed with equalities (typically an agreement property), then, as explained in
introduction, we consider the derivation constraint system, together with the negation
of these equalities. It is satisfiable if and only if the security property can be violated.
If the derivation constraint is in solved form and there is notrivial disequality, then the
above lemma implies that there is a solution, hence the security property is violated. In
other words, it suffices to simplify the derivation constraints into solved forms (which
may yield some replacements of the variables in the disequality part) and then check
the satisfiability of the disequality part.

This idea can be applied to other security properties than agreement or confiden-
tiality, as long as they can be expressed with a formula on thesame variables as the
variables of the derivation constraints.

4 Solving a derivation constraint system

4.1 Constraint reduction

Constraint reduction(see [33]) is a relatively straightforward and efficient wayto solve
a derivation constraint system arising from a candidate protocol trace. It solves a system
iteratively by reducing individual constraints until the system is solved.

Each reduction step should besoundin the sense that any solution of the reduced
constraint system is a solution of the original system. At each step, several reductions
may be possible. Hence, reduction sequences form a branching tree. Some paths may
lead to a failure, while others yield solved forms, hence solutions. A desirable property
is thecompletenessof the reduction rules: ifσ is a solution ofC, then there is a possible
reduction ofC into a constraint systemC′, of whichσ is a solution. In other words, there
is a path in the tree that will yield a solved constraint system of whichσ is a solution.

We could simply get a sound and complete set of constraint reduction rules by
guessing the last intruder computation step. For instance in a system with only symmet-

ric encryption and pairing, given a constraintT
?

⊢ u such thatu is not a variable, for any
solutionσ, the last step in the proof ofTσ ⊢ uσ must be a pairing (this is only possible
if u is a pair) or an encryption (this is only possible ifu is a ciphertext), or a decryption
or a projection, or a trivial step (this is only possible ifuσ belongs toTσ). This yields
a naive set of reduction rules, that is displayed in Figure 4.

R1 : T
?

⊢ 〈u1, u2〉 T
?

⊢ u1 ∧ T
?

⊢ u2

R2 : T
?

⊢ {|u1|}
s
u2
 T

?

⊢ u1 ∧ T
?

⊢ u2

R3 : T
?

⊢ u ∃x. T
?

⊢ 〈x, u〉

R4 : T
?

⊢ u ∃x. T
?

⊢ 〈u, x〉

R5 : T
?

⊢ u ∃x. T
?

⊢ {|u|}s
x ∧ T

?

⊢ x

R6 : T
?

⊢ x ∧ T ′
?

⊢ x T
?

⊢ x if T ⊆ T ′

R7 : T
?

⊢ u t
?
= u if t ∈ T

Fig. 4.Naive constraint reduction rules

The two first rules correspond to pairing and encryption. Thethree following rules
correspond to projections and decryption. Then, the last one is actually the only one
that builds a solution: we guess here that the proof is completed, as (the instance of)
u belongs to (the corresponding instance of)T . In addition to such rules, we need an
equality constraint solving rule:

t
?
= u ∧ C → σ ∧ Cσ if σ = mgu(t, u)

We do not include it in Figure 4 since this rule is a deterministic simplification rule: it
may be applied to any constraint without considering any alternative simplification. By
convention,σ =⊥ is a failure if the two terms are not unifiable.

Unfortunately, such rules are too naive: while sound and complete, they will not
terminate, as the three rules that correspond to projections and decryption (namelyR3,
R4 andR5) can be repeatedly applied any number of times. That is why wedo not aim
at reproducing any possible intruder’s computation, but only some of its computations,
and at least one for each resulting term. This results in using the same set of rules
as the above one, however restricting the three rulesR3, R4 and,R5; while keeping

completeness. This is, in essence, what is performed in the decision procedures based
on constraint solving.

We now give a complete and terminating procedure, includingprimitives such as
exclusive-or.

4.2 A constraint solving procedure for exclusive-or

We display in Figure 5 a set of constraint simplification rules for a theory of exclusive-
or, pairing and symmetric encryption. The simplification rules exactly reflect the in-
truder capabilities. They must be applied “don’t know”: this is a non-deterministic pro-
cedure, in which all possible applicable rules must be considered if we wish to get a
completeness result.

Ax : T
?

⊢ t t
?
= u if u ∈ T

C : T
?

⊢ f(t1, . . . , tn) T
?

⊢ t1 ∧ . . . ∧ T
?

⊢ tn if f 6= ⊕

C⊕ : T
?

⊢ u ⊕ v T
?

⊢ u ∧ T
?

⊢ v

Dπ1 : T
?

⊢ t T
?

⊢ 〈u, v〉 ∧ t
?
= u if 〈u, v〉 ∈ St(T)

Dπ2 : T
?

⊢ t T
?

⊢ 〈u, v〉 ∧ t
?
= v if 〈u, v〉 ∈ St(T)

Ddec : T
?

⊢ t T
?

⊢ {|u|}s
v ∧ T

?

⊢ v ∧ t
?
= u if {|u|}s

v ∈ St(T)

D⊕ : T
?

⊢ t T
?

⊢ v1 ∧ . . . ∧ T
?

⊢ vn ∧ t
?
= v1 ⊕ . . . ⊕ vn

if v1, . . . , vn ∈ St(T)

Geq : T
?

⊢ u ⊕ v T
?

⊢ w ⊕ v ∧ u
?
= w if w ∈ St(T) ∪ St(v)

andtop(u) ∈ {{|_|}s
, 〈, _〉}

Fig. 5.Constraint transformation rules

In addition to these rules, equational constraints are simplified and the resulting
substitutions are applied to the rest of the constraint:

U : C ∧ E →
∨

σ ∈mgu(E)

Cσ↓ ∧ σ

Here,mgu(E) denotes a complete set of most general unifiers ofE moduloE⊕. Such a
set is finite and has even more properties, as we will see in theLemma 8. Contrary to
the case of encryption and pairing only, the set of minimal unifiers, though finite, may
not be reduced to a singleton.

Example 11.The equation〈x, x〉⊕〈y, y〉
?
= 〈a, a〉⊕〈b, b〉 has two most general unifiers

σ1 = {x 7→ a, y 7→ b} andσ2 = {x 7→ b, y 7→ a}.

In addition, we simplify the constraints with the rules

S1 : T
?

⊢ u ∧ T ′
?

⊢ u → T
?

⊢ u if T ⊆ T ′

S2 : T
?

⊢ x ∧ T1

?

⊢ u1 · · · ∧ Tn

?

⊢ un

→ T
?

⊢ x ∧ T1, x
?

⊢ u1 · · · ∧ Tn, x
?

⊢ un

if T1, . . . , Tn are all left hand sides such thatT (Ti, andx /∈ Ti.

We also use two simplifications of right members of constraints of the formx ⊕ t:

XR1 : T ′
?

⊢ x ∧ T
?

⊢ x ⊕ t → T ′
?

⊢ x ∧ T
?

⊢ t if T ′ ⊆ T

XR2 : T
?

⊢ x ⊕ t → ∃y. T
?

⊢ y ∧ x
?
= y ⊕ t

if x /∈ vars(T) ∪ vars(t) andXR1 cannot be applied

By convention, newly quantified variables should not occur previously in the con-
straint.

The rules of Figure 5 concerning pairing and symmetric encryption are very similar
to the naive rules of Figure 4. The only differences are the side constraints, that impose
the newly introduced terms to be already subterms of the constraint. We will show that
this is complete. On the other hand, this gives an upper boundon the possible right
members of the constraints, allowing us to derive a terminating strategy.

Example 12.Consider the constraint system given in Example 10 and for which σ =
{x 7→ a⊕ b} is a solution. LetT1 = {a⊕{|c|}s

b, b⊕{|c|}s
b} andT2 = T1∪{{|a|}s

x}. We
have the following transformation sequence that leads to a derivation constraint system
in solved form for whichσ is still a solution. For sake of simplicity, trivial equations
are omitted.







T1

?

⊢ x

T2

?

⊢ c
→S2







T1

?

⊢ x

T2, x
?

⊢ c
 Ddec



















T1

?

⊢ x

T2, x
?

⊢ {|c|}s
b

T2, x
?

⊢ b

 D⊕































T1

?

⊢ x

T2, x
?

⊢ a ⊕ {|c|}s
b

T2, x
?

⊢ a

T2, x
?

⊢ b

 Ax



















T1

?

⊢ x

T2, x
?

⊢ a

T2, x
?

⊢ b

 D⊕































T1

?

⊢ x

T2, x
?

⊢ a

T2, x
?

⊢ a ⊕ {|c|}s
b

T2, x
?

⊢ b ⊕ {|c|}s
b

 Ax



















T1

?

⊢ x

T2, x
?

⊢ a

T2, x
?

⊢ b ⊕ {|c|}s
b

 Ax







T1

?

⊢ x

T2, x
?

⊢ a
 Ddec



















T1

?

⊢ x

T2, x
?

⊢ {|a|}s
x

T2, x
?

⊢ x

→S1







T1

?

⊢ x

T2, x
?

⊢ {|a|}s
x

 Ax T1

?

⊢ x

The rules can actually be refined, for instance preventing from applying successively
twiceD⊕ on a same constraint (two consecutive⊕ rules never occurs in a normal proof).
Some of the rules (for instanceGeq) might even be unnecessary.

It is not very difficult to show that the simplification rulesS1, S2, XR1, XR2, U pre-
serve the set of solutions, hence we may eagerly (and deterministically) apply these
rules:

Lemma 3 (soundness and completeness of simplification rules). The simplification
rulesU, S1, S2, XR1, XR2 are sound and complete: they preserve the set of solutions.

Then the rules of the Figure 5 are applied to simplified derivation constraints. It
remains now to prove three main properties:

1. The rules do transform the derivation constraints into derivation constraints, and
they do not introduce new solutions. This is stated in the Lemma 4.

2. If a derivation constraint system is not in solved form, then, for every solutionσ,
there is a rule that can be applied and that yields another constraint, of whichσ is a
solution; this is thecompletenessresult, which we eventually prove in Corollary 1.
This shows that every solution of a derivation constraint can be eventually retrieved
from a solved form.

3. There is a complete strategy such that there is no infinite sequence of transforma-
tions. We will prove this last result Section 4.4.

Lemma 4 (soundness of transformation rules).The rules of Figure 5 are sound: they
transform a constraint systemC into a constraint systemC′ such that any solution ofC′

is also a solution ofC.

4.3 Completeness of the transformation rules

The completeness would be straightforward for a set of naiverules such as the rules
displayed in the Figure 4. We imposed however additional restrictions, typically that,
for decompositions, we may only consider the subterms ofT . This reflects the fact
that we may restrict our attention to normal proofs. However, our terms now contain
variables. Thanks to Lemma 1, ifπ is a normal proof ofTσ↓ ⊢ uσ↓ such thatlast(π)
is a decomposition, thenstep(π) ∈ St(Tσ↓). This does not necessarily mean that
hyp(last(π)) are instances of terms inSt(T), becauseSt(Tσ↓) 6⊆ St(T)σ↓. The
main difficulty for showing the completeness is to get an analog of Lemma 1, however
lifted to terms with variables. This is what we start in Lemma5, however with a slightly
weaker conclusion.

Lemma 5. Let T be a finite set of terms,u be a ground term in normal form and
σ be a substitution mapping the variables ofT to ground terms in normal form. We
assume moreover that, for everyx ∈ vars(T), there is aTx (T and a proofπx,σ of
Txσ↓ ⊢ xσ, such thatlast(πx,σ) is not a decomposition and, for everyy ∈ vars(Tx),
we have thatTy (Tx. Letπ be a normal proof ofTσ↓ ⊢ u.

If last(π) is a decomposition, then

– either there isx ∈ vars(T) and a subproofπ′ of πx,σ such thatconc(π′) = u and
last(π′) is not a decomposition

– or elseu ∈ St(T)σ↓

For everyuf ∈ fact(u), we have that eitherTσ↓ ⊢ uf , or elseuf ∈ St(T)σ↓.

It is actually not sufficient to consider normal proofs to show the completeness of
our transformation rules. We have to consider normal proofsthat arealien-free. In an
alien-free proof, we control the premisses of the instancesof theXOR deduction rule.

A proof π of Tσ↓ ⊢ u is alien-freeif, for every subproof
π1 · · · πn

(XOR)
v

of π, for everyi, eitherconc(πi) ∈ St(T)σ↓ or conc(πi) ∈ fact(v).

Lemma 6. LetT be a finite set of terms,σ be a substitution mapping the variables ofT
to ground terms in normal form andu be a ground term in normal form. We assume
that, for every variablex ∈ vars(T), there is aTx (T and a normal proofπx,σ of
Txσ↓ ⊢ xσ such thatlast(πx,σ) is not a decomposition and, for everyy ∈ vars(Tx), we
have thatTy (Tx. We assume moreover here thatvars(T) ⊆ T andvars(Tx) ⊆ Tx

for every variablex.
If π0 is a normal proof ofTσ↓ ⊢ u, then there is a normal alien-free proofπ of

Tσ↓ ⊢ u.

Example 13.Consider the following derivation constraint system.

a, b, c ⊕ d, f, g
?

⊢ x

a, b, c ⊕ d, f, g, c ⊕ e, k, {|x ⊕ d|}s
k, x

?

⊢ 〈a, b〉 ⊕ e

Let σ = {x 7→ 〈a, b〉 ⊕ c ⊕ d ⊕ 〈f, g〉}, Tx = {a, b, c ⊕ d, f, g}, andT = Tx ∪
{c ⊕ e, k, {|x ⊕ d|}s

k, x}. We have that{x} = vars(T) ⊆ T , and∅ = vars(Tx) ⊆ Tx.
The proofπx,σ described below is a proof ofTxσ↓ ⊢ xσ that does not end with a
decomposition.

πx,σ =











c ⊕ d

a b

〈a, b〉

f g

〈f, g〉

c ⊕ d ⊕ 〈a, b〉 ⊕ 〈f, g〉

Let π0 be the following proof ofTσ ⊢ 〈a, b〉 ⊕ e.

π0 =











{|x ⊕ d|}s
kσ↓ k

(x ⊕ d)σ↓ c ⊕ e

f g

〈f, g〉

〈a, b〉 ⊕ e

The proofπ0 is a proof in normal form whose last step is not a decomposition.
According to Lemma 5, for everyuf ∈ {〈a, b〉, e}, we have that eitherTσ↓ ⊢ uf , or
uf ∈ St(T)σ↓. Indeed, we have thatTσ ⊢ 〈a, b〉, ande ∈ St(T)σ↓. However,π0 is

not alien-free since〈f, g〉 is neither in St(T)σ nor a factor of〈a, b〉 ⊕ e. An alien-free
proofπ′

0 of Tσ↓ ⊢ 〈a, b〉 ⊕ e is given below:

π′
0 =











xσ c ⊕ d

a b

〈a, b〉 c ⊕ e

{|x ⊕ d|}s
kσ↓ k

(x ⊕ d)σ↓

〈a, b〉 ⊕ e

Lemma 7. There is a mappingµ from derivation constraint systems and substitutions
to a well-founded ordered set such that, for every derivation constraint systemC and
every solutionσ of C, eitherC is in solved form or else there is a constraint systemC′

such thatC C′, σ is a solution ofC′, andµ(C, σ) > µ(C′, σ).

Note that this lemma does not prove the termination of our rules, since we only
show that,for every solutionσ, the derivation sequences of whichσ is a solution is
finite. There might be however an infinite sequence of solutions, each yielding a longer
derivation sequence than the previous ones.

As a consequence of this lemma, we get a completeness result,stating that, for every
solutionσ of C, there is a solved system that can be derived fromC and of whichσ is a
solution:

Corollary 1 (completeness).If C is a derivation constraint system andσ is a solution
of C, then there is a solved derivation constraint systemC′ such thatC ∗ C′ andσ is
a solution ofC′.

4.4 Termination

The termination can be ensured by a complete strategy on the rules application, as long
as unification reduces the number of variables. This property is true, at least, for the
combination of a free theory and the exclusive-or theory.

Lemma 8. Suppose thatE is a set of equations over the disjoint combination of the
theory of{⊕, 0} and a free theory with (at least) symmetric encryption and pairing.
Then eitherE has no solution, or every substitution is a solution ofE , or else there
is a finite complete setΣ of unifiers ofE such that, for anyσ ∈ Σ, we have that
|vars(Eσ)| < |vars(E)|.

Proof (sketch):
To establish this result, we rely on the procedure describedin [3] for combining disjoint
equational theories. Given a system of equations, we letnE be the maximal number
of independent equations inE , i.e. we only consider equations that are not a logical
consequence of the other equations (with respect to the considered equational theory).
Then, we show that the difference betweennE and the number of variablesnV is non-
decreasing. This allows us to conclude. ⊓⊔

This says that the number of new variables introduced by the substitution is less
than the number of variables eliminated by the substitution. The examples below show
that it is sometimes needed to introduce new variables.

Example 14.We consider two sets that are made up of one equation only.

– Let E = {x = f(x ⊕ y)}. This set has mguσ = {x 7→ f(z), y 7→ f(z) ⊕ z}
wherez is a new variable. We have that

|vars(Eσ)| = |z| = 1 < 2 = |{x, y}| = vars(E).

– Let E = {x = f(x ⊕ y) ⊕ z}. This set has mguσ = {x 7→ f(x′) ⊕ z, y 7→
f(x′) ⊕ x′ ⊕ z} wherex′ is a new variable. We have that

|vars(Eσ)| = |{x′, z}| = 2 < 3 = |{x, y, z}| = |vars(E)|.

We use the following strategy: the rulesU, S1, S2, XR1, XR2 are applied eagerly (in

this order) and then the rules of Figure 5 are applied to a constraint T
?

⊢ u such that,

for anyT ′ (T and every constraintT ′
?

⊢ v, we have thatv is a variable that does not
occur inT ′. According to the results of the previous section, this strategy preserves the
completeness.

Let V(C) be the pair(n, m) such thatn is the number of unsolved variables ofC
andm is the number of variables ofC that are neither solved nor pre-solved. Such pairs
are ordered lexicographically.

Lemma 9. Let C andC′ be two derivation constraint systems such thatC C′, we
have thatV(C) ≥ V(C′).

Proof (sketch):
Let us consider successively the transformation rule, including the simplification rules,
for which the statement is not straightforward.

– When applyingU, either the equation is trivial (in which caseV(C) remains con-
stant), or the equation is unsatisfiable (in which caseV(C) is decreasing), or else,
thanks to Lemma 8, there are more variables that become solved than variables that
are introduced. Hence the first component ofV(C) is strictly decreasing.

– When applyingXR2, followed by a replacement ofx with y ⊕ t, the number of un-
solved variables is constant (x was unsolved before applying the rule and becomes
solved after the replacement withy ⊕ t). The number of non-pre-solved variables
is strictly decreasing sincex was not pre-solved before the rule andx, y are both
pre-solved after applying the rule.

– The other rules do not introduce new variables: the first component ofV(C) can
only decrease or remain constant. According to our strategy, the only situations in
which the number of pre-solved variables could decrease is when a transformation

rule is applied to a constraintT
?

⊢ x wherex is a variable. This may happen with
the rulesAx, Dπ1 , Dπ2 , Ddec, D⊕, that mimic decompositions. But, in these cases,
at least one non trivial equation is added, which yields, after applyingU, a strict
decreasingness of the first component ofV(C).

⊓⊔

Now, if a transformation preservesV(C), then there is no simplification byU, XR1, XR2

that takes place at this step (except trivial equations simplifications), and the side con-
ditions of the rules ensure that no new subterm appears. Moreprecisely, letT (C) =
St(C) ∪ {u | ∃v, u ⊕ v ∈ St(C)}, then we have the following lemma.

Lemma 10. Let C andC′ be two derivation constraint systems such thatC C′ and
V(C) = V(C′), thenT (C′) ⊆ T (C).

It suffices then to cut looping branches in order to get a terminating and complete
procedure: according to Lemma 9, from any infinite transformation sequence we may
extract an infinite transformation sequenceC0 C1 · · · Cn · · · on which
V(C0) = V(C1) = · · · = V(Cn) = · · ·. Then, according to Lemma 10, the set of
subterms in any derivation constraint system of the sequence is bounded by the set of

subterms of the original constraint systemC0. Now, each individual constraintT
?

⊢ u
can appear only once in any constraint system, thanks toS1. Therefore, there are only
finitely many derivation constraint systems that can be built once the set of subterms
(more precisely the setT (C)) is fixed. This means that any infinite sequence of trans-
formations must be looping.

Now, remains to justify that cutting the loops still yields acomplete procedure. The
reason is that, according to the lemma 7, for every solutionσ of C0, there is a sequence
C0 C1 · · · Cn such thatσ is a solution ofCn andµ(C0, σ) > µ(Cn, σ), hence
the sequence does not include any loop, since the ordering onmeasures is well-founded.

As a conclusion of this section, we get a termination result:

Theorem 1 (Termination). There is a complete strategy such that any simplification
sequence is finite and yields a solved form.

The termination proof does not give much information about complexity. Further-
more, the strategy is quite rough and can be refined: there is still some work to do, if we
wish to get the shortest simplification sequence. For instance we would need to avoid
repeating several times the same simplifications (as explained in [16]).

With such an additional work, the simplification of constraints might yield a NP
decision procedure for the satisfiability of derivation constraint systems.

4.5 Further results

The constraint solving approach to the security of protocols was introduced in [33]. In
the case of symmetric and asymmetric cryptography, it has been shown to yield a NP
decision procedure (for the existence of an attack) in [36].For the same set of crypto-
graphic primitives as the one we have shown in this chapter, but without exclusive-or,
a full constraint solving procedure, preserving all solutions, is given in [16]. Such a
procedure allows us to decide more trace properties (such asauthentication, key cycles,
timeliness).

Extensions of decision results (for secrecy) to other primitives have been extensively
studied. For exclusive-or there are two concurrent publications [19, 11]. However, these

results only provide decision results. In this respect, theprocedure that we gave in this
chapter is a new result, since it preserves all solutions; itcould be used for deciding
other security properties.

The second most popular equational theories are modeling parts of arithmetic, in
particular modular exponentiation. There is no hope to get ageneral decision result for
the full arithmetic, as unification is already undecidable.The first fragment considers
some properties of modular exponentiation that are sufficient for modeling some clas-
sical protocols [31, 10, 12]. In case of an Abelian group theory, the constraint solving
approach is also proved to yield a decision procedure [38, 34]. This is extended, yet
considering a richer fragment of arithmetic in [8].

There are many more relevant equational theories, as described in [21]. For instance
homomorphism properties are considered in [23, 24], blind signatures in [22, 6],... Some
classes of equational theories are considered, relying on aconstraint solving approach
in [24, 9].

Finally, we complete the tour by mentioning combinations ofdecision procedures:
for disjoint theories [13], hierarchical combinations [14] and more [8].

All these works make use of techniques similar to derivationconstraint solving,
but they also use a “small attack property”, showing that, ifa derivation constraint is
satisfiable, then there is a small solution. This kind of result allows us to restrict the set
of solutions that has to be considered; the constraint solving rules (or their counterparts)
then do not necessarily preserve the solutions, but only preserve the small solutions,
hence the satisfiability. In this chapter (as in [16, 9]), we went a step further, preserving
the set of all solutions.

4.6 Software resources

There are a few specialized theorem provers that can deal with some algebraic prop-
erties of cryptographic primitives [5, 7, 40]. There are also ways of getting rid of some
equational axioms, and then using the verifiers that are designed for free term algebras
[17, 27, 28]. Only some [33, 4, 40] are (currently) really relying on constraint solving
techniques. But the recent theoretical advances in this area may, in the next few years,
yield new tools based on these techniques.

5 Research directions

Much is known at this stage about the foundations of securityprotocol analysis. The ba-
sic decidability and complexity results are known. Severalspecialized software tools,
and methods for applying more general tools, are available,with staggering improve-
ments in performance compared with a decade ago: seconds instead of hours to analyze
most protocols. More attention is needed now to the presentation of the best algorithms,
so that future students, tool developers, and analysts willbe able to build on clear and
useful knowledge rather than tricks hidden in software.

There is always a need to extend analysis approaches to covermore kinds of cryp-
tographic primitives, such as bilinear pairings, used in elliptic curve cryptography, and

zero-knowledge proofs. Another persistent demand is to handle more kinds of secu-
rity goals, such as anonymity, fair exchange, group key management, and properties
expressed in terms of observational equivalence.

Observational equivalence deserves a special attention. It allows one to state some
stronger security properties, typically that an attacker cannot learn anything relevant,
because the process is indistinguishable from an ideal process in which all relevant
informations have been shuffled or hidden.

The constraint solving approach is relevant for deciding equivalences of processes.
It requires however significant new insights since the constraint solving method that
we described in this chapter is complete only w.r.t.what an attacker can deduce, but
not w.r.t.how it can be deduced. On the other hand, if an attacker has different ways
to deduce a given message in two different experiments, he could distinguish between
them.

At this stage in the development of security protocol analysis, the most useful chal-
lenge for the research community might not be research at all, but rather a transfer of
the state of the art to the state of practice. A collaborationof researchers, educators, and
tool builders may be necessary to create texts, expectations, and software that exhibits
the best of what is possible and explains how to use it. After this kind of consolidation
step, it will be easier to see what is most important to do next.

References

1. M. Abadi and C. Fournet. Mobile values, new names, and secure communication. InPro-
ceedings of the 28th ACM Symposium on Principles of Programming Languages (POPL’01),
pages 104–115, 2001.

2. M. Arapinis, S. Delaune, and S. Kremer. From one session tomany: Dynamic tags for
security protocols. InProceedings of the 15th International Conference on Logic for Pro-
gramming, Artificial Intelligence, and Reasoning (LPAR’08), volume 5330 ofLNAI, pages
128–142. Springer, 2008.

3. F. Baader and K. Schulz. Unification in the union of disjoint equational theories: Combining
decision procedures.Journal of Symbolic Computation, 21:211–243, 1996.

4. D. Basin, S. Mödersheim, and L. Viganò. Constraint differentiation: a new reduction tech-
nique for constraint-based analysis of security protocols. In Proceedings of the ACM Con-
ference on Computer and Communications Security (CCS’03), pages 335–344. ACM, 2003.

5. D. Basin, S. Mödersheim, and L. Viganò. Algebraic intruder deductions. InProceedings
of the 12th International Conference on Logic for Programming, Artificial Intelligence, and
Reasoning (LPAR’05), volume 3835 ofLNAI, pages 549–564. Springer-Verlag, 2005.

6. V. Bernat and H. Comon-Lundh. Normal proofs in intruder theories. InRevised Selected
Papers of the 11th Asian Computing Science Conference (ASIAN’06), volume 4435 ofLNCS.
Springer, 2008.

7. B. Blanchet, M. Abadi, and C. Fournet. Automated verification of selected equivalences for
security protocols.Journal of Logic and Algebraic Programming, 75(1):3–51, 2008.

8. S. Bursuc and H. Comon-Lundh. Protocol security and algebraic properties: Decision results
for a bounded number of sessions. InProceedings of the 20th International Conference on
Rewriting Techniques and Applications (RTA’09), volume 5595 ofLNCS, pages 133–147.
Springer, 2009.

9. S. Bursuc, S. Delaune, and H. Comon-Lundh. Deducibility constraints. InProceedings of
the 13th Asian Computing Science Conference (ASIAN’09), LNCS. Springer, 2009.

10. Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. Deciding the security of proto-
cols with Diffie-Hellman exponentiation and products in exponents. InProceedings of the
23rd Conference on Foundations of Software Technology and Theoretical Computer Science
(FST&TCS’03), volume 2914 ofLNCS, 2003.

11. Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. An NP decision procedure for
protocol insecurity with XOR.Theoretical Computer Science, 338(1-3):247–274, 2005.

12. Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. Complexity results for security
protocols with Diffie-Hellman exponentiation and commuting public key encryption.ACM
Trans. Comput. Log., 9(4), 2008.

13. Y. Chevalier and M. Rusinowitch. Combining Intruder Theories. InProceedings of the 32nd
International Colloquium on Automata, Languages and Programming, ICALP’05, volume
3580 ofLNCS, pages 639–651. Springer, 2005.

14. Y. Chevalier and M. Rusinowitch. Hierarchical combination of intruder theories. InPro-
ceedings of the 17th International Conference on RewritingTechniques and Application
(RTA’06), volume 4098 ofLNCS, pages 108–122, 2006.

15. Y. Chevalier and M. Rusinowitch. Hierarchical combination of intruder theories.Information
and Computation, 206(2-4):352–377, 2008.

16. H. Comon-Lundh, V. Cortier, and E. Zalinescu. Deciding security properties of crypto-
graphic protocols. application to key cycles.Transaction on Computational Logic, 11(2),
2010.

17. H. Comon-Lundh and S. Delaune. The finite variant property: How to get rid of some al-
gebraic properties. InProceedings of the 16th International Conference on Rewriting Tech-
niques and Applications (RTA’05), volume 3467 ofLNCS, 2005.

18. H. Comon-Lundh, S. Delaune, and J. Millen. Constraint solving techniques and enriching
the model with equational theories. Research Report LSV-10-18, Laboratoire Spécification
et Vérification, ENS Cachan, France, Nov. 2010.

19. H. Comon-Lundh and V. Shmatikov. Intruder deductions, constraint solving and insecurity
decision in presence of exclusive or. InProceedings of the 18th Annual IEEE Symposium on
Logic in Computer Science. IEEE Comp. Soc., 2003.

20. R. Corin and S. Etalle. An improved constraint-based system for the verification of security
protocols. InProceedings of the 9th Static Analysis Symposium (SAS’02), volume 2477 of
LNCS, pages 326–341, 2002.

21. V. Cortier, S. Delaune, and P. Lafourcade. A survey of algebraic properties used in crypto-
graphic protocols.Journal of Computer Security, 14(1):1–43, 2006.

22. V. Cortier, M. Rusinowitch, and E. Zalinescu. A resolution strategy for verifying crypto-
graphic protocols with CBC encryption and blind signatures. In Proceedings of the 7th
ACM-SIGPLAN International Conference on Principles and Practice of Declarative Pro-
gramming (PPDP’05), pages 12–22. ACM press, 2005.

23. S. Delaune, P. Lafourcade, D. Lugiez, and R. Treinen. Symbolic protocol analysis in presence
of a homomorphism operator andexclusive or. In Proceedings of the 33rd International
Colloquium on Automata, Languages and Programming, (ICALP’06), Part II, volume 4052
of LNCS, pages 132–143, 2006.

24. S. Delaune, P. Lafourcade, D. Lugiez, and R. Treinen. Symbolic protocol analysis for
monoidal equational theories.Information and Computation, 206(2-4):312–351, 2008.

25. D. Dolev and A. Yao. On the security of public key protocols. In Proceedings of the 22nd
Symposium on Foundations of Computer Science, pages 350–357, Nashville (USA, Ten-
nessee, 1981. IEEE Comp. Soc. Press.

26. D. Kähler and R. Küsters. Constraint solving for contract-signing protocols. InProceedings
of the 16th International Conference on Concurrency Theory(CONCUR’05), volume 3653
of LNCS, pages 233–247. Springer, 2005.

27. R. Küsters and T. Truderung. Reducing protocol analysiswith XOR to the XOR-free case in
the Horn theory based approach. InProceedings of the ACM Conference on Computer and
Communications Security (CCS’08), pages 129–138. ACM, 2008.

28. R. Küsters and T. Truderung. Using ProVerif to Analyze Protocols with Diffie-Hellman Ex-
ponentiation. InProceedings of the 22nd IEEE Computer Security FoundationsSymposium
(CSF 2009), pages 157–171. IEEE Computer Society, 2009.

29. G. Lowe. Towards a completeness result for model checking of security protocols.Journal
of Computer Security, 7(2-3):89–146, 1999.

30. C. Lynch and C. Meadows. On the relative soundness of the free algebra model for public
key encryption.ENTCS, 125(1):43–54, 2005.

31. C. Meadows and P. Narendran. A unification algorithm for the group Diffie-Hellman proto-
col. In Proceedings of the Workshop on Issues in the Theory of Security (WITS’02), 2002.

32. J. Millen. On the freedom of decryption.Information Processing Letters, 86(6):329–333,
2003.

33. J. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic protocol
analysis. InProceedings of the 8th ACM Conference on Computer and Communications
Security, 2001.

34. J. Millen and V. Shmatikov. Symbolic protocol analysis with an abelian group operator or
Diffie-Hellman exponentiation.Journal of Computer Security, 2005.

35. R. Ramanujam and S. P. Suresh. Decidability of context-explicit security protocols.Journal
of Computer Security, 13(1):135–165, 2005.

36. M. Rusinowitch and M. Turuani. Protocol insecurity withfinite number of sessions is NP-
complete. InProceedings of the 14th IEEE Computer Security FoundationsWorkshop. IEEE
Comp. Soc. Press, 2001.

37. S. Schneider. Security properties and CSP. InIEEE Symposium on Security and Privacy,
pages 174–187, 1996.

38. V. Shmatikov. Decidable analysis of cryptographic protocols with products and modular ex-
ponentiation. InProceedings of the 13th European Symposium on Programming (ESOP’04),
volume 2986 ofLNCS, 2004.

39. F. J. Thayer, J. C. Herzog, and J. D. Guttman. Strand spaces: Proving security protocols
correct.Journal of Computer Security, 7(1), 1999.

40. M. Turuani. The CL-Atse protocol analyser. InProceedings of the 17th International Confer-
ence on Term Rewriting and Applications (RTA’06), volume 4098 ofLNCS, pages 277–286.
Springer, 2006.

A Unification

We sketch here the proof of Lemma 8 that states that the numberof variables introduced
by a mgu is always smaller than the number of variables that are replaced by the mgu,
hence unifying terms may only reduce the number of variables.

Lemma 8. Suppose thatE is a set of equations over the disjoint combination of the
theory of{⊕, 0} and a free theory with (at least) symmetric encryption and pairing.
Then eitherE has no solution, or every substitution is a solution ofE , or else there
is a finite complete setΣ of unifiers ofE such that, for anyσ ∈ Σ, we have that
|vars(Eσ)| < |vars(E)|.

Proof (sketch):
We rely on the procedure described in [3] for combining disjoint equational theories.

Given a system of equations, we letnE be the maximal number of independent equa-
tions in E . A set of equationsE is independentif any equation inE is not a logical
consequence of the other equations (w.r.t. the considered equational theory). We wish to
keep the following invariant: the difference betweennE and the number of variablesnV

is non-decreasing.
In a first step, using variable abstraction, every proper subterm is replaced by a fresh

variable, adding a side equation.

f(s1, . . . , si, . . . , sn)
?
= t ∧ E wheresi /∈ X ,

is replaced by:∃x.x
?
= si ∧ f(s1, . . . , x, . . . , sn)

?
= t ∧ E{si 7→ x}.

This step cannot decreasenE − nV since every new variable corresponds to a new
equation.

The next step in the unification algorithm consists in guessing equalities, theories
in which variables are instantiated, and an ordering restriction on variables: a quasi-
ordering on variables≥X is associated with the problem and each variablex is assigned
a theoryτ(x). Then we need only consider solutionsσ such that:

– x =X y if, and only if xσ = yσ
– x >X y if, and only if yσ ∈ St(xσ)
– the top symbol ofxσ is in τ(x).

This step only introduces equations, therefore cannot decreasenE − nV .
Finally, in each pure theory, we solve the equations (with ordering restriction). In the

case of all symbols but exclusive-or, each unification problem can be reduced to a single
most general unifier, without introducing new variables, and the ordering restriction will
simply discard some of the solutions. The measurenE can only increase with such a
procedure andnV can only decrease, thusnE − nV cannot decrease.

Then, it only remains to prove the lemma for pure⊕-unification problems (with
ordering restrictions). Remove trivial equalities and pick a maximal variablex (w.r.t.
≥X) of the problem. Ifτ(x) is not⊕, then there is no solution. Otherwise, consider
an equationx ⊕ u = 0 in the unification problem, assignx = u and replacex with u
in the remainder of the equations. The measurenE is preserved by this step andnV

cannot increase. Hence the measurenE − nV cannot decrease. Moreover, the repeated
application of this rule yields either a unifier or a failure (absence of solution). ⊓⊔

B Completeness

We split Lemma 5 into two Lemmas (Lemma 11 and Lemma 12) that weproved sepa-
rately.

Lemma 11. Let T be a finite set of terms,u be a ground term in normal form and
σ be a substitution mapping the variables ofT to ground terms in normal form. We
assume moreover that, for everyx ∈ vars(T), there is aTx (T and a proofπx,σ of
Txσ↓ ⊢ xσ, such thatlast(πx,σ) is not a decomposition and, for everyy ∈ vars(Tx),
Ty (Tx.

Then, for every normal proofπ of Tσ↓ ⊢ u, if last(π) is a decomposition, then

– either there isx ∈ vars(T) and a subproofπ′ of πx,σ such thatconc(π′) = u and
last(π′) is not a decomposition

– or elseu ∈ St(T)σ↓

Proof. We letπ0 be a normal proof ofTσ↓ ⊢ u. We prove the lemma by induction on
(T, |π0|) where the first component is ordered by inclusion, the secondcomponent is
the size of the proofπ0. If last(π0) is an axiom, thenconc(π0) ∈ Tσ↓. This allows
us to conclude. Otherwise, we distinguish cases, dependingon the last inference rule
in π0.

last (π0) is an instance of the(SD) rule. In such a case, we have thatπ0 =
π1 π2

u
with conc(π1) = {|u|}s

v, andconc(π2) = v. Sinceπ0 is a normal proof,last(π1) is a
decomposition and, by induction hypothesis, we are in one ofthe following cases:

1. There is a variablex ∈ vars(T) and a subproofπ′
0 of πx,σ such thatconc(π′

0) =
{|u|}s

v andlast(π′
0) is not a decomposition. Sincelast(π′

0) is not a decomposition, it
must be an encryption. Letπ′ be the immediate subproof ofπ′

0, whose conclusion
is u. The proofπ′ is a subproof ofπx,σ. Furthermore, eitherlast(π′) is a decompo-
sition and we conclude by induction hypothesis (usingTx (T) or else it is not a
decomposition and we get the desired conclusion.

2. We have that{|u|}s
v ∈ St(T)σ↓. In such a case, there existst ∈ St(T) such that

tσ = {|u|}s
v. We may assumew.l.o.g.that t is not a variable: ift ∈ vars(T), we

fall in Case 1. Thent = {|t1|}s
t2

and t1 ∈ St(T) is such thatt1σ↓ = u, hence
u ∈ St(T)σ↓.

The case whereπ0 ends with an instance of a projection rule can be done in a similar
way.

last (π0) is an instance of the(XOR) rule. In such a case, we have thatπ0 =
π1 · · · πn

u
with ui = conc(πi), (u1 ⊕ · · · ⊕ un)↓ = u andtop(u) 6= ⊕. There is an indexi such
thatui = u⊕ vi. Furthermore, since the proofπ0 is in normal from,last(πi) cannot be
an instance of theXOR rule, hence it must be a decomposition. By induction hypothesis,
we are in one of the following two cases:

1. There is a variablex and a subproofπ′ of πx,σ such thatconc(π′) = ui and
last(π′) is not a decomposition. Consider a variablex such thatTx is minimal (w.r.t.
inclusion) and there is aw and a subproofπ′′ of πx,σ such thatconc(π′′) = u⊕w
andlast(π′′) is not a decomposition. Sincelast(π′′) is not a decomposition, it must

be an instance ofXOR rule. Letπ′′ =
π′

1 · · · π′
m

(XOR)
u ⊕ w

. There is then a proof

π′
0 ∈ {π′

1, . . . , π
′
m} of eitherTxσ↓ ⊢ u (casea) or Txσ↓ ⊢ u ⊕ w′ for somew′

(caseb).

In the first case (casea), eitherlast(π′
0) is a composition, and we meet the first item

of the conclusion, or elselast(π′
0) is a decomposition (it cannot be an instance of

theXOR rule since the proof is in normal form), in which case we may apply the
induction hypothesis (sinceTx (T).

In the second case (caseb), last(π′
0) must be a decomposition (since the proof is

in normal form). Then, by induction hypothesis, eitheru ⊕ w′ ∈ St(Tx)σ↓ or
else there is a variabley such thatTy (Tx and a subproofπ′′′ of πy,σ such that
conc(π′′′) = u ⊕ w′ and last(π′′′) is not a decomposition. This last case cannot
occur, thanks to the minimality assumption onTx. Then, eitheru ∈ St(Tx)σ↓, or
else there is a termz⊕w′′ ∈ St(Tx) such thatzσ = uσ↓⊕w′′′ for somew′′′. But,
again, this case cannot occur, by minimality ofTx.

2. There is a termti ∈ St(T) such thatui = tiσ↓. Let ti = t1i ⊕· · ·⊕tki where eachtji
is not headed with⊕. If u = tjiσ↓ for somej, we get immediately the conclusion.
Otherwise, there is an indexj, such thattji is a variabley andyσ = u ⊕ wi,j and
we are back to the case 1.

Lemma 12. Let T be a finite set of terms,u be a ground term in normal form andσ
be a substitution mapping the variables ofT to ground terms in normal form such that
Tσ↓ ⊢ u. We assume moreover that, for everyx ∈ vars(T), there is aTx (T and a
proof πx,σ of Txσ↓ ⊢ xσ, such thatlast(πx,σ) is not a decomposition and, for every
y ∈ vars(Tx), we have thatTy (Tx.

Let π be a normal proof ofTσ↓ ⊢ u. For everyuf ∈ fact(u), we have that either
Tσ↓ ⊢ uf , or elseuf ∈ St(T)σ↓.

Proof. Let π0 be a normal proof ofTσ↓ ⊢ u. We prove the lemma by induction on
T (ordered by inclusion).We distinguish again cases depending on the last rule ofπ0.
Note that ifπ0 ends with an instance of a composition rule different from the (XOR)
rule, then we have thatfact(u) = {u}. SinceTσ↓ ⊢ u, the result trivially holds.

last (π0) is an instance of the(XOR) rule. In such a case,π0 =
π1 · · · πm

XOR
u

with vj = conc(πj) for everyj. Let uf ∈ fact(u). Since(v1 ⊕ . . . ⊕ vm)↓ = u, there
existsj andwj such that eithervj = uf or elsevj = uf ⊕ wj . In the first case, we get
the desired conclusionTσ↓ ⊢ uf . Consider now the second case. Since the proof is in
normal form,last(πj) can only be a decomposition. Hence, by Lemma 11, we are in
one of the following two cases:

1. vj ∈ St(T)σ↓. Let tj ∈ St(T) be such thattjσ↓ = vj . Then either there is a
variabley such thatyσ = uf ⊕ s for somes and, sinceTy (T , it suffices to apply
the induction hypothesis:Tyσ↓ ⊢ uf or uf ∈ St(Ty)σ↓. Otherwise,tj = sj ⊕ s′j
andsjσ↓ = uf , in which caseuf ∈ St(T)σ↓.

2. There is a variablex and a subproofπ′ of πx,σ such thatconc(π′) = vj and
last(π′) is not a decomposition. SinceTx (T , we may apply the induction hy-
pothesis tovj . We obtain thatTxσ↓ ⊢ uf or uf ∈ St(Tx)σ↓.

last (π0) is an instance of the(SD) rule. Again, by Lemma 11, there are two cases:

1. There is at ∈ St(T) such thatu = tσ↓. If t is a variable, thenTtσ↓ ⊢ u and
we may apply the induction hypothesis. Otherwise,t = t1 ⊕ · · · ⊕ tm and either
there is aj such thattjσ↓ = uf (in which caseuf ∈ St(T)σ↓) or else there is a
j such thattj is a variablex andxσ = uf ⊕ v for somev. By assumption, there
is aTx (T such thatTxσ↓ ⊢ uf ⊕ v and we may apply the induction hypothesis:
eitherTxσ↓ ⊢ uf or elseuf ∈ St(Tx)σ↓.

2. There is aT ′ (T such thatT ′σ↓ ⊢ u and we may apply the induction hypothesis.

The case whereπ0 ends with an instance of a projection rule or is reduced to a leaf
can be done in a similar way.

We sketch the proof of the following lemma that is actually a strong version of
Lemma 6. The transformation allowing us to transform a normal proof into an alien-
free proof is quite complex. Several examples are provided after the proof sketch.

Lemma 13. LetT be a finite set of terms,σ be a substitution mapping the variables of
T to ground terms in normal form andu be a ground term in normal form. We assume
that, for every variablex ∈ vars(T), there is aTx (T and a normal proofπx,σ of
Txσ↓ ⊢ xσ such thatlast(πx,σ) is not a decomposition and, for everyy ∈ vars(Tx), we
have thatTy (Tx. We assume moreover here thatvars(T) ⊆ T andvars(Tx) ⊆ Tx

for every variablex.
If π0 is a normal proof ofTσ↓ ⊢ u, then there is a normal alien-free proofπ of

Tσ↓ ⊢ u. Furthermore, if the last rule ofπ0 is not a decomposition, then we may
chooseπ such that the last rule ofπ is not a decomposition.

Proof (sketch):
Consider a normal proofπ0 of Tσ↓ ⊢ u. We prove the lemma by induction on(T, |π0|).
If the last rule ofπ0 is not an instance of(XOR) rule, we may simply apply the induction
hypothesis to the immediate subproofs and possibly normalize; the only normalization
steps that may take place here, return subproofs of the original proof, hence preserve
alien-freeness. Furthermore, such normalisation steps can only occur when the last rule
of π0 is a decomposition.

Assume now thatπ0 =
π1 · · · πn

(XOR)
u

. Let vi = conc(πi) and assume by

induction hypothesis that eachπi is alien-free and in normal form. Let moreoverπx,σ

be an alien-free normal proof ofxσ, whose las rule is not a decomposition, for every
x ∈ vars(T) (such a proof exists by induction hypothesis). For everyvi ∈ St(T)σ↓,
we letti ∈ St(T) be such thattiσ↓ = vi.

We construct now the proofπ as follows. We first apply a transformation, yielding
a proofπ′

0 such that, for everyi, eithertop(vi) 6= ⊕ or elsevi ∈ St(T)σ↓. For this
preliminary transformation, assume that, for somei, vi /∈ St(T)σ↓ andtop(vi) = ⊕.
Sinceπ0 is in normal form,last(πi) is a decomposition. Then, thanks to Lemma 5, there
is a variablexi ∈ vars(T) such that, for some subproofπ′

i of πxi,σ, conc(π′
i) = vi

andlast(π′
i) is not a decomposition. Letπ′

i =
π′

i,1 · · · π′
i,mi

(XOR)
vi

and, for every

j ∈ {1, . . . , mi}, let v′i,j = conc(π′
i,j). Then, sinceπxi,σ is alien-free, for everyj, we

have thatv′i,j ∈ St(Txi
)σ↓ ∪ fact(vi). In particular, for everyj, v′i,j ∈ St(T)σ↓ or

top(v′i,j) 6= ⊕. Furthermore, we have thatlast(πi,j) 6= ⊕.

Now consider the proofπ′
0 obtained fromπ0 by replacing the subproofsπi such

that top(vi) = ⊕ andvi /∈ St(T)σ↓ with the proof sequencesπ′
i,1 · · · π′

i,mi
and

removing the duplicates. The new proof is in normal form and satisfies that all conclu-
sions of the premisses are either not headed with⊕ or are in St(T)σ↓.

Now let us come back to the construction ofπ. We letA andE be the least multisets
such that:

1. if v ∈ hyp(last(π′
0)) andv ∈ fact(u) thenv ∈ E; if v ∈ hyp(last(π′

0)) and
v ∈ St(T)σ↓. Let w ∈ St(T) such thatv = wσ↓. Thenw ∈ A andv ∈ E.

2. If t ∈ A and there existst′ such thatt = x ⊕ t′ with hyp(last(πx,σ)) = ⊕ then
– xσ ∈ E;
– if v ∈ hyp(last(πx,σ)) andv ∈ fact(u) thenv ∈ E;
– if v ∈ hyp(last(πx,σ)) andv ∈ St(T)σ↓. Let w ∈ St(T) such thatv = wσ↓.

Thenw ∈ A andv ∈ E.

For everyw ∈ E, there is an alien-free normal proof ofTσ↓ ⊢ w. Remember that
x ∈ T for everyx ∈ vars(T). Furthermore, for everyw ∈ E, eitherw is a factor ofu or
w ∈ St(T)σ↓. It remains to show that(

⊕

w∈E w)↓ = u. Then the proofπ consisting
in xoring the terms inE (and using the alien-free proofs of each of them) will satisfy
the requirements of the lemma (after possibly removing the duplicates).

⊓⊔

Example 15.Consider the following constraint system:

a, b, c ⊕ d, f, g
?

⊢ x

a, b, c ⊕ d, f, g, c ⊕ e, k, {|x ⊕ d|}s
k, x

?

⊢ 〈a, b〉 ⊕ e

Let σ = {x 7→ 〈a, b〉 ⊕ c ⊕ d ⊕ 〈f, g〉}, Tx = {a, b, c ⊕ d, f, g}, andT = Tx ∪
{c ⊕ e, k, {|x ⊕ d|}s

k, x}. We have that{x} = vars(T) ⊆ T , and∅ = vars(Tx) ⊆ Tx.
The proofπx,σ described below is a proof ofTxσ↓ ⊢ xσ that does not end with a
decomposition.

πx,σ =











c ⊕ d

a b

〈a, b〉

f g

〈f, g〉

c ⊕ d ⊕ 〈a, b〉 ⊕ 〈f, g〉

Let u = 〈a, b〉 ⊕ e andπ0 be the following proof ofTσ ⊢ u.

π0 =











{|x ⊕ d|}s
kσ↓ k

(x ⊕ d)σ↓ c ⊕ e

f g

〈f, g〉

〈a, b〉 ⊕ e

The proofπ0 is not alien-free because of the presence of the term〈f, g〉. Applying
our transformation, we will obtain the following alien-free proof ofu:

π =











xσ c ⊕ d

a b

〈a, b〉 c ⊕ e

{|x ⊕ d|}s
kσ↓ k

(x ⊕ d)σ↓

u

Actually, during the transformation, we compute:

– A = {c ⊕ e, (x ⊕ d), c ⊕ d}, and
– E = {c ⊕ e, (x ⊕ d)σ↓, xσ, 〈a, b〉, c ⊕ d}.

Example 16.Consider the following constraint system:

Ty
def
= a, b, c ⊕ e, g, f ⊕ g

?

⊢ y

Tx
def
= a, b, c ⊕ e, g, f ⊕ g, d ⊕ f, k, {|y ⊕ e|}s

k, y
?

⊢ x

T
def
= a, b, c ⊕ e, g, f ⊕ g, d ⊕ f, k, {|y ⊕ e|}s

k, y, {|x ⊕ d|}s
k, x

?

⊢ c

Let σ = {x 7→ c ⊕ 〈a, b〉 ⊕ d; y 7→ c ⊕ e ⊕ 〈a, b〉 ⊕ f} and consider the following
proofs:

πy,σ =











c ⊕ e

a b

〈a, b〉 f ⊕ g g

c ⊕ e ⊕ 〈a, b〉 ⊕ f

πx,σ =











{|y ⊕ e|}s
kσ↓ k

(y ⊕ e)σ↓ d ⊕ f

c ⊕ 〈a, b〉 ⊕ d

We have a proof ofTσ↓ ⊢ c as shown below:

{|x ⊕ d|}s
kσ↓ k

(x ⊕ d)σ↓

a b

〈a, b〉

c

However, this proof is not alien-free. Actually, during thetransformation, we compute:

– A = {x ⊕ d, d ⊕ f, y ⊕ e, c ⊕ e, f ⊕ g, g}, and
– E = {(x ⊕ d)σ↓, xσ, d ⊕ f, (y ⊕ e)σ↓, y, c ⊕ e, f ⊕ g, g}.

Thanks to our transformation, such a proof will be transformed as follows:

{|x ⊕ d|}s
kσ↓ k

(x ⊕ d)σ↓ xσ

{|y ⊕ e|}s
kσ↓ k

(y ⊕ e)σ↓ yσ d ⊕ f g f ⊕ g c ⊕ e

c

Lemma 7. There is a mappingµ from derivation constraint systems and substitutions
to a well-founded ordered set such that, for every derivation constraint systemC and
every solutionσ of C, eitherC is in solved form or else there is a constraint systemC′

such thatC C′, σ is a solution ofC′, andµ(C, σ) > µ(C′, σ).

Proof. Let C = C1 ∧ · · · ∧ Cn ∧ E be a derivation constraint andσ be a solution ofC

such that every constraint inCi is of the formTi

?

⊢ ti,j andT1 (. . . (Tn. A variable
of C is solvedif it is a member of an equation inE .

The sizeof a (normal) proofπ of Tiσ↓ ⊢ uσ↓ is the pair(j, |π|) wherej is the
minimal index such thathyp(π) ⊆ Tjσ↓ and|π| is the number of inference rules in the
proofπ.

A constraintT
?

⊢ u is solved inC (w.r.t. σ) if u is a variable,u /∈ T and there is a
minimal size alien-free proofπ of Tσ↓ ⊢ uσ↓ such thatlast(π) is not a decomposition.
We say thatCi is solved(w.r.t. σ) if:

1. Ci−1 is solved (ori = 1), in which case,vars(Ti) ⊆ Ti by simplification and
origination.

2. everyTi

?

⊢ ti,j in Ci is solved.

We letCs be the conjunction of solvedCi andCu be the first unsolvedCi. We define
µ(C, σ) as the triple(nu, NC ,M(C)) where:

– nu is the number of unsolved variables ofC;
– NC is n − i, i.e. the number of “blocks” inC that are neither inCs nor inCu;

– M(C) is the multiset of the pairs(b(u), c(π)) for T
?

⊢ u an unsolved constraint
in Cu, whereb(u) is the size ofu if (u /∈ St(T) and∀v.u ⊕ v 6∈ St(T)) and0
otherwise andc(π) is a minimal size of an alien-free normal proof ofTσ↓ ⊢ uσ↓.

Note thatc(π) is well defined, thanks to Lemma 6: for everyx ∈ vars(T), we have
thatx ∈ T thanks to the simplification rules and there is aTx (T and an alien-free
normal proofπx,σ of Txσ↓ ⊢ xσ such thatlast(πx,σ) is not a decomposition and, for
everyy ∈ vars(Tx), we have thatTy (Tx thanks to origination and sinceCs is solved.

Consider now an unsolved constraintT
?

⊢ u in Cu and a minimal size alien-free
normal proofπ of Tσ↓ ⊢ uσ↓.

We first consider the cases in whichu = x⊕v for some variablex. Since constraints
are supposed to be eagerly simplified, thenx ∈ vars(T) or x ∈ vars(v) (otherwise

(XR2) applies). Ifx ∈ vars(T), then there is a constraintTx

?

⊢ x in Cs, hence(XR1)
applies. We are left to consider the case whereu = x ⊕ t(x) ⊕ v wheret(x) is a
term in whichx occurs and such thattop(t(x)) 6= ⊕. Consider such a variablex,
that is maximalw.r.t. the ordering≥σ defined on variables byx ≥σ y if, and only if
yσ ∈ St(xσ). Let uσ↓ = u1 ⊕ . . . ⊕ un wheretop(ui) 6= ⊕ for everyi ∈ {1, . . . , n}.
We distinguish two cases:

– Case 1:t(x)σ↓ /∈ {u1, . . . , un}. In such a case, either there are termsu′, v′ such
that u = x ⊕ t(x) ⊕ u′ ⊕ v′ andt(x)σ↓ = u′σ↓ andu′ 6= t(x) or else there is
a variabley such thatu = x ⊕ y ⊕ t(x) ⊕ u′ andyσ = t(x)σ↓ ⊕ v′. This latter
case would yieldy >σ x, which contradicts the maximality assumption onx. In

the former case,T
?

⊢ u T
?

⊢ x ⊕ v′ ∧ t(x)
?
= u′ with theGeq rule, of whichσ is

a solution. Furthermore, after simplification, the number of unsolved variables has
strictly decreased, thanks to Lemma 8.

– Case 2:t(x)σ↓ ∈ {u1, . . . , un}. In such a case, sinceTσ↓ ⊢ uσ, thanks to
Lemma 5, eitherTσ↓ ⊢ t(x)σ↓ or elset(x)σ↓ ∈ St(T)σ↓. In the latter case,

as before, we have thatT
?

⊢ u T
?

⊢ x⊕w⊕ v∧ t(x)
?
= w with theGeq rule, and

sincew 6= t(x) (sincex 6∈ vars(T)), after simplification and thanks to Lemma 8,
the number of unsolved variables has decreased. In the former case,σ is a solution

of T
?

⊢ t(x)∧T
?

⊢ x⊕v. ApplyingC⊕ to the systemC yields a systemC′, of which
σ is a solution and such thatµ(C′, σ) < µ(C, σ). Indeed, the measuresnu andNC

can only decrease (or remain constant). Furthermore,u /∈ St(T) (and for anyv,
u ⊕ v /∈ St(T)), as it contains a variable that does not occur inT , henceb(u) is
the size ofu. We have thatb(t(x)) < b(u) andb(x ⊕ v) < b(u), which implies
M(C′) < M(C).

Now, assume thatu is not of the formx ⊕ v, wherex is a variable, and consider a
minimal size alien-free normal proofπ of Tσ↓ ⊢ uσ↓. Let (j, n) be the size ofπ. We
distinguish cases, depending onlast(π).

last (π) is an axiom, a decryption or a projection. Consider for instance the decryp-

tion case (the other cases are similar). In such a case, we have thatπ =
π1 π2

uσ↓
with conc(π1) = {|uσ↓|}s

k, andconc(π2) = k. Sinceπ is in normal form,last(π1)
is a decomposition and, by Lemma 5, either{|uσ↓|}s

k ∈ St(Tj)σ↓ or else there is
a variablex ∈ vars(Tj) and a (alien-free) subproofπ′ of πx,σ, whose last step is
not a decomposition and such thatconc(π′) = {|uσ↓|}s

k. In the latter case, there is
aTx (Tj andTxσ↓ ⊢ uσ↓, which contradicts the minimality of the size ofπ. We
consider now the first case.
Let t ∈ St(Tj) be such thattσ↓ = {|uσ↓|}s

k. If t is a variablex, then, by as-
sumption, there is aTx (Tj such thatTxσ ⊢ xσ. Furthermore, there is an alien-
free proof whose last rule is not a decomposition. It followsthat Txσ↓ ⊢ uσ↓,
which contradicts the minimality ofj. Then t is not a variable. We have that

t = {|t1|}s
t2

∈ St(T) andt2 ∈ St(T). We may apply the ruleDdec to T
?

⊢ u

(and toC), yieldingT
?

⊢ {|t1|}s
t2
∧ T

?

⊢ t2 ∧ u
?
= t1, either reducing the number of

unsolved variable ofC (if u 6= t1) or b(u) (if u /∈ St(T)) or the size of the proofs
(|π| is replaced by proof sizes at most|π1|, |π2|).

last (π) is an encryption or a pairing. First, we have thatu cannot be a variable, since

T
?

⊢ u is assumed to be unsolved. Hence we have thatu = f(u1, . . . , un). Then
hyp(last(π)) = {u1σ↓, . . . , unσ↓}. We may apply theC rule replacing inM(C)
a tuple(b(u), N) with n pairs, whose first componentsb(ui) ≤ b(u) and second
components are strictly smaller thanN .

last (π) is an instance of the(XOR) rule. We have thatπ =
π1 · · · πn

(XOR)
uσ↓

.

We may assume w.l.o.g. thatu = u1⊕ . . .⊕um where eachtop(ui) 6= ⊕ for every
i ∈ {1, . . . n}. We also know that eachui is not a variable and we can assume that
ui 6= uk for everyi 6= k.

If, for somei, k, we have thatconc(πi) = ukσ↓, then we have thatTjσ↓ ⊢ ukσ↓.

In such a case, we can applyC⊕: T
?

⊢ u T
?

⊢ uk ∧ T
?

⊢ (u ⊕ uk)↓. We have
that C C′, of which σ is a solution. Furthermore,µ(C′, σ) < µ(C, σ), since
b(uk) ≤ b(u) and b((u ⊕ uk)↓) ≤ b(u) and the (minimal) sizes of the (alien-
free, normal) proofs ofukσ↓ and((u ⊕ uk)↓)σ↓ are strictly smaller: the size of
πk is strictly smaller than the size ofπ and the size of the proofπ, in whichπk is
removed, is strictly smaller than the size of the proofπ.
Otherwise, by alien-freeness, for everyi, we have thatconc(πi) ∈ St(T)σ↓ and
we may apply theD⊕ rule. At least the multiset of proof sizes is decreasing (if not
the previous components).

