
Stéphanie Delaune, Steve Kremer
and Mark Ryan

Verifying privacy-type properties of
electronic voting protocols

Research Report LSV-08-01

January 2008

Verifying privacy-type properties of
electronic voting protocols !

Stéphanie Delaune a,b, Steve Kremer b, Mark Ryan a

a School of Computer Science, University of Birmingham, UK
bLSV, CNRS & ENS Cachan & INRIA Futurs projet SECSI, France

Abstract

Electronic voting promises the possibility of a convenient, efficient and secure facility
for recording and tallying votes in an election. Recently highlighted inadequacies of im-
plemented systems have demonstrated the importance of formally verifying the underly-
ing voting protocols. We study three privacy-type properties of electronic voting proto-
cols: in increasing order of strength, they are vote-privacy, receipt-freeness, and coercion-
resistance.
We use the applied pi calculus, a formalism well adapted to modelling such protocols,

which has the advantages of being based on well-understood concepts. The privacy-type
properties are expressed using observational equivalence and we show in accordance with
intuition that coercion-resistance implies receipt-freeness, which implies vote-privacy.
We illustrate our definitions on three electronic voting protocols from the literature. Ide-

ally, these three properties should hold even if the election officials are corrupt. However,
protocols that were designed to satisfy receipt-freeness or coercion-resistance may not do
so in the presence of corrupt officials. Our model and definitions allow us to specify and
easily change which authorities are supposed to be trustworthy.

Key words: voting protocol, applied pi calculus, formal methods, privacy and anonymity
properties.

! This work has been partly supported by the EPSRC projects EP/E029833, Verifying
Properties in Electronic Voting Protocols and EP/E040829/1, Verifying anonymity and pri-
vacy properties of security protocols, the ARA SESUR project AVOTÉ and the ARTIST2
NoE.

1 Introduction

Electronic voting protocols. Electronic voting promises the possibility of a con-
venient, efficient and secure facility for recording and tallying votes. It can be used
for a variety of types of elections, from small committees or on-line communities
through to full-scale national elections. Electronic voting protocols are formal pro-
tocols that specify the messages sent between the voters and administrators. Such
protocols have been studied for several decades. They offer the possibility of ab-
stract analysis of the voting system against formally-stated properties.

In this paper, we recall some existing protocols which have been developed over
the last decades, and some of the security properties they are intended to satisfy.
We focus on privacy-type properties. We present a framework for analysing those
protocols and determining whether they satisfy the properties.

From the protocol point of view, the main challenge in designing an election system
is to guarantee vote-privacy. We may distinguish three main kinds of protocols in
the literature, classified according to the mechanism they employ to guarantee pri-
vacy. In blind signature schemes [15,24,30,35], the voter first obtains a token, which
is a message blindly signed by the administrator and known only to the voter her-
self. The signature of the administrator confirms the voter’s eligibility to vote. She
later sends her vote anonymously, with this token as proof of eligibility. In schemes
using homomorphic encryption [6,27], the voter cooperates with the administrator
in order to construct an encryption of her vote. The administrator then exploits ho-
momorphic properties of the encryption algorithm to compute the encrypted tally
directly from the encrypted votes. A third kind of scheme uses randomisation (for
example by mixnets) to mix up the votes so that the link between voter and vote is
lost [16,17]. Our focus in this paper is on protocols of the first type, although our
methods can probably be used for protocols of the second type. Because it involves
mixes, which are probabilistic, the third type is hard to address with our methods
that are purely non-deterministic.

Properties of electronic voting protocols. Some properties commonly sought
for voting protocols are the following:

• Eligibility: only legitimate voters can vote, and only once.
• Fairness: no early results can be obtained which could influence the remaining
voters.

• Individual verifiability: a voter can verify that her vote was really counted.
• Universal verifiability: the published outcome really is the sum of all the votes.
• Vote-privacy: the fact that a particular voter voted in a particular way is not re-
vealed to anyone.

2

• Receipt-freeness: a voter does not gain any information (a receipt) which can be
used to prove to a coercer that she voted in a certain way.

• Coercion-resistance: a voter cannot cooperate with a coercer to prove to him that
she voted in a certain way.

The last three of these are broadly privacy-type properties since they guarantee that
the link between the voter and her vote is not revealed by the protocol.

The weakest of the three, called vote-privacy, roughly states that the fact that a voter
voted in a particular way is not revealed to anyone. When stated in this simple way,
however, the property is in general false, because if all the voters vote unanimously
then everyone will get to know how everyone else voted. The formalisation we give
in this paper in fact says that no party receives information which would allow them
to distinguish one situation from another one in which two voters swap their votes.

Receipt-freeness says that the voter does not obtain any artefact (a “receipt”) which
can be used later to prove to another party how she voted. Such a receipt may be
intentional or unintentional on the part of the designer of the system. Unintentional
receipts might include nonces or keys which the voter is given during the protocol.
Receipt-freeness is a stronger property than privacy. Intuitively, privacy says that
an attacker cannot discern how a voter votes from any information that the voter
necessarily reveals during the course of the election. Receipt-freeness says the same
thing even if the voter voluntarily reveals additional information.

Coercion-resistance is the third and strongest of the three privacy properties. Again,
it says that the link between a voter and her vote cannot be established by an at-
tacker, this time even if the voter cooperates with the attacker during the election
process. Such cooperation can include giving to the attacker any data which she
gets during the voting process, and using data which the attacker provides in return.
When analysing coercion-resistance, we assume that the voter and the attacker can
communicate and exchange data at any time during the election process. Coercion-
resistance is intuitively stronger than receipt-freeness, since the attacker has more
capabilities.

Of course, the voter can simply tell an attacker how she voted, but unless she
provides convincing evidence the attacker has no reason to believe her. Receipt-
freeness and coercion-resistance assert that she cannot provide convincing evi-
dence.

Coercion-resistance cannot possibly hold if the coercer can physically vote on be-
half of the voter. Some mechanism is necessary for isolating the voter from the
coercer at the moment she casts her vote. This can be realised by a voting booth,
which we model here as a private and anonymous channel between the voter and
the election administrators.

3

Note that in literature the distinction between receipt-freeness and coercion-resistance
is not very clear. The definitions are usually given in natural language and are insuf-
ficiently precise to allow comparison. The notion of receipt-freeness first appeared
in the work of Benaloh and Tuinstra [7]. Since then, several schemes [7,39] were
proposed in order to meet the condition of receipt-freeness, but later shown not to
satisfy it. One of the reasons for such flaws is that no formal definition of receipt-
freeness has been given. The situation for coercion-resistance is similar. Systems
have been proposed aiming to satisfy it; for example, Okamoto [40] presents a sys-
tem resistant to interactive coercers, thus aiming to satisfy what we call coercion-
resistance, but this property is stated only in natural language. Recently, a rigorous
definition in a computational model has been proposed by Juels et al. for coercion-
resistance [31]. We present in this paper what we believe to be the first “formal
methods” definition of receipt-freeness and coercion-resistance. It is difficult to
compare our definition and the one proposed by Juels et al. [31] due to the inher-
ently different models.

Verifying electronic voting protocols. Because security protocols in general are
notoriously difficult to design and analyse, formal verification techniques are par-
ticularly important. In several cases, protocols which were thought to be correct
for several years have, by means of formal verification techniques, been discovered
to have major flaws. Our aim in this paper is to use and develop verification tech-
niques, focusing on the three privacy-type properties mentioned above. We choose
the applied pi calculus [2] as our basic modelling formalism, which has the ad-
vantages of being based on well-understood concepts. The applied pi calculus has
a family of proof techniques which we can use, and it is partly supported by the
ProVerif tool [8]. Moreover, the applied pi calculus allows us to reason about equa-
tional theories in order to model the wide variety of cryptographic primitives often
used in voting protocols.

As it is often done in protocol analysis, we assume the Dolev-Yao abstraction:
cryptographic primitives are assumed to work perfectly, and the attacker controls
the public channels. The attacker can see, intercept and insert messages on public
channels, but can only encrypt, decrypt, sign messages or perform other crypto-
graphic operations if he has the relevant key. In general, we assume that the attacker
also controls the election officials, since the protocols we investigate are supposed
to be resistant even if the officials are corrupt. Some of the protocols explicitly re-
quire a trusted device, such as a smart card; we do not assume that the attacker
controls those devices.

How the properties are formalised. As already mentioned, the vote-privacy
property is formalised as the assertion that the attacker does not receive informa-
tion which enables him to distinguish a situation from another one in which two
voters swap their votes. In other words, the attacker cannot distinguish a situation

4

in which Alice votes a and Bob votes b, from another one in which they vote the
other way around. This is formalised as an observational equivalence property in
applied pi.

Receipt-freeness is also formalised as an observational equivalence. Intuitively, a
protocol is receipt-free if the attacker cannot detect a difference between Alice
voting in the way he instructed, and her voting in some other way, provided Bob
votes in the complementary way each time. As in the case of privacy, Bob’s vote is
required to prevent the observer seeing a different number of votes for each candi-
date. Alice cooperates with the attacker by sharing secrets, but the attacker cannot
interact with Alice to give her some prepared messages.

Coercion-resistance is formalised as an observational equivalence too. In the case
of coercion-resistance, the attacker (which we may also call the coercer) is assumed
to communicate with Alice during the protocol, and can prepare messages which
she should send during the election process. This gives the coercer much more
power.

Ideally, these three properties should hold even if the election officials are corrupt.
However, protocols that were designed to satisfy vote-privacy, receipt-freeness or
coercion-resistance do not necessarily do so in the presence of corrupt officials.
Our model and definitions allow us to specify and easily change which authorities
are supposed to be trustworthy.

Related properties and formalisations. The idea of formalising privacy-type
properties as some kind of observational equivalence in a process algebra or calcu-
lus goes back to the work of Schneider and Sidiropoulos [42]. Similar ideas have
been used among others by Fournet and Abadi [23], Mauw et al. [36] as well as
Kremer and Ryan [34]. Other formalizations of anonymity are based on epistemic
logics, e.g. [26]. All of these definitions are mainly concerned with possibilistic
definitions of anonymity. It is also possible to define probabilistic anonymity, such
as in [41,44,26,11], which gives a more fine-grained characterisation of the level of
anonymity which has been achieved. In [20,43,12], information-theoretic measures
have been proposed to quantify the degree of anonymity. In this paper we only fo-
cus on possibilistic flavours of privacy-type properties and assume that channels
are anonymous (without studying exactly how these channels are implemented).

Receipt-freeness and coercion-resistance are more subtle than simple privacy. They
involve the idea that the voter cannot prove how she voted to the attacker. This is
a special case of incoercible multi-party computation, which has been explored
in the computational security setting [10]. Similarly to their definition, we define
incoercibility as the ability to present the coercer with fake data which matches the
public transcript as well as the real data. Our definition specialises the setting to
electronic voting, and is designed for a Dolev-Yao-like model.

5

Independently of our work, Jonker and de Vink [28] give a logical characterisa-
tion of the notion of receipt in electronic voting processes. Jonker and Pieters [29]
also define receipt-freeness in epistemic logic. However, while these formalisms
may be appealing to reason about the property, they seem less suited for modelling
the protocol and attacker capabilities. These logics are geared to expressing prop-
erties rather than operational steps of a protocol. Thus, modelling protocols using
epistemic-logic-based approaches is tedious and requires a high degree of exper-
tise. Baskar et al. [4] present a promising approach defining an epistemic logic for
a protocol language.

The “inability to prove” character of coercion-resistance and receipt-freeness is
also shared by the property called abuse-freeness in contract-signing protocols. A
contract-signing protocol is abuse-free if signer Alice cannot prove to an observer
that she is in a position to determine the outcome of the contract. Abuse-freeness
has been formalised in a Dolev-Yao-like setting [32] as the ability to provide a
message that allows the observer to test whether Alice is in such a position. This
notion of test is inspired by static equivalence of the applied pi calculus. However,
this notion of test is purely offline, which is suitable for abuse-freeness. In our for-
malization the voter may provide data that allows an active adversary to distinguish
two processes which yields a more general notion of receipt (probably too general
for abuse-freeness).

To the best of our knowledge, our definitions constitute the first observational
equivalence formalisations of the notion of not being able to prove in the formal
methods approach to security.

Electronic voting in the real world. Governments the world over are trialling
and adopting electronic voting systems, and the security aspects have been con-
troversial. For example, the electronic voting machines used in recent US elec-
tions have been fraught with security problems. Researchers [33] have analysed the
source code of the Diebold machines used in 37 US states. This analysis has pro-
duced a catalogue of vulnerabilities and possible attacks. More recent work [21]
has produced a security study of the Diebold AccuVote-TS voting machine, in-
cluding both hardware and software. The results shows that it is vulnerable to very
serious attacks. For example, an attacker who gets physical access to a machine or
its removable memory card for as little as one minute could install malicious code,
which could steal votes undetectably, modifying all records, logs, and counters to
be consistent with the fraudulent vote count it creates. They also showed how an
attacker could create malicious code that spreads automatically from machine to
machine during normal election activities. In another study, a Dutch voting ma-
chine was reprogrammed to play chess, rather than count votes, which resulted in
the machine being removed from use [25].

These real-world deployments do not rely on the kind of formal protocols studied

6

in this paper, and therefore our work has no direct bearing on them. The protocols
studied here are designed to ensure that vote stealing is cryptographically impos-
sible, and the properties of individual and universal verifiability provide guaran-
tee that voters can verify the outcome of the election themselves. It is hoped that
work such as ours in proving the security properties of such protocols will promote
their take-up by makers of electronic voting equipment. If deployed, these proto-
cols would—at least to some extent—remove the requirement to trust the hardware
and software used by election officials, and even to trust the officials themselves.

This paper. We recall the basic ideas and concepts of the applied pi calculus,
in Section 2. Next, in Section 3, we present the framework for formalising voting
protocols from the literature, and in Section 4 we show how the three privacy-
like properties are formalised. Also in Section 4, we investigate the relationships
between the properties and we show that the expected implications hold between
them. In Sections 5, 6 and 7 we recall three voting protocols from the literature,
and show how they can be formalised in our framework. We analyse which of the
properties they satisfy.

Some of the results have been published in two previous papers [34,18]. This pa-
per extends and clarifies our results, provides more examples, better explanations,
additional case studies and includes proofs. In particular, our definition of coercion-
resistance in this paper is much simpler than our previous definition [18], where we
relied on a notion we called adaptive simulation. That notion turned out to have
some counter-intuitive properties, and we have removed it.

2 The applied pi calculus

The applied pi calculus [2] is a language for describing concurrent processes and
their interactions. It is based on the pi calculus, but is intended to be less pure and
therefore more convenient to use. The applied pi calculus is, in some sense, similar
to the spi calculus [3]. The key difference between the two formalisms concerns
the way that cryptographic primitives are handled. The spi calculus has a fixed set
of primitives built-in (symmetric and public-key encryption), while the applied pi
calculus allows one to define less usual primitives (often used in electronic vot-
ing protocols) by means of an equational theory. The applied pi calculus has been
used to study a variety of security protocols, such as a private authentication proto-
col [23] or a key establishment protocol [1].

7

2.1 Syntax and informal semantics

To describe processes in the applied pi calculus, one starts with a set of names
(which are used to name communication channels or other atomic data), a set of
variables, and a signature Σ which consists of the function symbols which will be
used to define terms. In the case of security protocols, typical function symbols
will include enc for encryption, which takes plaintext and a key and returns the
corresponding ciphertext, and dec for decryption, taking ciphertext and a key and
returning the plaintext. Terms are defined as names, variables, and function sym-
bols applied to other terms. Terms and function symbols are sorted, and of course
function symbol application must respect sorts and arities. By the means of an
equational theory E we describe the equations which hold on terms built from the
signature. We denote =E the equivalence relation induced by E. A typical example
of an equational theory useful for cryptographic protocols is dec(enc(x, k), k) = x.
In this theory, the terms T1 = dec(enc(enc(n, k1), k2), k2) and T2 = enc(n, k1) are
equal, we have T1 =E T2 (while obviously the syntactic equality T1 = T2 does not
hold). Two terms are related by =E only if that fact can be derived from the equa-
tions in E. When the set of variables occurring in a term T is empty, we say that T
is ground.

In the applied pi calculus, one has plain processes and extended processes. Plain
processes are built up in a similar way to processes in the pi calculus, except that
messages can contain terms (rather than just names). In the grammar described
below, M and N are terms, n is a name, x a variable and u is a metavariable,
standing either for a name or a variable.

P,Q,R := plain processes
0 null process
P | Q parallel composition
!P replication
νn.P name restriction
ifM = N then P else Q conditional
in(u, x).P message input
out(u,N).P message output

We use the notation in(u, =M) to test whether the input on u is equal (modulo
E) to the term M (if it doesn’t, the process blocks). Moreover, we sometimes use
tuples of terms, denoted by parentheses, while keeping the equational theory for
these tuples implicit.

Extended processes add active substitutions and restriction on variables:

A,B,C := extended processes
P plain process

8

A | B parallel composition
νn.A name restriction
νx.A variable restriction
{M/x} active substitution

{M/x} is the substitution that replaces the variable x with the termM . Active sub-
stitutions generalise “let”. The process νx.({M/x} | P) corresponds exactly to the
process “let x = M in P ”. As usual, names and variables have scopes, which are
delimited by restrictions and by inputs. We write fv(A), bv(A), fn(A) and bn(A)
for the sets of free and bound variables and free and bound names ofA, respectively.
We also assume that, in an extended process, there is at most one substitution for
each variable, and there is exactly one when the variable is restricted. We say that
an extended process is closed if all its variables are either bound or defined by an
active substitution.

Active substitutions are useful because they allow us to map an extended process A
to its frame φ(A) by replacing every plain process in A with 0. A frame is an
extended process built up from 0 and active substitutions by parallel composition
and restriction. The frame φ(A) can be viewed as an approximation of A that ac-
counts for the static knowledge A exposes to its environment, but not A’s dynamic
behaviour.

Example 1 For instance, consider the extended processesA1 = {M1/x1
} | {M2/x2

} | P1

and A2 = {M1/x1
} | {M2/x2

} | P2. Even if these two processes are different from
the point of view of their dynamic behaviour, the frames φ(A1) and φ(A2) are equal.
This witnesses the fact that A1 and A2 have the same static knowledge.

The domain of a frame ϕ, denoted by dom(ϕ), is the set of variables for which ϕ
defines a substitution (those variables x for which ϕ contains a substitution {M/x}
not under a restriction on x).

An evaluation context C[] is an extended process with a hole instead of an ex-
tended process. Structural equivalence, noted≡, is the smallest equivalence relation
on extended processes that is closed under α-conversion on names and variables,
by application of evaluation contexts, and such that

PAR-0 A | 0 ≡ A

PAR-A A | (B | C) ≡ (A | B) | C

PAR-C A | B ≡ B | A

NEW-0 νn.0 ≡ 0

NEW-C νu.νv.A ≡ νv.νu.A

REPL !P ≡ P |!P

REWRITE {M/x} ≡ {N/x}

ifM =E N

ALIAS νx.{M/x} ≡ 0

SUBST {M/x} | A ≡ {M/x} | A{M/x}

NEW-PAR A | νu.B ≡ νu.(A | B) if u "∈ fn(A) ∪ fv(A)

9

Example 2 Consider the following process P :

νs.νk.(out(c1, enc(s, k)) | in(c1, y).out(c2, dec(y, k))).

The first component publishes the message enc(s, k) by sending it on c1. The second
receives a message on c1, uses the secret key k to decrypt it, and forwards the
resulting plaintext on c2. The process P is structurally equivalent to the following
extended process A:

A = νs, k, x1.
(
out(c1, x1) | in(c1, y).out(c2, dec(y, k)) | {enc(s,k)/x1

}
)

We have φ(A) = νs, k, x1.{enc(s,k)/x1
} ≡ 0 (since x1 is under a restriction).

The following lemma will be useful in the remainder of the paper.

Lemma 3 Let C1 = νũ1.(| B1) and C2 = νũ2.(| B2) be two evaluation
contexts such that ũ1 ∩ (fv(B2) ∪ fn(B2)) = ∅ and ũ2 ∩ (fv(B1) ∪ fn(B1)) = ∅.
We have that C1[C2[A]] ≡ C2[C1[A]] for any extended process A.

PROOF. Let A be an extended process. We have that
C1[C2[A]] ≡ νũ1.(νũ2.(A | B2) | B1)

≡ νũ2.νũ1.((A | B1) | B2) since ũ2 "∈ fv(B1) ∪ fn(B1)

≡ νũ2.(νũ1.(A | B1) | B2) since ũ1 "∈ fv(B2) ∪ fn(B2)

≡ C2[C1[A]] !

2.2 Semantics

The operational semantics of processes in the applied pi calculus is defined by
structural rules defining two relations: structural equivalence (briefly described in
Section 2.1) and internal reduction, noted→. Internal reduction→ is the smallest
relation on extended processes closed under structural equivalence and application
of evaluation contexts such that

(COMM) out(a, x).P | in(a, x).Q → P | Q

(THEN) ifM = M then P else Q → P

(ELSE) ifM = N then P else Q → Q

for any ground termsM and N such thatM "=E N .

The operational semantics is extended by a labelled operational semantics enabling

10

us to reason about processes that interact with their environment. Labelled opera-
tional semantics defines the relation α−→ where α is either an input, or the output of
a channel name or a variable of base type.

(IN) in(a, x).P
in(a,M)
−−−−→ P{M/x}

(OUT-ATOM) out(a, u).P
out(a,u)
−−−−→ P

(OPEN-ATOM)
A

out(a,u)
−−−−→ A′ u "= a

νu.A
νu.out(a,u)
−−−−−−→ A′

(SCOPE)
A

α−→ A′ u does not occur in α
νu.A

α−→ νu.A′

(PAR)
A

α−→ A′ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅

A | B
α−→ A′ | B

(STRUCT)
A ≡ B B

α−→ B′ A′ ≡ B′

A
α−→ A′

Note that the labelled transition is not closed under application of evaluation con-
texts. Moreover the output of a term M needs to be made “by reference” using a
restricted variable and an active substitution.

Example 4 Consider the process P defined in Example 2. We have

P ≡ νs, k, x1.(out(c1, x1) | in(c1, y).out(c2, dec(y, k)) | {enc(s,k)/x1
})

νx1.out(c1,x1)
−−−−−−−−→ νs, k.(in(c1, y).out(c2, dec(y, k)) | {enc(s,k)/x1

})
in(c1,x1)
−−−−−→ νs, k.(out(c2, dec(x1, k)) | {enc(s,k)/x1

})

≡ νs, k, x2.(out(c2, x2) | {enc(s,k)/x1
} | {dec(x1,k)/x2

})
νx2.out(c1,x2)
−−−−−−−−→ νs, k.({enc(s,k)/x1

} | {dec(x1,k)/x2
})

Let A be the extended process obtained after this sequence of reduction steps. We
have that φ(A) ≡ νs.νk.{enc(s,k)/x1

, s/x2
}.

2.3 Equivalences

We can now define what it means for two frames to be statically equivalent [2].

11

Definition 5 (Static equivalence (≈s)) Two termsM andN are equal in the frame
φ, written (M =E N)φ, if, and only if there exists ñ and a substitution σ such that
φ ≡ νñ.σ, Mσ =E Nσ, and ñ ∩ (fn(M) ∪ fn(N)) = ∅.

Two frames φ1 and φ2 are statically equivalent, φ1 ≈E φ2, when:

• dom(φ1) = dom(φ2), and
• for all terms M,N we have that (M =E N)φ1 if and only if (M =E N)φ2.

Two extended processes A and B are said to be statically equivalent, denoted
by A ≈s B, if we have that φ(A) ≈s φ(B).

Example 6 Let ϕ0 = νk.σ0 and ϕ1 = νk.σ1 where σ0 = {enc(s0,k)/x1
,k /x2

},
σ1 = {enc(s1,k)/x1

,k /x2
} and s0, s1 and k are names. Let E be the theory de-

fined by the axiom dec(enc(x, k), k) = x. We have dec(x1, x2)σ0 =E s0 but not
dec(x1, x2)σ1 =E s0. Therefore we have ϕ0 "≈s ϕ1. However, note that we have
νk.{enc(s0,k)/x1

} ≈s νk.{enc(s1,k)/x1
}.

Definition 7 (Labelled bisimilarity (≈#)) Labelled bisimilarity is the largest sym-
metric relationR on closed extended processes, such that A R B implies

(1) A ≈s B,
(2) if A → A′, then B →∗ B′ and A′ R B′ for some B′,
(3) ifA α→ A′ and fv(α) ⊆ dom(A) and bn(α)∩fn(B) = ∅, thenB →∗ α→→∗ B′

and A′ R B′ for some B′.

The definition of labelled bisimilarity is like the usual definition of bisimilarity,
except that at each step one additionally requires that the processes are statically
equivalent. It has been shown that labelled bisimilarity coincides with observa-
tional equivalence [2]. We prefer to work with labelled bisimilarity, rather than
observational equivalence, because proofs for labelled bisimilarity are generally
easier. Labelled bisimilarity can be used to formalise many security properties, in
particular anonymity properties, such as those studied in this paper.

When we model protocols in applied pi calculus, we model the honest parties as
processes. The dishonest parties are considered to be under the control of the at-
tacker, and are not modelled explicitly. The attacker (together with any parties it
controls) form the environment in which the honest processes run. This arrange-
ment implies that we consider only one attacker; to put in another way, we consider
that all dishonest parties and attackers share information and trust each other, thus
forming a single coalition. This arrangement does not allow us to consider attackers
that do not share information with each other.

12

3 Formalising voting protocols

Before formalising security properties, we need to define what is an electronic vot-
ing protocol in applied pi calculus. Different voting protocols often have substantial
differences. However, we believe that a large class of voting protocols can be rep-
resented by processes corresponding to the following structure.

Definition 8 (Voting process) A voting process is a closed plain process

VP ≡ νñ.(V σ1 | · · · | V σn | A1 | · · · | Am).

The V σi are the voter processes, theAjs the election authorities which are required
to be honest and the ñ are channel names. We also suppose that v ∈ dom(σi) is
a variable which refers to the value of the vote. We define an evaluation context S
which is as VP , but has a hole instead of two of the V σi.

In order to prove a given property, we may require some of the authorities to be
honest, while other authorities may be assumed to be corrupted by the attacker. The
processesA1, . . . , Am represent the authorities which are required to be honest. The
authorities under control of the attacker need not be modelled, since we consider
any possible behaviour for the attacker (and therefore any possible behaviour for
corrupt authorities). In this case the communications channels are available to the
environment.

We have chosen to illustrate our definition with three classical electronic voting
protocols of the literature: a protocol due to Fujioka et al. [24], a protocol due to
Okamoto [39] and one due to Lee et al. [35]. After a brief and informal descrip-
tion of those protocols, we formalise them in the applied pi calculus framework in
Sections 5, 6 and 7.

4 Formalising privacy-type properties

In this section, we show how the anonymity properties, informally described in the
introduction, can be formalised in our setting and we show, in accordance with in-
tuition, that coercion-resistance implies receipt-freeness, which implies privacy. It
is rather classical to formalise anonymity properties as some kind of observational
equivalence in a process algebra or calculus, going back to the work of Schnei-
der and Sidiropoulos [42]. However, the definition of anonymity properties in the
context of voting protocols is rather subtle.

13

4.1 Vote-privacy

The privacy property aims to guarantee that the link between a given voter V and his
vote v remains hidden. Anonymity and privacy properties have been successfully
studied using equivalences. However, the definition of privacy in the context of
voting protocols is rather subtle. While generally most security properties should
hold against an arbitrary number of dishonest participants, arbitrary coalitions do
not make sense here. Consider for instance the case where all but one voter are
dishonest: as the results of the vote are published at the end, the dishonest voter can
collude and determine the vote of the honest voter. A classical trick for modelling
anonymity is to ask whether two processes, one in which VA votes and one in
which VB votes, are equivalent. However, such an equivalence does not hold here
as the voters’ identities are revealed (and they need to be revealed at least to the
administrator to verify eligibility). In a similar way, an equivalence of two processes
where only the vote is changed does not hold, because the votes are published at the
end of the protocol. To ensure privacy we need to hide the link between the voter
and the vote and not the voter or the vote itself.

In order to give a reasonable definition of privacy, we need to suppose that at
least two voters are honest. We denote the voters VA and VB and their votes a,
respectively b. We say that a voting protocol respects privacy whenever a process
where VA votes a and VB votes b is observationally equivalent to a process where VA

votes b and VB votes a. Formally, privacy is defined as follows.

Definition 9 (Vote-privacy) A voting protocol respects vote-privacy (or just pri-
vacy) if

S[VA{
a/v} | VB{

b/v}] ≈# S[VA{
b/v} | VB{

a/v}]

for all possible votes a and b.

The intuition is that if an intruder cannot detect if arbitrary honest voters VA and VB

swap their votes, then in general he cannot know anything about how VA (or VB)
voted. Note that this definition is robust even in situations where the result of the
election is such that the votes of VA and VB are necessarily revealed. For example,
if the vote is unanimous, or if all other voters reveal how they voted and thus allow
the votes of VA and VB to be deduced.

A protocol satisfying privacy also allows arbitrary permutations of votes between
voters. For example, we may prove that

S[VA{
a/v} | VB{

b/v} | VC{
c/v}] ≈# S[VA{

b/v} | VB{
c/v} | VC{

a/v}]

14

as follows:

S[VA{a/v} | VB{b/v} | VC{c/v}]

≈# S[VA{b/v} | VB{a/v} | VC{c/v}] using privacy, with S ′ = S[| Vc{c/v}]

≈# S[VA{b/v} | VB{c/v} | VC{a/v}] using privacy, with S ′′ = S[Va{b/v} |]

As already noted, in some protocols the vote-privacy property may hold even if au-
thorities are corrupt, while other protocols may require the authorities to be honest.
When proving privacy, we choose which authorities we want to model as honest,
by including them in Definition 8 of VP (and hence S).

4.2 Receipt-Freeness

Similarly to privacy, receipt-freeness may be formalised as an observational equiv-
alence. We also formalise receipt-freeness using observational equivalence. How-
ever, we need to model the fact that VA is willing to provide secret information, i.e.,
the receipt, to the coercer. We assume that the coercer is in fact the attacker who, as
usual in the Dolev-Yao model, controls the public channels. To model VA’s commu-
nication with the coercer, we consider that VA executes a voting process which has
been modified: any input of base type and any freshly generated names of base type
are forwarded to the coercer. We do not forward restricted channel names, as these
are used for modelling purposes, such as physically secure channels, e.g. the voting
booth, or the existence of a PKI which securely distributes keys (the keys themself
are forwarded but not the secret channel name on which the keys are received).

Definition 10 (Process P ch) Let P be a plain process and ch a channel name. We
define P ch as follows:

• 0ch =̂ 0,
• (P | Q)ch =̂ P ch | Qch,
• (νn.P)ch =̂ νn.out(ch, n).P ch when n is name of base type,
• (νn.P)ch =̂ νn.P ch otherwise,
• (in(u, x).P)ch =̂ in(u, x).out(ch, x).P ch when x is a variable of base type,
• (in(u, x).P)ch =̂ in(u, x).P ch otherwise,
• (out(u,M).P)ch =̂ out(u,M).P ch,
• (!P)ch =̂ !P ch,
• (if M = N then P else Q)ch =̂ if M = N then P ch else Qch.

In the remainder, we assume that ch "∈ fn(P) ∪ bn(P) before applying the trans-
formation.

15

Given an extended process A and a channel name ch, we need to define the ex-
tended process A\out(ch,·). Intuitively, such a process is as the process A, but hiding
the outputs on the channel ch.

Definition 11 (Process A\out(ch,·)) Let A be an extended process. We define the
process A\out(ch,·) as νch.(A |!in(ch, x)).

We are now ready to define receipt-freeness. Intuitively, a protocol is receipt-free if,
for all voters VA, the process in which VA votes according to the intruder’s wishes
is indistinguishable from the one in which she votes something else. As in the
case of privacy, we express this as an observational equivalence to a process in
which VA swaps her vote with VB, in order to avoid the case in which the intruder
can distinguish the situations merely by counting the votes at the end. Suppose the
coercer’s desired vote is c. Then we define receipt-freeness as follows.

Definition 12 (Receipt-freeness) A voting protocol is receipt-free if there exists a
closed plain process V ′ such that

• V ′\out(chc,·) ≈# VA{a/v},
• S[VA{c/v}chc | VB{a/v}] ≈# S[V ′ | VB{c/v}],

for all possible votes a and c.

As before, the context S in the second equivalence includes those authorities that
are assumed to be honest. V ′ is a process in which voter VA votes a but communi-
cates with the coercer C in order to feign cooperation with him. Thus, the second
equivalence says that the coercer cannot tell the difference between a situation in
which VA genuinely cooperates with him in order to cast the vote c and one in
which she pretends to cooperate but actually casts the vote a, provided there is
some counterbalancing voter that votes the other way around. The first equivalence
of the definition says that if one ignores the outputs V ′ makes on the coercer chan-
nel chc, then V ′ looks like a voter process VA voting a.

The first equivalence of the definition may be considered too strong; informally,
one might consider that the equivalence should be required only in a particular
S context rather than requiring it in any context (with access to all the private
channels of the protocol). This would result in a weaker definition, although one
which is more difficult to work with. In fact, the variant definition would be only
slightly weaker; it is hard to construct a natural example which distinguishes the
two possibilities, and in particular it makes no difference to the case studies of later
sections. Therefore, we prefer to stick to Definition 12.

According to intuition, if a protocol is receipt-free (for a given set of honest author-
ities), then it also respects privacy (for the same set):

Proposition 13 If a voting protocol is receipt-free then it also respects privacy.

16

Before we prove this proposition we need to introduce a lemma.

Lemma 14 Let P be a closed plain process and ch a channel name such that
ch "∈ fn(P) ∪ bn(P). We have (P ch)\out(ch,·) ≈# P .

PROOF. (sketch, see Appendix A for details)
We show by induction on the size of P that for any channel name ch such that
ch "∈ fn(P)∪ bn(P), the equivalence P ch\out(ch,·) ≈# P holds. The base case where
P = 0 is trivial. Then, we consider the different possibilities for building P . !

PROOF. (of Proposition 13)
By hypothesis, there exists a closed plain process V ′, such that

• V ′\out(chc,·) ≈# VA{a/v}, and
• S[VA{c/v}chc | VB{a/v}] ≈# S[V ′ | VB{c/v}].

By applying the evaluation context νchc.(|!in(chc, x)) on both sides we obtain

S[VA{
c/v}

chc | VB{
a/v}]

\out(chc,·) ≈# S[V ′ | VB{
c/v}]

\out(chc,·).

By using Lemma 3, we obtain that:

• S[VA{c/v}chc | VB{a/v}]\out(chc,·) ≡ S[(VA{c/v}chc)\out(chc,·) | VB{a/v}],
• S[V ′ | VB{c/v}]\out(chc,·) ≡ S[V ′\out(chc,·) | VB{c/v}].

Lastly, thanks to Lemma 14 and the fact that labelled bisimilarity is closed under
structural equivalence, we deduce that

S[VA{
c/v} | VB{

a/v}] ≈# S[V ′\out(chc,·) | VB{
c/v}].

Since we have V ′\out(chc,·) ≈# VA{a/v}, we easily conclude. !

4.3 Coercion-Resistance

Coercion-resistance is a stronger property as we give the coercer the ability to
communicate interactively with the voter and not only receive information. In this
model, the coercer can prepare the messages he wants the voter to send. As for
receipt-freeness, we modify the voter process. In the case of coercion-resistance,
we give the coercer the possibility to provide the messages the voter should send.
The coercer can also decide how the voter branches on if -statements.

Definition 15 (Process P c1,c2) Let P be a plain process and c1, c2 be channel
names. We define P c1,c2 inductively as follows:

17

• 0c1,c2 =̂ 0,
• (P | Q)c1,c2 =̂ P c1,c2 | Qc1,c2 ,
• (νn.P)c1,c2 =̂ νn.out(c1, n).P c1,c2 when n is a name of base type,
• (νn.P)c1,c2 =̂ νn.P c1,c2 otherwise,
• (in(u, x).P)c1,c2 =̂ in(u, x).out(c1, x).P c1,c2 when x is a variable of base type,
• (in(u, x).P)c1,c2 =̂ in(u, x).P c1,c2 otherwise,
• (out(u,M).P)c1,c2 =̂ in(c2, x).out(u, x).P c1,c2 when M is a term of base type

and x is a fresh variable,
• (out(u,M).P)c1,c2 =̂ out(u,M).P c1,c2 otherwise,
• (!P)c1,c2 =̂ !P c1,c2 ,
• (if M = N then P else Q)c1,c2 =̂ in(c2, x). if x = true then P c1,c2 else Qc1,c2

where x is a fresh variable and true is a constant.

As a first approximation, we could try to define coercion-resistance in the following
way: a protocol is coercion-resistant if there is a V ′ such that

S[VA{
?/v}

c1,c2 | VB{
a/v}] ≈# S[V ′ | VB{

c/v}]. (1)

On the left, we have the coerced voter VA{?/v}c1,c2 ; no matter what she intends to
vote (the “?”), the idea is that the coercer will force her to vote c. On the right, the
process V ′ resists coercion, and manages to vote a. Unfortunately, this character-
isation has the problem that the coercer could oblige VA{?/v}c1,c2 to vote c′ "= c.
In that case, the process VB{c/v} would not counterbalance the outcome to avoid a
trivial way of distinguishing the two sides.

To enable us to reason about the coercer’s choice of vote, we model the coercer’s
behaviour as a context C that defines the interface c1, c2 for the voting process. The
context C coerces a voter to vote c. Thus, we can characterise coercion-resistance
as follows: a protocol is coercion-resistant if there is a V ′ such that

S[C[VA{
?/v}

c1,c2] | VB{
a/v}] ≈# S[C[V ′] | VB{

c/v}], (2)

where C is a context ensuring that the coerced voter VA{?/v}c1,c2 votes c. The
context C models the coercer’s behaviour, while the environment models the co-
ercer’s powers to observe whether the coerced voter behaves as instructed. We ad-
ditionally require that the context C does not directly use the channel names ñ
restricted by S. Formally one can ensure that VA{?/v}c1,c2 votes c by requiring that
C[VA{?/v}c1,c2] ≈# VA{c/v}chc. We actually require a slightly weaker condition,
S[C[VA{?/v}c1,c2] | VB{a/v}] ≈# S[VA{c/v}chc | VB{a/v}], which results in a
stronger property.

Putting these ideas together, we arrive at the following definition:

Definition 16 (Coercion-resistance) A voting protocol is coercion-resistant if there
exists a closed plain process V ′ such that for any C = νc1.νc2.(| P) satisfying
ñ∩ fn(C) = ∅ and S[C[VA{?/v}c1,c2] | VB{a/v}] ≈# S[VA{c/v}chc | VB{a/v}], we

18

have

• C[V ′]\out(chc,·) ≈# VA{a/v},
• S[C[VA{?/v}c1,c2] | VB{a/v}] ≈# S[C[V ′] | VB{c/v}].

Note that VA{?/v}c1,c2 does not depend on what we put for “?”.

The condition that S[C[VA{?/v}c1,c2] | VB{a/v}] ≈# S[VA{c/v}chc | VB{a/v}]
means that the context C outputs the secrets generated during its computation; this
is required so that the environment can make distinctions on the basis of those se-
crets, as in receipt-freeness. The first bullet point expresses that V ′ is a voting pro-
cess for A which fakes the inputs/outputs with C and succeeds in voting a in spite
of the coercer. The second bullet point says that the coercer cannot distinguish be-
tween V ′ and the really coerced voter, provided another voter VB counterbalances.

As in the case of receipt-freeness, the first equivalence of the definition could be
made weaker by requiring it only in a particular S context. But we chose not to
adopt this extra complication, for the same reasons as given in the case of receipt-
freeness.

Remark 17 The context C models the coercer’s behaviour; we can see its role
in equivalence (2) as imposing a restriction on the distinguishing power of the
environment in equivalence (1). Since the coercer’s behaviour is modelled by C
while its distinguishing powers are modelled by the environment, it would be useful
to write (2) as

C[S[VA{
?/v}

c1,c2] | VB{
a/v}]] ≈# C[S[V ′ | VB{

c/v}]]. (3)

Equivalences (2) and (3) are the same (Lemma 3).

According to intuition, if a protocol is coercion-resistant then it respects receipt-
freeness too (as before, we keep constant the set of honest authorities):

Proposition 18 If a voting protocol is coercion-resistant then it also respects receipt-
freeness.

PROOF. Let C be an evaluation context such that C = νc1.νc2.(| P) for some
plain process P and S[C[VA{?/v}c1,c2] | VB{a/v}] ≈# S[VA{c/v}chc | VB{a/v}].
Note that such a C can be constructed directly from the vote process V . By hypoth-
esis, we know that there exists a closed plain process V ′ such that

• C[V ′]\out(chc,·) ≈# VA{a/v},
• S[C[VA{?/v}c1,c2] | VB{a/v}] ≈# S[C[V ′] | VB{c/v}].

We need to show that there exists V ′′ such that

19

• V ′′\out(chc,.) ≈# VA{a/v},
• S[VA{c/v}chc | VB{a/v}] ≈# S[V ′′ | VB{c/v}].

Let V ′′ = C[V ′]. We directly obtain the first requirement. For the second one, we
take the hypotheses

• S[C[VA{?/v}c1,c2] | VB{a/v}] ≈# S[C[V ′] | VB{c/v}], and
• S[C[VA{?/v}c1,c2] | VB{a/v}] ≈# S[VA{c/v}chc | VB{a/v}].

By transitivity of ≈#, we obtain S[VA{c/v}chc | VB{a/v}] ≈# S[C[V ′] | VB{c/v}].
Lastly, we replace C[V ′] on the right by V ′′. !

Using the definition of coercion-resistance. To show that a voting protocol sat-
isfies coercion-resistance, it is necessary to give a process V ′, and it is necessary
to show the two bullet points in the definition for all contexts C which satisfy the
requirement stated in the definition. In case studies, it is difficult to reason about all
possible contexts C, and our analysis is rather informal. In future work, we hope to
provide better methods for doing that.

To show that a voting protocol does not satisfy coercion-resistance, it is necessary
to show that for all V ′, there exists a context C for which the bullet points fail.
In practice, one may try to give a single C which works for all V ′. Since this is a
stronger condition, it is sufficient.

5 Protocol due to Fujioka, Okamoto and Ohta

In this section we study a protocol due to Fujioka, Okamoto and Ohta [24]. We first
give an informal description of the protocol (see Section 5.1). Then, we show in
Section 5.2 how this protocol can be modelled in the applied pi calculus. Lastly, in
Section 5.3, we show that the protocol respects privacy. However, the protocol is
not receipt-free [39]. The Fujioka, Okamoto and Ohta protocol was also analysed
by Nielsen et al. [38], but their focus is on properties such as verifiability, eligibility,
and fairness, rather than the privacy-type properties of this paper.

5.1 Description

The protocol involves voters, an administrator, verifying that only eligible voters
can cast votes, and a collector, collecting and publishing the votes. In comparison
with authentication protocols, the protocol also uses some unusual cryptographic
primitives such as secure bit-commitment and blind signatures. Moreover, it relies

20

on anonymous channels. We deliberately do not specify the way these channels are
handled as any anonymiser mechanism could be suitable depending on the precise
context the protocol is used in. One can use MIX-nets introduced by Chaum [13]
whose main idea is to permute and modify (by using decryption or re-encryption)
some sequence of objects in order to hide the correspondence between elements
of the original and the final sequences. Some other implementations may also be
possible, e.g. onion routing [45].

A bit-commitment scheme allows an agent A to commit a value v to another
agent B without revealing it immediately. Moreover, B is ensured that A cannot
change her mind afterwards and that the value she later reveals will be the same as
she thinks at the beginning. For this, A encrypts the value v in some way and sends
the encryption to B. The agent B is not able to recover v until A sends him the key.

A blind signature scheme allows a requester to obtain a signature of a message m
without revealing the messagem to anyone, including the signer. Hence, the signer
is requested to sign a message blindly without knowing what he signs. This mech-
anism is very useful in electronic voting protocol. It allows the voter to obtain a
signature of her vote by an authority who checks that she has right to vote without
revealing it to the authority.

In a first phase, the voter gets a signature on a commitment to his vote from the ad-
ministrator. To ensure privacy, blind signatures [14] are used, i.e. the administrator
does not learn the commitment of the vote.

• Voter V selects a vote v and computes the commitment x = ξ(v,r) using the
commitment scheme ξ and a random key r;

• V computes the message e = χ(x, b) using a blinding function χ and a random
blinding factor b;

• V digitally signs e and sends her signature σV (e) to the administrator A together
with her identity;

• A verifies that V has the right to vote, has not voted yet and that the signature
is valid; if all these tests hold, A digitally signs e and sends his signature σA(e)
to V ;

• V now unblinds σA(e) and obtains y = σA(x), i.e. a signed commitment to V ’s
vote.

The second phase of the protocol is the actual voting phase.

• V sends y,A’s signature on the commitment to V ’s vote, to the collector C using
an anonymous channel;

• C checks correctness of the signature y and, if the test succeeds, enters (), x, y)
into a list as an)-th item.

21

The last phase of the voting protocol starts, once the collector decides that he re-
ceived all votes, e.g. after a fixed deadline. In this phase the voters reveal the random
key r which allows C to open the votes and publish them.

• C publishes the list ()i, xi, yi) of commitments he obtained;
• V verifies that her commitment is in the list and sends), r toC via an anonymous
channel;

• C opens the)-th ballot using the random r and publishes the vote v.

Note that we need to separate the voting phase into a commitment phase and an
opening phase to avoid releasing partial results of the election and to ensure privacy.
This is ensured by requiring synchronisation between the different agents involved
in the election.

5.2 The model in applied pi

Cryptographic primitives as an equational theory. We model cryptography in
a Dolev-Yao style as being perfect. The equations are given below.

open(commit(m, r), r) = m

checksign(sign(m, sk), pk(sk)) = m

unblind(blind(m, r), r) = m

unblind(sign(blind(m, r), sk), r) = sign(m, sk)

In this model we can note that bit commitment (modelled by the functions commit
and open) is identical to classical symmetric-key encryption. For simplicity, we
identify host names and public keys. Our model of cryptographic primitives is an
abstraction; for example, bit commitment gives us perfect binding and hiding. Digi-
tal signatures are modeled as being signatures with message recovery, i.e. the signa-
ture itself contains the signed message which can be extracted using the checksign
function. To model blind signatures we add a pair of functions blind and unblind.
These functions are again similar to perfect symmetric key encryption and bit com-
mitment. However, we add a second equation which permits us to extract a signa-
ture out of a blind signature, when the blinding factor is known. Note that the equa-
tion modelling commitment cannot be applied on the term open(commit(m, r1), r2)
when r1 "= r2.

Process synchronisation. Asmentioned, the protocol is divided into three phases,
and it is important that every voter has completed the first phase before going onto
the second one (and then has completed the second one before continuing to the

22

(* private channels *)
ν pr ivCh . ν pkaCh1 . ν pkaCh2 . ν skaCh . ν skvaCh . ν skvbCh .
(* administrators *)
(p roces sK | proce s sA | proce s sA | proces sC | proces sC |
(* voters *)
(l e t skvCh = skvaCh i n l e t v = a i n proce s sV) |
(l e t skvCh = skvbCh i n l e t v = b i n proce s sV))

Process 1. Main process

proces sK=
(* private keys *)
ν ska . ν s kva . ν s kvb .
(* corresponding public keys *)
l e t (pka , pkva , pkvb)=(pk (ska) , pk (s kva) , pk (s kvb)) i n
(* public keys disclosure *)
ou t (ch , pka) . ou t (ch , pkva) . ou t (ch , pkvb) .
(* register legitimate voters *)
(ou t (pr ivCh , pkva) | ou t (pr ivCh , pkvb) |
(* keys disclosure on private channels *)
ou t (pkaCh1 , pka) | ou t (pkaCh1 , pka) | ou t (pkaCh2 , pka) |
ou t (pkaCh2 , pka) | ou t (skaCh , ska) | ou t (skaCh , ska) |
ou t (skvaCh , s kva) | ou t (skvbCh , s kvb))

Process 2. Administrator for keying material

third). We enforce this in our model by the keyword synch. When a process en-
counters synch n, it waits until all the other process that could encounter synch n
arrive at that point too. Then all the processes are allowed to continue.

If there are k processes that can encounter synch n, we can implement the syn-
chronisation as follows. The command synch n is replaced by out(n, 0); in(n,=1)
where n is a globally declared private channel. Moreover we assume an additional
process (in(n,=0); . . . ; in(n,=0);out(n, 1); . . . ;out(n, 1) that has k ins and k outs.
This simple encoding is fine for our purpose since the value of k can be inferred by
inspecting the code; it would not work if new processes were created, e.g. with “!”.

Main (Process 1). The main process sets up private channels and specifies how
the processes are combined in parallel. Most of the private channels are for key
distribution. We only model the protocol for two voters and launch two copies of
the administrator and collector process, one for each voter.

Keying material (Process 2). Our model includes a dedicated process for gener-
ating and distributing keying material modelling a PKI. Additionally, this process

23

proce s sV = (* parameters: skvCh, v *)
(* her private key *)
i n (skvCh , s k v) .
(* public keys of the administrator *)
i n (pkaCh1 , pubka) .
ν b l i n d e r . ν r .
l e t c omm i t t e d v o t e = commit (v , r) i n
l e t b l i n d e d c omm i t t e d v o t e=b l i n d (commi t t e dvo t e , b l i n d e r) i n
ou t (ch1 , (pk (s k v) , s i g n (b l i n d e d c omm i t t e d v o t e , s k v))) .
i n (ch2 , m2) .
l e t r e s u l t = ch e c k s i g n (m2 , pubka) i n
i f r e s u l t = b l i n d e d c omm i t t e d v o t e t h e n
l e t s i g n e d c omm i t t e d v o t e=unb l i n d (m2 , b l i n d e r) i n
synch 1 .
ou t (ch3 , (commi t t e dvo t e , s i g n e d c omm i t t e d v o t e)) .
s ynch 2 .
i n (ch4 , (l ,= commi t t e dvo t e ,= s i g n e d c omm i t t e d v o t e)) .
ou t (ch5 , (l , r))

Process 3. Voter process

proce s sA =
(* administrator’s private key *)
i n (skaCh , skadm) .
(* register legimitate voters *)
i n (pr ivCh , pubkv) .
i n (ch1 , m1) .
l e t (pubkeyv , s i g) = m1 i n
i f pubkeyv = pubkv t h e n
ou t (ch2 , s i g n (c h e c k s i g n (s i g , pubkeyv) , skadm))

Process 4. Administrator process

registers legitimate voters and also distributes the public keys of the election au-
thorities to legitimate voters: this is modelled using restricted channels so that the
attacker cannot provide false public keys.

Voter (Process 3). First, each voter obtains her secret key from the PKI as well
as the public keys of the administrator. The remainder of the specification follows
directly the informal description given in Section 5.1.

Administrator (Process 4). The administrator first receives through a private
channel his own public key as well as the public key of a legitimate voter. Le-
gitimate voters have been registered on this private channel in Process 2 described
above. The received public key has to match the voter who is trying to get a signed

24

proces sC =
(* administrator’s public key *)
i n (pkaCh2 , pkadmin) .
s ynch 1 . i n (ch3 , (m3 , m4)) .
i f c h e c k s i g n (m4 , pkadmin) = m3 t h e n
synch 2 .
ν l .
ou t (ch4 , (l , m3 , m4)) .
i n (ch5 , (= l , rand)) .
l e t vo t eV=open (m4 , rand) i n
ou t (ch , vo t eV)

Process 5. Collector process

ballot from the administrator. If the public key indeed matches, then the adminis-
trator signs the received message which he supposes to be a blinded ballot.

Collector (Process 5). When the collector receives a committed vote, he asso-
ciates a fresh label ’l’ with this vote. Publishing the list of votes and labels is mod-
elled by sending those values on a public channel. Then the voter can send back the
random number which served as a key in the commitment scheme together with the
label. The collector receives the key matching the label and opens the vote which
he then publishes.

5.3 Analysis

Vote-privacy. According to our definition, to show that the protocol respects pri-
vacy, we need to show that

S[VA{
a/v} | VB{

b/v}] ≈# S[VA{
b/v} | VB{

a/v}]. (4)

where VA = processV{skvaCh/skvCh}, VB = processV{skvbCh/skvCh} and S is de-
fined as the parallel composition of the voter processes, but with a hole instead of
the two voter processes. We do not require that any of the authorities are honest,
so they are not modelled in S, but rather left as part of the attacker context. To
establish this equivalence, we show that

νpkaCh1.(VA{a/v} | VB{b/v}| processK)

≈#

νpkaCh1.(VA{b/v} | VB{a/v}| processK)

(5)

25

Note that this implies privacy (equivalence 4) only in the case of precisely two vot-
ers (i.e., S doesn’t contain any additional voters). To deduce equivalence 4 for an
arbitrary context S, one would like to use the fact that labelled bisimilarity is closed
under application of evaluation contexts. Unfortunately, the context νpkaCh1. pre-
vents us from easily making this inference (recall that pkaCh1 is the channel on
which the voters receive the public key of the administrator). Our proof is formally
valid only for two voters, although a similar proof can easily be made for other
numbers.

Note that to ensure privacy we do not need to require any of the keys to be secret.
However, we need to ensure that both voters use the same public key for the ad-
ministrator. Therefore, we send this public key on a private channel, although the
secret key itself is a free name. We α-rename the bounded variables and names in
the two voter processes in a straightforward way. Although ProVerif is not able to
prove this observational equivalence directly, we were able to check all of the static
equivalences on the frames below using ProVerif (see Lemmas 19 and 20).

We denote the left-hand process as P and the right-hand process asQ. We have that
both processK start with the output of all the keys. None of these transitions depend
on the value of the vote, and so they commute in the same way for P and Q. For
the sake of readability, we do not detail this part. The only important point is that
the output of the administrator’s public key is sent on a private channel yielding an
internal reduction. We have that

P
in(skvaCh,skva)
−−−−−−−−−→ P1

in(skvbCh,skvb)
−−−−−−−−−→ P2 →∗

νx1.out(ch,x1)
−−−−−−−−→ νbA.νrA.νbB.νrB.(P3 | {(pk(skva),sign(blind(commit(a,rA),bA),skva))/x1

}
νx2.out(ch,x2)
−−−−−−−−→ νbA.νrA.νbB.νrB.(P4 | {(pk(skva),sign(blind(commit(a,rA),bA),skva)/x1

}

| {(pk(skvb),sign(blind(commit(b,rB),bB),skvb)/x2
})

Similarly,

Q
in(skvaCh,skva)
−−−−−−−−−→ Q1

in(skvbCh,skvb)
−−−−−−−−−→ Q2 →∗

νx1.out(ch,x1)
−−−−−−−−→ νbA.νrA.νbB.νrB.(Q3 | {(pk(skva),sign(blind(commit(b,rA),bA),skva))/x1

}
νx2.out(ch,x2)
−−−−−−−−→ νbA.νrA.νbB.νrB.(Q4 | {(pk(skva),sign(blind(commit(b,rA),bA),skva)/x1

}

| {(pk(skvb),sign(blind(commit(a,rB),bB),skvb)/x2
})

We could have considered any permutation of these transitions which respects the
partial order dictated by the processes. Note that for the above inputs we may con-
sider any public term, i.e. term that does not use bounded names of the processes.
For the next input of both voters, we need to consider two cases: either the input

26

of both voters corresponds to the expected messages from the administrator or at
least one input does not correspond to the correct administrator’s signature. In the
second case, one of the voters will block, as testing correctness of the message
fails and hence they cannot synchronise. In the first case, both voters synchronise
at phase 1. Until that point any move of voter VA{a/v} on the left-hand side has
been imitated by voter VA{b/v} on the right-hand side and equally for the second
voter. However, from now on, any move of voter VA{a/v} on the left-hand side
will be matched with the corresponding move of VB{a/v} on the right-hand side
and similarly for the second voter. The voters will now output the committed votes
signed by the administrator. The corresponding frames are described below and are
statically equivalent.

φP ′ ≡ νbA.νrA.νbB.νrB. {(pk(skva),sign(blind(commit(a,rA),bA),skva))/x1
} |

{(pk(skvb),sign(blind(commit(b,rB),bB),skvb))/x2
} |

{(commit(a,rA),sign(commit(a,rA),ska))/x3
} |

{(commit(b,rB),sign(commit(b,rB),ska))/x4
}

φQ′ ≡ νbA.νrA.νbB.νrB. {(pk(skva),sign(blind(commit(b,rA),bA),skva))/x1
} |

{(pk(skvb),sign(blind(commit(a,rB),bB),skvb))/x2
} |

{(commit(a,rB),sign(commit(a,rB),ska))/x3
} |

{(commit(b,rA),sign(commit(b,rA),ska))/x4
}

The following result can be establish using ProVerif.

Lemma 19 The frames φP ′ and φQ′ are statically equivalent.

For the following input, we again consider two cases: either the input of both voters
corresponds to the expected messages or at least one input does not succeed the
tests. In the second case, one of the voters will block, as testing correctness of the
message fails and hence they cannot synchronise. In the first case, we obtain at the
end the two frames below which are again statically equivalent.

φP ′′ ≡ νbA.νrA.νbB.νrB. {(pk(skva),sign(blind(commit(a,rA),bA),skva))/x1
}

{(pk(skvb),sign(blind(commit(b,rB),bB),skvb))/x2
} |

{(commit(a,rA),sign(commit(a,rA),ska))/x3
} |

{(commit(b,rB),sign(commit(b,rB),ska))/x4
} |

{(lA,rA)/x5
} | {(lB ,rB)/x6

}

27

φQ′′ ≡ νbA.νrA.νbB.νrB. {(pk(skva),sign(blind(commit(b,rA),bA),skva))/x1
} |

{(pk(skvb),sign(blind(commit(a,rB),bB),skvb))/x2
} |

{(commit(a,rB),sign(commit(a,rB),ska))/x3
} |

{(commit(b,rA),sign(commit(b,rA),ska))/x4
} |

{(lA,rB)/x5
} | {(lB ,rA)/x6

}

Again, ProVerif is able to establish the following result.

Lemma 20 The frames φP ′′ and φQ′′ are statically equivalent.

Note that it is sufficient to prove static equivalences for all reachable final states.
Thus, Lemma 19 is actually a consequence of Lemma 20.

Note that the use of phases is crucial for privacy to be respected. When we omit
the synchronisation after the registration phase with the administrator, privacy is
violated. Indeed, consider the following scenario. Voter VA contacts the adminis-
trator. As no synchronisation is considered, voter VA can send his committed vote
to the collector before voter VB contacts the administrator. As voter VB could not
have submitted the committed vote, the attacker can link this commitment to the
first voter’s identity. This problem was found during a first attempt to prove the
protocol where the phase instructions were omitted. The original paper divides the
protocol into three phases but does not explain the crucial importance of the syn-
chronisation after the first phase. Our analysis emphasises this need and we believe
that it increases the understanding of some subtle details of the privacy property in
this protocol. We may also note that we do not make any assumptions about the
correctness of the administrator or the collector, who may be corrupt, However, we
need to assume that both voters use the same value for the administrator’s public
key. Otherwise, privacy does not hold.

Receipt-freeness. This scheme is not receipt-free and was in fact not designed
with receipt-freeness in mind. Indeed, if the voter gives away the random numbers
for blinding and commitment, i.e. bA and rA, the coercer can verify that the com-
mitted vote corresponds to the coercer’s wish and by unblinding the first message,
the coercer can trace which vote corresponds to this particular voter. Moreover,
the voter cannot lie about these values as this will immediately be detected by the
coercer.

In our framework, this corresponds to the fact that there exists no V ′ such that:

• V ′\out(chc,·) ≈# VA{a/v},
• S[VA{c/v}chc | VB{a/v}] ≈# S[V ′ | VB{c/v}].

28

We show that there is no V ′ by proving that the requirements on V ′ are not satis-
fiable. We have that VA{c/v}chc outputs the values rA and bA on the channel chc.
This will generate entries in the frame. Hence, V ′ needs to generate similar entries
in the frame. The coercer can now verify that the values rA and bA are used to
encode the vote c in the message sent to the administrator. Thus V ′ is not able to
commit to a value different from c, in order to satisfy the second equivalence. But
then V ′ will not satisfy the first equivalence, since he will be unable to change his
vote afterwards as the commitment to c has been signed by the administrator. Thus,
the requirements on V ′ are not satisfiable.

The failure of receipt-freeness is not due to the possible dishonesty of the admin-
istrator or collector; even if we include them as honest parties, the protocol still
doesn’t guarantee receipt-freeness. It follows that coercion-resistance doesn’t hold
either.

6 Protocol due to Okamoto

In this section we study a protocol due to Okamoto [39] which was designed to
be incoercible. However, Okamoto himself shows a flaw [40]. According to him,
one of the reasons why the voting scheme he proposed had such a flaw is that no
formal definition and proof of receipt-freeness and coercion-resistance have been
given when the concept of receipt-freeness has been introduced by Benaloh and
Tuinstra [7].

6.1 Description

The authorities managing the election are an administrator for registration, a collec-
tor for collecting the tokens and a timeliness member (denoted by T) for publishing
the final tally. The main difference with the protocol due to Fujioka et al. is the use
of a trap-door bit commitment scheme [22] in order to retrieve receipt-freeness.
Such a commitment scheme allows the agent who has performed the commitment
to open it in many ways. Hence, trap-door bit commitment does not bind the voter
to the vote v. Now, to be sure that the voter does not change her mind at the end
(during the opening stage) she has to say how she wants to open her commitment
during the voting stage. This is done by sending the required information to T
through an untappable anonymous channel, i.e. a physical apparatus by which only
voter V can send a message to a party, and the message is perfectly secret to all
other parties.

The first phase is similar to the one of the protocol due to Fujioka et al.. The only
change is that ξ is a trap-door bit commitment scheme.

29

The second phase of the protocol is the actual voting phase. Now, the voter has to
say how she wants to open her commitment to the timeliness member T .

• V sends y, A’s signature on the trap-door commitment to V ’s vote, to the collec-
tor C using an anonymous channel;

• C checks correctness of the signature y and, if the test succeeds, enters (x, y)
into a list.

• V sends (v, r, x) to the timeliness member T through an untappable anonymous
channel.

The last phase of the voting protocol starts, once the collector decides that he re-
ceived all votes, e.g. after a fixed deadline.

• C publishes the list (xi, yi) of trap-door commitments he obtained;
• V verifies that her commitment is in the list;
• T publishes the list of the vote vi in random order and also proves that he knows
the permutation π and the ri’s such that xπ(i) = ξ(vi, ri) without revealing π or
the ri’s.

We have chosen to not entirely model this last phase. In particular, we do not
model the zero-knowledge proof performed by the timeliness member T , as it is
not relevant for illustrating our definitions of privacy, receipt-freeness and coercion-
resistance. This proof of zero-knowledge is very useful to ensure that T outputs the
correct vote chosen by the voter. This is important in order to ensure correctness,
even in the case that T is dishonest. However, the proof of knowledge is unimpor-
tant for anonymity properties. In particular, if T is the coercer himself, then he can
enforce the voter to vote as he wants as in the protocol due to Fujioka et al. Indeed,
the timeliness member T can force the voter to give him the trap-door she has used
to forge her commitment and then he can not only check if the voter has vote as he
wanted, but he can also open her vote as he wants.

6.2 The model in applied pi

Cryptographic primitives as an equational theory. The equations modelling
public keys and blind signatures are the same as in Section 5.2. To model trap-door
bit commitment, we consider the two following equations:

open(tdcommit(m, r, td), r) = m

tdcommit(m1, r, td) = tdcommit(m2, f(m1, r, td,m2), td)

Firstly, the term tdcommit(m, r, td) models the commitment of the message m un-
der the key r by using the trap-door td. The second equation is used to model

30

(* private channels *)
ν pr ivCh . ν pkaCh1 . ν pkaCh2 .
ν skaCh . ν skvaCh . ν skvbCh . ν chT .
(* administrators *)
(p roces sK | proce s sA | proce s sA | proces sC | proces sC |
proce s sT | proce s sT |

(* voters *)
(l e t skvCh=skvaCh i n l e t v=a i n proce s sV) |
(l e t skvCh=skvbCh i n l e t v=b i n proce s sV))

Process 6. Main process

proce s sV = (* parameters: skvCh, v *)
(* her private key *)
i n (skvCh , s k v) .
(* public keys of the administrator *)
i n (pkaCh1 , pubka) .
ν b l i n d e r . ν r . ν t d .
l e t c omm i t t e d v o t e = tdcommi t (v , r , t d) i n
l e t b l i n d e d c omm i t t e d v o t e=b l i n d (commi t t e dvo t e , b l i n d e r) i n
ou t (ch1 , (pk (s k v) , s i g n (b l i n d e d c omm i t t e d v o t e , s k v))) .
i n (ch2 , m2) .
l e t r e s u l t = ch e c k s i g n (m2 , pubka) i n
i f r e s u l t = b l i n d e d c omm i t t e d v o t e t h e n
l e t s i g n e d c omm i t t e d v o t e=unb l i n d (m2 , b l i n d e r) i n
synch 1 .
ou t (ch3 , (commi t t e dvo t e , s i g n e d c omm i t t e d v o t e)) .
ou t (chT , (v , r , c omm i t t e d v o t e))

Process 7. Voter process

the fact that a commitment tdcommit(m1, r, td) can be viewed as a commitment
of any value m2. However, to open this commitment as m2 one has to know the
key f(m1, r, td,m2). Note that this is possible only if one knows the key r used to
forge the commitment tdcommit(m1, r, td) and the trap-door td.

Main (Process 6). The main process sets up private channels and specifies how
the processes are combined in parallel. Most of the private channels are for key dis-
tribution. The channel chT is the untappable anonymous channel on which voters
send to T how they want to open their commitment.

We have also a dedicated process for generating and distributing keying material
modelling a PKI. This process is the same as the one we have given for the protocol
due to Fujioka et al. (see Section 5).

31

proces sC =
(* administrator’s public key *)
i n (pkaCh2 , pkadmin) .
s ynch 1 .
i n (ch3 , (m3 , m4)) .
i f c h e c k s i g n (m4 , pkadmin) = m3 t h e n
synch 2 .
ou t (chBB , (m3 , m4))

Process 8. Collector process

proce s sT =
synch 1 .
(* reception du commitment *)
i n (chT , (v t , r t , x t)) .
s ynch 2 .
i f open (x t , r t) = v t t h e n
ou t (board , v t)

Process 9. Timeliness process

Voter (Process 7). This process is very similar to the one given in the previous
section. We use the primitive tdcommit instead of commit and at the end, the voter
sends, through the channel chT, how she wants to open her commitment.

Administrator. The administrator process is exactly the same as the one given in
Section 5 to model the protocol due to Fujioka et al.

Collector (Process 8). When C receives a commitment, he checks the correct-
ness of the signature and if he succeeds, he enters this pair into a list. This list is
published in a second phase by sending the values contained in the list on the public
channel chBB.

Timeliness Member (Process 9). The timeliness member receives, through chT,
messages of the form (vt, rt, xt) where vt is the value of the vote, xt the trap-door
bit commitment and rt the key he has to use to open the commitment. In a second
phase, he checks that he can obtain vt by opening the commitment xt with rt. Then,
he publishes the vote vt on the board. This is modelled by sending vt on a public
channel.

32

6.3 Analysis

Unfortunately, the equational theory which is required to model this protocol is
beyond the scope of ProVerif and we cannot rely on automated verification, even
for the static equivalence parts.

Vote-privacy. Privacy can be established as in the protocol due to Fujioka et al.
Note that the equivalence proved there does not hold here. We have to hide the
outputs on the channel chT. Hence, we establish the following equivalence

νpkaCh1.νchT.(VA{a/v} | VB{b/v}| processK | processT | processT)

≈#

νpkaCh1.νchT.(VA{b/v} | VB{a/v}| processK | processT | processT)

Below we show that the protocol respects receipt-freeness and hence privacy also
holds.

Receipt-freeness. To show receipt-freeness one needs to construct a process V ′

which successfully fakes all secrets to a coercer. The idea is for V ′ to vote a, but
when outputting secrets to the coercer, V ′ lies and gives him fake secrets to pretend
to cast the vote c. The crucial part is that, using trap-door commitment and thanks
to the fact that the key used to open the commitment is sent through an untappable
anonymous channel, the value given by the voter to the timeliness member T can
be different from the one she provides to the coercer. Hence, the voter who forged
the commitment, provides to the coercer the one allowing the coercer to retrieve
the vote c, whereas she sends to T the one allowing her to cast the vote a.

We describe such a process V ′ in Process 10. To prove receipt-freeness, we need to
show that

• V ′\out(chc,·) ≈# VA{a/v}, and
• S[VA{c/v}chc | VB{a/v}] ≈# S[V ′ | VB{c/v}].

The context S we consider here is the same we have used to establish privacy,
i.e. νpkaCh1.νchT.(| processK | processT | processT); thus, as for Fujioka et
al., the proof is valid for two voters. The first equivalence may be seen informally
by considering V ′ without the instructions “out(chc, . . .)”, and comparing it visu-
ally with VA{a/v}. The two processes are the same.

To see the second labelled bisimulation, one can informally consider all the execu-
tions of each side. We denote the left-hand process as P and the right-hand as Q.

33

proce s sV =
(* her private key *)
i n (skvCh , s k v) . ou t (chc , s k v) .
(* public keys of the administrator *)
i n (pkaCh1 , pubka) . ou t (chc , pubka) .
ν b l i n d e r . ν r . ν t d .
ou t (chc , b l i n d e r) . ou t (chc , f (a , r , td , c)) . ou t (chc , t d) .
l e t c omm i t t e d v o t e = tdcommi t (a , r , t d) i n
l e t b l i n d e d c omm i t t e d v o t e=b l i n d (commi t t e dvo t e , b l i n d e r) i n
ou t (ch1 , (pk (s k v) , s i g n (b l i n d e d c omm i t t e d v o t e , s k v))) .
ou t (chc , (pk (s k v) , s i g n (b l i n d e d c omm i t t e d v o t e , s k v))) .
i n (ch2 , m2) .
l e t r e s u l t = ch e c k s i g n (m2 , pubka) i n
i f r e s u l t = b l i n d e d c omm i t t e d v o t e t h e n
l e t s i g n e d c omm i t t e d v o t e=unb l i n d (m2 , b l i n d e r) i n
synch 1 .
ou t (ch3 , (commi t t e dvo t e , s i g n e d c omm i t t e d v o t e)) .
ou t (chc , (commi t t e dvo t e , s i g n e d c omm i t t e d v o t e)) .
ou t (chT , (a , r , c omm i t t e d v o t e)) .
ou t (chc , (c , f (a , r , td , c) , c omm i t t e d v o t e))

Process 10. V’- Receipt-freeness

Both processK start with the output of all the keys. For sake of readability, we ignore
these outputs which are not really important for what we wish to show. We denote
by ñ the sequence of names bA, rA, tdA, bB, rB, tdB . After distribution of keying
material which can be done in the same way on both sides, we observe that the
instructions of VA{c/v}chc can be matched with those of V ′. Similarly, execution
steps performed by VB{a/v} on the left are matched with VB{c/v} on the right.
We need, of course, to consider all the possible executions of the two processes.
However, to argue that the processes are bisimilar, we consider below a particular
execution and we describe the interesting part of the two frames we obtained after
execution of the first phase by the two processes.

34

P
in(skvaCh,skva)
−−−−−−−−−→

νx1.out(chc,x1)
−−−−−−−−→ P1 | {skva/x1

}
in(skvbCh,skvb)
−−−−−−−−−→→∗ P2 | {skva/x1

}
νx2.out(chc,x2)
−−−−−−−−→

νx3.out(chc,x3)
−−−−−−−−→

νx4.out(chc,x4)
−−−−−−−−→

νx5.out(chc,x5)
−−−−−−−−→ νñ. (P3 | {skva/x1

} | {pk(ska)/x2
} | {bA/x3

} | {rA/x4
} | {tdA/x5

})
νx6.out(ch,x6)
−−−−−−−−→ νñ. (P4 | {skva/x1

} | {pk(ska)/x2
} | {bA/x3

} | {rA/x4
} | {tdA/x5

}

| {(pk(skva),sign(blind(tdcommit(c,rA,tdA),bA),skva))/x6
})

νx7.out(chc,x7)
−−−−−−−−→ νñ .(P5 | {skva/x1

} | {pk(ska)/x2
} | {bA/x3

} | {rA/x4
} | {tdA/x5

}

| {(pk(skva),sign(blind(tdcommit(c,rA,tdA),bA),skva))/x6
} | {x6/x7

})
νx8.out(ch,x8)
−−−−−−−−→ νñ .(P6 | {skva/x1

} | {pk(ska)/x2
} | {bA/x3

} | {rA/x4
} | {tdA/x5

}

| {(pk(skva),sign(blind(tdcommit(c,rA,tdA),bA),skva))/x6
} | {x6/x7

})

| {(pk(skvb),sign(blind(tdcommit(a,rB,tdB),bB),skvb))/x8
}).

Similarly,

Q
in(skvaCh,skva)
−−−−−−−−−→

νx1.out(chc,x1)
−−−−−−−−→ Q1 | {skva/x1

}
in(skvbCh,skvb)
−−−−−−−−−→→∗ Q2 | {skva/x1

}
νx2.out(chc,x2)
−−−−−−−−→

νx3.out(chc,x3)
−−−−−−−−→

νx4.out(chc,x4)
−−−−−−−−→

νx5.out(chc,x5)
−−−−−−−−→ νñ. (Q3 | {skva/x1

} | {pk(ska)/x2
} | {bA/x3

} | {f(a,rA,tdA,c)/x4
} | {tdA/x5

})
νx6.out(ch,x6)
−−−−−−−−→ νñ. (Q4 | {skva/x1

} | {pk(ska)/x2
} | {bA/x3

} | {f(a,rA,tdA,c)/x4
} | {tdA/x5

}

| {(pk(skva),sign(blind(tdcommit(a,rA,tdA),bA),skva))/x6
})

νx7.out(chc,x7)
−−−−−−−−→ νñ .(Q5 | {skva/x1

} | {pk(ska)/x2
} | {bA/x3

} | {f(a,rA,tdA,c)/x4
} | {tdA/x5

}

| {(pk(skva),sign(blind(tdcommit(a,rA,tdA),bA),skva))/x6
} | {x6/x7

})
νx8.out(ch,x8)
−−−−−−−−→ νñ .(Q6 | {skva/x1

} | {pk(ska)/x2
} | {bA/x3

} | {f(a,rA,tdA,c)/x4
} | {tdA/x5

}

| {(pk(skva),sign(blind(tdcommit(a,rA,tdA),bA),skva))/x6
} | {x6/x7

}

| {(pk(skvb),sign(blind(tdcommit(c,rB,tdB),bB),skvb))/x8
}).

We argue informally that the frames obtained at the end of this first phase are stati-
cally equivalent. In particular, note that the test

open(unblind(checksign(proj2(x6), pk(x1)), x3), x4) = c

is true in both frames. Indeed, if we denote B′ the process obtained on the left

35

hand-side after this first phase, we have that

open(unblind(checksign(proj2(x6), pk(x1)), x3), x4)σ

= open(tdcommit(a, rA, tdA), f(a, rA, tdA, c))

= open(tdcommit(c, f(a, rA, tdA, c), tdA), f(a, rA, tdA, c))

= c

where φ(B′) = νñ.σ.

For the “first input”, of both voters, we need to consider two cases: either the input
of both voters corresponds to the expected messages from the administrator or at
least one input does not correspond to the correct administrator’s signature. In the
second case, one of the voters will block, as testing correctness of the message fails
and hence the voters cannot synchronise. In the first case, we obtain at the end the
two frames below.

φP ′′ ≡ νñ. {skva/x1
} | {pk(ska)/x2

} | {bA/x3
} | {rA/x4

} | {tdA/x5
} |

{(pk(skva),sign(blind(tdcommit(c,rA,tdA),bA),skva))/x6
} | {x6/x7

} |

{(pk(skvb),sign(blind(tdcommit(a,rB,tdB),bB),skvb))/x8
} |

{(tdcommit(c,rA,tdA),sign(tdcommit(c,rA,tdA),ska))/x9
} | {x9/x10

} |

{(tdcommit(a,rB,tdB),sign(tdcommit(a,rB ,tdB),ska))/x11
} |

{(c,rA,tdcommit(c,rA,tdA))/x12
} | {a/x13

} | {c/x14
}

φQ′′ ≡ νñ. {skva/x1
} | {pk(ska)/x2

} | {bA/x3
} | {f(a,rA,tdA,c)/x4

} | {tdA/x5
} |

{(pk(skva),sign(blind(tdcommit(a,rA,tdA),bA),skva))/x6
} | {x6/x7

} |

{(pk(skvb),sign(blind(tdcommit(c,rB,tdB),bB),skvb))/x8
} |

{(tdcommit(a,rA,tdA),sign(tdcommit(a,rA,tdA),ska))/x9
} | {x9/x10

} |

{(tdcommit(c,rB ,tdB),sign(tdcommit(c,rB ,tdB),ska))/x11
} |

{(c,f(a,rA,tdA,c),tdcommit(a,rA,tdA))/x12
} | {a/x13

} | {c/x14
}

We observe that the frames are statically equivalent. In particular, note that the
test tdcommit(c, x4, x5) = proj1(x9) is true in both frames and the attacker cannot
distinguish the terms tdcommit(a, rB, tdB) and tdcommit(c, rB, tdB) since he is not
able to open this commitment. As the goal of this section is to illustrate our defini-
tions and as tool support is not provided for this equational theory we do not give a
formal proof of this static equivalence.

36

proces sC [] =
ν c1 . ν c2 . (|
(* private key of V *)
i n (c1 , x1) . ou t (chc , x1) .
(* public keys of the administrator *)
i n (c1 , x2) . ou t (chc , x2) .
ν b l i n d e r . ν r . ν t d .
(* nonces of V - blinder, r, td *)
i n (c1 , x3) . ou t (chc , b l i n d e r) .
i n (c1 , x4) . ou t (chc , r) .
i n (c1 , x5) . ou t (chc , t d) .

l e t c omm i t t e d v o t e = tdcommi t (c , r , t d) i n
l e t b l i n d e d c omm i t t e d v o t e=b l i n d (commi t t e dvo t e , b l i n d e r) i n
ou t (c2 , (pk (x1) , s i g n (b l i n d e d c omm i t t e d v o t e , x1))) .

(* signature of the administrator *)
i n (c1 , x6) . ou t (chc , x6) .
l e t r e s u l t = ch e c k s i g n (x6 , x2) i n
i f r e s u l t = b l i n d e d c omm i t t e d v o t e t h e n
ou t (c2 , t r u e) .
l e t s i g n e d c omm i t t e d v o t e=unb l i n d (x6 , b l i n d e r) i n
synch 1 .
ou t (c2 , (commi t t e dvo t e , s i g n e d c omm i t t e d v o t e)) .
ou t (c2 , (c , r , c omm i t t e d v o t e))

Process 11. Context C - coercion-resistance

Coercion-resistance. This scheme is not coercion-resistant [40]. If the coercer
provides the coerced voter with the commitment that he has to use but without re-
vealing the trap-door, the voter cannot cast her own vote a since the voter cannot
produce fake outputs as she did for receipt-freeness. In terms of our definition, we
need to show that there is no V ′ such that for all coercerC satisfying ñ ∩ fn(C) = ∅
and S[C[VA{?/v}c1,c2] | VB{a/v} ≈# S[VA{c/v}chc | VB{a/v}], we have the two
bullet points of the definition of coercion-resistance. Suppose V ′ was such a pro-
cess. Let C be the context given as Process 11 (note that it is, in fact, independent
of V ′). In order to satisfy the second bullet point, V ′ has to use the commitment
provided by the coercer, for otherwise this would yield an observable. But then it
cannot give to the timeliness member the key to open the commitment to obtain
the voter’s desired vote, in order to satisfy the first bullet, since V ′ does not know
the trap-door. Hence, for the given C, the requirements on V ′ are not satisfiable
simultaneously.

37

7 Protocol due to Lee et al.

In this section we study a protocol based on the Lee et al. protocol [35]. One of the
main advantages of this protocol is that it is vote and go: voters need to participate
in the election only once, in contrast with [24] and [39] (see Sections 5 and 6),
where all voters have to finish a first phase before any of them can participate in
the second phase. We simplified the protocol in order to concentrate on the aspects
that are important with respect to privacy, receipt-freeness and coercion-resistance.
In particular we do not consider distributed authorities.

7.1 Description

The protocol relies on re-encryption and on a less usual cryptographic primitive:
designated verifier proofs (DVP) of re-encryption. We start by explaining these
primitives.

A re-encryption of a ciphertext (obtained using a randomised encryption scheme)
changes the random coins, without changing or revealing the plaintext. In the ElGa-
mal scheme for instance, if (x, y) is the ciphertext, this is simply done by comput-
ing (xgr, yhr), where r is a random number, and g and h are the subgroup generator
and the public key respectively. Note that neither the creator of the original cipher-
text nor the person re-encrypting knows the random coins used in the re-encrypted
ciphertext, for they are a function of the coins chosen by both parties. In particular,
a voter cannot reveal the coins to a potential coercer who could use this information
to verify the value of the vote, by ciphering his expected vote with these coins.

A DVP of the re-encryption proves that the two ciphertexts contain indeed the same
plaintext. However, a designated verifier proof only convinces one intended person,
e.g., the voter, that the re-encrypted ciphertext contains the original plaintext. In
particular this proof cannot be used to convince the coercer. Technically, this is
achieved by giving the designated verifier the ability to simulate the transcripts
of the proof. A more abstract description is the following. A DVP for a designated
verifier A of a statement ϕ is a proof of the statement “ϕ ∨ I knowA’s private key”.
AsA is the only one to know his own private key a proof that has not been generated
by himself must be a proof of the statement ϕ while A himself can generate a proof
of the second part of the disjunction.

Our simplified protocol can be described in three steps.

• Firstly, the voter encrypts his vote with the collector’s public key (using the El-
Gamal scheme), signs the encrypted vote and sends it to an administrator on a
private channel. The administrator checks whether the voter is a legitimate voter
and has not voted yet. Then the administrator re-encrypts the given ciphertext,

38

signs it and sends it back to the voter. The administrator also provides a DVP that
the two ciphertexts contain indeed the same plaintext. In practice, this first stage
of the protocol can be done using a voting booth where eligibility of the voter
is tested at the entrance of the booth. The booth contains a tamper-proof device
which performs re-encryptions, signatures and DVP proofs.

• Then, the voter sends (via an anonymous channel) the re-encrypted vote, which
has been signed by the administrator to the public board.

• Finally, the collector checks the administrator’s signature on each of the votes
and, if valid, decrypts the votes and publishes the final results.

7.2 The model in applied pi

Cryptographic primitives as an equational theory. The functions and equa-
tions that handle public keys and digital signature are as usual (see Section 5 for
instance). To model re-encryption we add a function rencrypt, that permits us to
obtain a different encryption of the same message with another random coin which
is a function of the original one and the one used during the re-encryption. We also
add a pair of functions dvp and checkdvp: dvp permits us to build a designated ver-
ifier proof of the fact that a message is a re-encryption of another one and checkdvp
allows the designated verifier to check that the proof is valid. Note that checkdvp
also succeeds for a fake dvp created using the designated verifier’s private key. We
have the following equations:

decrypt(penc(m, pk(sk), r), sk) = m

rencrypt(penc(m, pk(sk), r1), r2) = penc(m, pk(sk), f(r1, r2))

checkdvp(dvp(x, rencrypt(x, r), r, pk(sk)), x, rencrypt(x, r), pk(sk)) = ok

checkdvp(dvp(x, y, z, skv), x, y, pk(skv)) = ok

Main (Process 12). The main process sets up private channels and specifies how
the processes are combined in parallel. Most of the private channels are for key
distribution. The private channel chA1 (resp. chA2) is a private channel between
the voter and her administrator. This is motivated by the fact that the administrator
corresponds to a tamper-proof hardware device in this protocol. We only model the
protocol for two voters and launch two copies of the administrator and collector
process, one for each voter.

Keying material (Process 13). Our model includes a dedicated process for gen-
erating and distributing keying material modelling a PKI. Additionally, this process

39

(* private channels *)
ν pr ivCh . ν pkaCh1 . ν pkaCh2 . ν pkcCh . ν skaCh . ν skcCh .
ν skvaCh . ν skvbCh . ν chA1 . ν chA2 .
(* administrators *)
(p roces sK | proces sC | proces sC |
(* voters *)
(l e t chA = chA1 i n proce s sA |
(l e t skvCh = skvaCh i n l e t v = a i n proce s sV)) |
(l e t chA = chA2 i n proce s sA |
(l e t skvCh = skvbCh i n l e t v = b i n proce s sV)))

Process 12. Main process

proces sK =
(* private key *)
ν ska . ν s k c . ν s kva . ν s kvb .
(* corresponding public keys *)
l e t (pka , pkc) = (pk (ska) , pk (s k c)) i n
l e t (pkva , pkvb) = (pk (s kva) , pk (s kvb)) i n
(* publik keys disclosure *)
ou t (ch , pka) . ou t (ch , pkc) . ou t (ch , pkva) . ou t (ch , pkvb) .
(* register legitimate voters *)
(ou t (pr ivCh , pkva) | ou t (pr ivCh , pkvb) |
(* keys disclosure on private channels *)
ou t (pkaCh , pka) | ou t (pkaCh , pka) | ou t (pkaCh , pka) |
ou t (pkaCh , pka) | ou t (skaCh , ska) | ou t (skaCh , ska) |
ou t (pkcCh , pkc) | ou t (pkcCh , pkc) | ou t (skcCh , s k c) |
ou t (skcCh , s k c) | ou t (skvaCh , s kva) | ou t (skvbCh , s kvb))

Process 13. Administrator for keying material

registers legitimate voters and also distributes the public keys of the election au-
thorities to legitimate voters: this is modelled using restricted channels so that the
attacker cannot provide false public keys.

Voter (Process 14). First, each voter obtains her secret key from the PKI as well
as the public keys of the election authorities. Then, a fresh random number is gen-
erated to encrypt her vote with the public key of the collector. Next, she signs the
result and sends it on a private channel to the administrator. If the voter has been
correctly registered, she obtains from the administrator, a re-encryption of her vote
signed by the administrator together with a designated verifier proof of the fact that
this re-encryption has been done correctly. If this proof is correct, then the voter
sends her re-encrypted vote signed by the administrator to the collector.

Note that we used the synchronisation command to model this process. This com-
mand is crucial for privacy to hold in presence of a corrupted collector. This ensures

40

proce s sV = (* parameters: skvCh, v *)
(* her private key *)
i n (skvCh , s k v) .
(* public keys of the administrators *)
i n (pkaCh1 , pubka) . i n (pkcCh , pubkc) .
s ynch 1 . ν r .
l e t e = penc (v , pubkc , r) i n
ou t (chA , (pk (s k v) , e , s i g n (e , s k v))) .
i n (chA , m2) .
l e t (re , sa , dvpV) = m2 i n
i f checkdvp (dvpV , e , re , pk (s k v)) = ok
t h e n i f c h e c k s i g n (sa , pubka) = re
t h e n ou t (ch , (re , sa))

Process 14. Voter process

proce s sA =
(* administrator’s private key *)
i n (skaCh , skadm) .
(* register a legimitate voter *)
i n (pr ivCh , pubkv) .
s ynch 1 .
i n (chA , m1) .
l e t (pubv , enc , s i g)=m1 i n
i f pubv=pubkv t h e n
i f c h e c k s i g n (s i g , pubv)= enc
t h e n ν r1 .
l e t reAd=r e n c r y p t (enc , r1) i n
l e t s ignAd=s i g n (reAd , skadm) i n
l e t dvpAd=dvp (enc , reAd , r1 , pubv) i n
ou t (chA , (reAd , s ignAd , dvpAd))

Process 15. Administrator process

that key distribution is finished before any of the two voter proceeds. Otherwise an
attack on privacy can be mounted since the attacker can prevent one of the vot-
ers from obtaining her keys. One may also note that this protocol is vote and go:
even if synchronisation is used the voters participate actively only during one of the
synchronised phases.

Administrator (Process 15). The administrator first receives through a private
channel his own private key as well as the public key of a legitimate voter. The
received public key has to match the voter who is trying to get a re-encryption of
her vote signed by the administrator. The administrator has also to prove to the
voter that he has done the re-encryption properly. For this, he builds a designated
verifier proof which will be only convincing for the voter.

41

proces sC =
(* collector’s private key *)
i n (skcCh , p r i v c) .
(* administrator’s public key *)
i n (pkaCh2 , pkadmin) .
s ynch 1 .
i n (ch , m3) .
l e t (ev , s e v) = m3 i n
i f c h e c k s i g n (sev , pkadmin) = ev
t h e n l e t vo t eV = d e c r y p t (ev , p r i v c) i n
synch 2 .
ou t (ch , vo t eV)

Process 16. Collector process

Collector (Process 16). First, the collector receives all the signed ballots. He
checks the signature and decrypts the result with his private key to obtain the value
of the vote in order to publish the results. Although it is not mentioned in the de-
scription of the protocol [35], it seems reasonable to think that the collector does
not accept the same ballot twice. For sake of readability, we do not model this fea-
ture in Process 16; however, we will model it when we come to receipt-freeness,
since it is crucial there. Finally, when all votes have been submitted to the col-
lector (synchronisation is achieved using the synchronisation instruction), they are
published.

7.3 Analysis

Let VA = V {skvaCh/skvCh}{chA1/chA} and VB = V {skvbCh/skvCh}{chA2/chA}.
Note that again we have to establish all the static equivalences manually: ProVerif
is not able to deal with equational theories such as this one.

Vote privacy. We show that the protocol respects privacy. For this, we establish
the following equivalence

S[VA{
a/v} | VB{

b/v}] ≈# S[VA{
b/v} | VB{

a/v}]

where S = νpkaCh1, pkcCh, skaCh, chA1, chA2.(| processK

| processA{chA1/chA}

| processA{chA2/chA})

As for the other case studies, we prove privacy only for the case of two voters.

42

Privacy does not require any of the keys to be secret. However, we need to ensure
that both voters use the same public key for the administrator and for the collector.
Therefore, we send public keys on a private channel, although the corresponding
private keys can be considered as free names. We assume that both administrators
have the same private key and that both voters have the right to vote. If any of these
conditions is not satisfied, privacy does not hold.

We denote the left-hand process as P and the right-hand process asQ. The processK
starts with the output of all the keys. For the sake of readability, we ignore some of
these outputs which are not important for our analysis and we write νr̃ instead of
the sequence νrA.νrB.νr1.νr2.

P
in(skvaCh,skva)
−−−−−−−−−→ →∗ in(skvbCh,skvb)

−−−−−−−−−→ →∗ P1

νx1.out(ch,x1)
−−−−−−−−→ νr̃.(P2 | {(penc(a,pkc,f(rA,r1)),sign(penc(a,pkc,f(rA,r1)),ska)/x1

}
νx2.out(ch,x2)
−−−−−−−−→ νr̃.(P3 | {(penc(a,pkc,f(rA,r1)),sign(penc(a,pkc,f(rA,r1)),ska)/x1

}

| {(penc(b,pkc,f(rB ,r2)),sign(penc(b,pkc,f(rB ,r2)),ska)/x2
})

Similarly,

Q
in(skvaCh,skva)
−−−−−−−−−→ →∗ in(skvbCh,skvb)

−−−−−−−−−→ →∗ Q1

νx1.out(ch,x1)
−−−−−−−−→ νr̃.(Q2 | {(penc(a,pkc,f(rB ,r2)),sign(penc(a,pkc,f(rB ,r2)),ska)/x1

}
νx2.out(ch,x2)
−−−−−−−−→ νr̃.(Q3 | {(penc(a,pkc,f(rB ,r2)),sign(penc(a,pkc,f(rB ,r2)),ska)/x1

}

| {(penc(b,pkc,f(rA,r1)),sign(penc(b,pkc,f(rA,r1)),ska)/x2
})

The resulting frames are statically equivalent. Note that, during key distribution, the
process VA{a/v} is matched with VA{b/v}, while afterwards VA{a/v} is matched
with VB{a/v}. Therefore, we require a phase after the keying distribution.

Receipt-freeness. To show receipt-freeness one needs to construct a process V ′

which can successfully fake all secrets to a coercer. The idea is that V ′ votes a, but
when outputting secrets to the coercer V ′ prepares all outputs as if she was voting c.
The crucial part is that, using her private key, she provides a fake DVP stating that
the actual re-encryption of the encryption of vote a is a re-encryption of the encryp-
tion of vote c. Given our equational theory, the two resulting frames are statically
equivalent because for both the real and the fake DVP, checkdvp returns ok.

To establish receipt-freeness, we have to assume that the collector is trusted. In-
deed, it is important to be sure that its private key remains secret. Otherwise, an
attack against receipt-freeness can be mounted: if the coercer knows the collector’s

43

processV ’=
(* her private key *)
i n (skvaCh , s k v) . ou t (chc , s k v) .
(* public keys of administrators *)
i n (pkaCh , pubka) . ou t (chc , pubka) .
i n (pkcCh , pubkc) . ou t (chc , pubkc) .
s ynch 1 .
ν r . ou t (chc , r) .
l e t e = penc (a , pubkc , r) i n
ou t (chA1 , (pk (s k v) , e , s i g n (e , s k v))) .

(* message from the administrator *)
i n (chA1 , m2) .
l e t (re , sa , dvpV) = m2 i n
i f checkdvp (dvpV , e , re , pk (s k v))= ok t h e n
ν r ’ .
l e t f k=dvp (penc (c , pubkc , r) , re , r ’ , s k v) i n
ou t (chc , (re , sa , f k)) .
i f c h e c k s i g n (sa , pubka) = re t h e n
ou t (ch , (re , sa))

Process 17. Process V ′ - Receipt-Freeness

private key he can directly decrypt the re-encryption and check whether the vote
is c rather than relying on the designated verifier proof. Note that, in reality [35], a
threshold encryption scheme is used and decryption has to be performed by mul-
tiple collectors. Hence, their scheme can deal with some corrupt collectors. It is
also important that the private key of the administrator remains secret. Otherwise
an attacker can forge any vote and submit it to the collector.

Process 17 shows a possible V ′. To prove receipt-freeness, we need to show

• V ′\out(chc,·) ≈# VA{a/v}, and
• S[VA{c/v}chc | VB{a/v}] ≈# S[V ′ | VB{c/v}].

where S represents all of the remaining process.

The first labelled bisimulation may be seen informally by considering V ′ with the
“out(chc, ...)” commands removed, and comparing it visually with VA. To see the
second labelled bisimulation, one can informally consider all the executions of
each side. S consists of the Main process, and therefore includes processK, the
two processA’s, and the two processC’s, but it has a hole for the two voter pro-
cesses. As shown above, the hole is filled by VA{c/v}chc | VB{a/v} on the left and
by V ′ | VB{c/v} on the right. Executions of VA{c/v}chc are matched with those
of V ′; similarly, VB{a/v} on the left is matched with VB{c/v} on the right. To
illustrate this, we consider a particular execution on the left, and we give the corre-
sponding execution on the right. Here the process P1 is the one obtained after key

44

distribution. The sequence of names ñ denotes rA, r1, rB, r2, r′ and also skvb, skc
and ska but not skva (coerced voter). We write pkva instead of pk(skva) and as-
sume that public keys are in the frame. We denote by pA = penc(c, pkc, f(rA, r1))
and by pB = penc(a, pkc, f(rB , r2)).

P1
νx1.out(ch,x1)
−−−−−−−−→ νñ.(P2 | {rA/x1

})
νx2.out(ch,x2)
−−−−−−−−→ νñ.(P3 | {rA/x1

} | {(pA,sign(pA,ska),dvp(penc(c,pkc,rA),pA,r1,pkva))/x2
})

νx3.out(ch,x3)
−−−−−−−−→ νr̃.(P4 | {rA/x1

} | {(pA,sign(pA,ska),dvp(penc(c,pkc,rA),pA,r1,pkva))/x2
}

| {(pA,sign(pA,ska)/x3
})

νx4.out(ch,x4)
−−−−−−−−→ νñ.(P5 | {rA/x1

} | {(pA,sign(pA,ska),dvp(penc(c,pkc,rA),pA,r1,pkva))/x2
}

| {(pA,sign(pA,ska)/x3
} | {(pB ,sign(pB ,ska))/x4

})

Similarly, we have that

Q1
νx1.out(ch,x1)
−−−−−−−−→ νñ.(Q2 | {rA/x1

})
νx2.out(ch,x2)
−−−−−−−−→ νñ.(Q3 | {rA/x1

} | {(qA,sign(qA,ska),dvp(penc(c,pkc,rA),qA,r′,skva))/x2
})

νx3.out(ch,x3)
−−−−−−−−→ νñ.(Q4 | {rA/x1

} | {(qA,sign(qA,ska),dvp(penc(c,pkc,rA),qA,r′,skva))/x2
}

| {(qA,sign(qA,ska)/x3
})

νx4.out(ch,x4)
−−−−−−−−→ νñ.(Q5 | {rA/x1

} | {(qA,sign(qA,ska),dvp(penc(c,pkc,rA),qA,r′,skva))/x2
}

| {(qA,sign(qA,ska)/x3
} | {(qB ,sign(qB ,ska))/x4

})

where qA = penc(a, pkc, f(rA, r1)) and qB = penc(c, pkc, f(rB , r2)).

Note that, the test checkdvp(proj3(x2), penc(c, pkc, x1), proj1(x2), pk(skva)) = ok is
true in both frames. Now, for the input of the collector, we have to consider any
public terms. There are essentially two cases. Either the input of both collectors
corresponds to the votes submitted by both voters or at least one of the inputs
does not. In the last case, since the attacker is not able to provide fake inputs of the
expected form, i.e. the input needs to be signed by the administrator, this means that
either the collector will block or that both inputs are exactly the same. To prevent
the last case, we have to ensure that the collector does not accept a same vote twice.
This can be modelled by adding a process in charge of checking double votes and by
slightly modifying the processC. The additional process is described in Process 18.
In the collector process we add the following instructions just before “synch 2”:
out(privDblChk, ballot).in(privDblChk, x). if x = ok then [. . .] where privDblChk is
a restricted channel.

45

doubleCheck =
i n (pr ivDblChk , b a l l o t 1) . ou t (pr ivDblChk , ok) .
i n (pr ivDblChk , b a l l o t 2) .
i f b a l l o t 1=b a l l o t 2 t h e n 0 e l s e ou t (pr ivDblChk , ok)

Process 18. Process to prevent double ballot

We know that if the tests succeeded, both collectors synchronise at phase 2. Up to
that point any move of the collector that received the vote of VA{c/v}chc on the left-
hand side has been imitated on the right-hand side by the collector that received the
vote of the voter VB{c/v}, and similarly for the second collector. The interesting
part of the frames obtained after a complete execution is described below.

φP ′ ≡ νñ. ({rA/x1
} | {(pA,sign(pA,ska),dvp(penc(c,pkc,rA),pA,r1,pkva))/x2

}

| {(pA,sign(pA,ska)/x3
} | {(pB ,sign(pB ,ska))/x4

} | {a/x5
} | {c/x6

})

φQ′ ≡ νñ. ({rA/x1
} | {(qA,sign(qA,ska),dvp(penc(c,pkc,rA),qA,r′,skva))/x2

}

| {(qA,sign(qA,ska)/x3
} | {(qB ,sign(qB ,ska))/x4

} | {a/x5
} | {c/x6

})

Coercion-resistance. We prove coercion resistance by constructing V ′, which is
similar to the one for receipt-freeness. However, for coercion-resistance the coercer
also provides the inputs for the messages to send out. Thanks to the fact that

S[C[VA{
?/v}

c1,c2] | VB{
a/v}] ≈# S[VA{

c/v}
chc | VB{

a/v}],

we know that the coercer prepares messages corresponding to the given vote c.
Hence,

• V ′ fakes the outputs as in the case of receipt-freeness; the non-coerced voter will
counter-balance the outcome, by choosing the vote c;

• V ′ simply ignores the inputs provided by the coercer.

Such a process V ′ is shown in Process 19. Similar reasoning to the one used above
(for receipt freeness) can be used here, to establish that the conditions

• C[V ′]\out(chc,·) ≈# VA{a/v}
• S[C[VA{?/v}c1,c2 | VB{a/v}] ≈# S[C[V ′] | VB{c/v}],

hold, thus establishing coercion resistance. It is a bit more difficult to perform this
reasoning since we have to consider any context C = νc1.νc2.(| P) such that
ñ ∩ fn(C) = ∅ and S[C[VA{?/v}c1,c2] | VB{a/v}] ≈# S[VA{c/v}chc | VB{a/v}].

46

For the first condition, we can see that if the process C[V ′]\out(chc,·) does not block
then it has the same behaviour as VA{a/v} since V ′ completely ignores the inputs
provided by C. The only point is to ensure that V ′ can fake the outputs to C as in
the case of receipt-freeness. This is indeed possible to do so since the voter does
not have to know any private data used by the coercer to prepare the messages. (For
instance, the voter does not have to know the nonce used by the coercer when he
encrypts the vote c.)

To obtain the second condition, it is sufficient to show that the equivalence

S[V ′′ | VB{
c/v}] ≈# S[C[V ′] | VB{

c/v}]

holds, where V ′′ is the process provided for receipt-freeness (Process 17). Note
that the processes C[V ′] and V ′′ are not bisimilar by themselves, because some
tests involving messages outputted on chA1 allows us to distinguish them. In-
deed, it may be possible that the coercer (i.e. the context C) chooses to gener-
ate his own nonce rc to encrypt his vote c and does not use the one provided
by the voter. In such a case, the coercer has to output rc on the channel chc,
and does not forward the nonce provided by the voter, in order to ensure that
S[C[VA{?/v}c1,c2] | VB{a/v}] ≈# S[VA{c/v}chc | VB{a/v}]. This means that the
outputs performed on chc by V ′′ on the left hand-side and by the coercer C on the
right hand-side are not quite the same. However, those tests cannot be performed
when these processes are put inside the context S, because chA1 is restricted.

8 Conclusion

We have defined a framework for modelling cryptographic voting protocols in the
applied pi calculus, and shown how to express in it the properties of vote-privacy,
receipt-freeness and coercion-resistance. Within the framework, we can stipulate
which parties are assumed to be trustworthy in order to obtain the desired property.
We investigated three protocols from the literature. Our results are summarised in
Figure 1.

We have proved the intuitive relationships between the three properties: for a fixed
set of trusted authorities, coercion-resistance implies receipt-freeness, and receipt-
freeness implies vote-privacy.

Our definition of coercion-resistance does not attempt to handle “fault attacks”, in
which the coercer supplies material which forces the voter to vote randomly, or
to vote incorrectly resulting in an abstention (these attacks are respectively called
randomisation and forced abstention attacks in the work of Juels et al. [31]). A pro-
tocol which succumbs to such attacks could still be considered coercion-resistant
according to our definition. In our model, the coercer can count the votes for each
candidate, so it seems to be in fact impossible to resist fault attacks fully.

47

processV ’=
(* her private key *)
i n (skvaCh , s k v) . ou t (c1 , s k v) .
(* public keys of administrators *)
i n (pkaCh , pubka) . ou t (c1 , pubka) .
i n (pkcCh , pubkc) . ou t (c1 , pubkc) .
s ynch 1 .
ν r . ou t (c1 , r) .
l e t e = penc (a , pubkc , r) i n
(* instruction from the coercer *)
i n (c2 , x1) .
l e t (p i , e i , s i) = x1 i n
ou t (chA1 , (pk (s k v) , e , s i g n (e , s k v))) .

(* message from the administrator *)
i n (chA1 , m2) .
l e t (re , sa , dvpV) = m2 i n
i f checkdvp (dvpV , e , re , pk (s k v)) = ok t h e n
ν r ’ .
l e t f k = dvp (e i , re , r ’ , s k v) i n
ou t (c1 , (re , sa , f k)) .
i f c h e c k s i g n (sa , pubka) = re t h e n
i n (c2 , x2) . ou t (ch , (re , sa))

Process 19. Process V ′ - coercion-resistance

Property Fujioka et al. Okamoto et al. Lee et al.

Vote-privacy ! ! !

trusted authorities none timeliness mbr. administrator

Receipt-freeness × ! !

trusted authorities n/a timeliness mbr. admin. & collector

Coercion-resistance × × !

trusted authorities n/a n/a admin. & collector

Fig. 1: Summary of protocols and properties

Our reasoning about bisimulation in applied pi is rather informal. In the future, we
hope to develop better techniques for formalising and automating this reasoning.
The ProVerif tool goes some way in this direction, but the technique it uses is fo-
cused on process which have the same structure and differ only in the choice of
terms [9]. The sort of reasoning we need in this paper often involves a bisimula-
tion relation which does not follow the structure of the processes. For example, in
proving vote-privacy for Fujioka et al., early on we match VA{a/v} on the left-hand
side with VA{b/v} on the right-hand side, while later we match VA{a/v} on the left

48

with VB{a/v} on the right. It would be useful to automate this kind of reasoning, or
to investigate more general and more powerful methods for establishing bisimula-
tion. Symbolic reasoning has proved successful for reachability properties [37,5],
in which terms input from the environment are represented as symbolic variables,
together with some constraints. One direction we are investigating is the develop-
ment of symbolic bisimulation and corresponding decision procedures for the finite
applied pi calculus. This work has been initiated in [19].

Our definition of coercion-resistance involves quantification over all possible con-
texts which satisfy a certain condition, and this makes it hard to work with in prac-
tice. Coercion-resistance may thus be seen as a kind of observational equivalence
but with a restriction on the powers of the observer. Our earlier paper [18] included
a notion which we called adaptive simulation, a variant of bisimulation which at-
tempts to model the coerced voter’s ability to adapt her vote according to the in-
structions of the coercer. Unfortunately, we have found this notion to have some
undesirable properties, and we have not used it in this paper. In the future, we hope
to find a corresponding restriction of labelled bisimilarity, which will help us to
reason with coercion-resistance more effectively.

Acknowledgments Michael Clarkson read our CSFW paper [18] and asked us
several challenging questions, which were instrumental in helping us prepare this
paper. Anonymous reviewers of this journal article provided many detailed com-
ments which were very useful in helping us to improve its quality.

References

[1] Martı́n Abadi, Bruno Blanchet, and Cédric Fournet. Just fast keying in the pi calculus.
In Proc. 13th European Symposium on Programming (ESOP’04), volume 2986 of
LNCS, pages 340–354. Springer, 2004.

[2] Martı́n Abadi and Cédric Fournet. Mobile values, new names, and secure
communication. In Proc. 28th ACM Symposium on Principles of Programming
Languages (POPL’01), pages 104–115, London, UK, 2001. ACM.

[3] Martı́n Abadi and Andrew D. Gordon. A calculus for cryptographic protocols: The spi
calculus. In Proc. 4th ACM Conference on Computer and Communications Security
(CCS’97), pages 36–47. ACM Press, 1997.

[4] A. Baskar, R. Ramanujam, and S.P. Suresh. Knowledge-based modelling of voting
protocols. In Proc. 11th Conference on Theoretical Aspects of Rationality and
Knowledge (TARK’07), pages 62–71, 2007.

[5] Mathieu Baudet. Deciding security of protocols against off-line guessing attacks. In
Proc. 12th ACM Conference on Computer and Communications Security (CCS’05),
pages 16–25, Alexandria, Virginia, USA, 2005. ACM Press.

49

[6] Josh Benaloh. Verifiable Secret Ballot Elections. PhD thesis, Yale University, 1987.

[7] Josh Benaloh and Dwight Tuinstra. Receipt-free secret-ballot elections (extended
abstract). In Proc. 26th Symposium on Theory of Computing (STOC’94), pages 544–
553. ACM Press, 1994.

[8] Bruno Blanchet. An efficient cryptographic protocol verifier based on prolog rules. In
Proc. 14th IEEE Computer Security Foundations Workshop (CSFW’01), pages 82–96.
IEEE Comp. Soc. Press, 2001.

[9] Bruno Blanchet, Martı́n Abadi, and Cédric Fournet. Automated Verification of
Selected Equivalences for Security Protocols. In Proc. 20th IEEE Symposium on Logic
in Computer Science (LICS 2005), pages 331–340. IEEE Comp. Soc. Press, 2005.

[10] Ran Canetti and Rosario Gennaro. Incoercible multiparty computation. In Proc. 37th
Symposium on Foundations of Computer Science (FOCS’96), pages 504–513. IEEE
Comp. Soc. Press, 1996.

[11] Konstantinos Chatzikokolakis and Catuscia Palamidessi. Probable innocence
revisited. In Proc. 3rd Formal Aspects in Security and Trust (FAST’05), volume 3866
of LNCS, pages 142–157. Springer, 2006.

[12] Konstantinos Chatzikokolakis, Catuscia Palamidessi, and P. Panangaden. Anonymity
protocols as noisy channels. In Proc. 2nd Symposium on Trustworthy Global
Computing (TGC’06), LNCS. Springer, 2006. To appear.

[13] David Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM, 24(2):84–88, February 1981.

[14] David Chaum. Blind signatures for untraceable payments. In Advances in Cryptology
– CRYPTO’82, pages 199–203. Plenum Press, 1983.

[15] David Chaum. Elections with unconditionally-secret ballots and disruption equivalent
to breaking RSA. In Advances in Cryptology – Eurocrypt’88, volume 330 of LNCS,
pages 177–182. Springer, 1988.

[16] David Chaum. Secret-ballot receipts: True voter-verifiable elections. IEEE Security
and Privacy, 2(1):38–47, 2004.

[17] David Chaum, Peter Y. A. Ryan, and Steve Schneider. A practical, voter-verifiable
election scheme. In Proc. 10th European Symposium On Research In Computer
Security (ESORICS’05), volume 3679 of LNCS, pages 118–139. Springer, 2005.

[18] Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Coercion-resistance and
receipt-freeness in electronic voting. In Proc. 19th Computer Security Foundations
Workshop (CSFW’06), pages 28–39. IEEE Comp. Soc. Press, 2006.

[19] Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Symbolic bisimulation for the
applied pi-calculus. In Proc. 27th Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS’07), LNCS. Springer, 2007. To appear.

[20] Claudia Dı́az, Stefaan Seys, Joris Claessens, and Bart Preneel. Towards measuring
anonymity. In Proc. 2nd International Workshop on Privacy Enhancing Technologies
(PET’02), volume 2482 of LNCS, pages 54–68. Springer, 2002.

50

[21] Ariel J. Feldman, J. Alex Halderman, and Edward W. Felten. Security analysis of
the diebold accuvote-ts voting machine. http://itpolicy.princeton.edu/
voting/, 2006.

[22] Marc Fischlin. Trapdoor Commitment Schemes and Their Applications. PhD thesis,
Fachbereich Mathematik Johann Wolfgang Goethe-Universität Frankfurt am Main,
2001.

[23] Cédric Fournet and Martı́n Abadi. Hiding names: Private authentication in the applied
pi calculus. In Proc. International Symposium on Software Security (ISSS’02), volume
2609 of LNCS, pages 317–338. Springer, 2003.

[24] Atsushi Fujioka, Tatsuaki Okamoto, and Kazui Ohta. A practical secret voting scheme
for large scale elections. In Advances in Cryptology – AUSCRYPT ’92, volume 718 of
LNCS, pages 244–251. Springer, 1992.

[25] Rop Gonggrijp, Willem-Jan Hengeveld, Andreas Bogk, Dirk Engling, Hannes
Mehnert, Frank Rieger, Pascal Scheffers, and Barry Wels. Nedap/Groenendaal
ES3B voting computer: a security analysis. www.wijvertrouwenstem
computersniet.nl/other/es3b-en.pdf. Retrieved 24 October 2007.

[26] Joseph Y. Halpern and Kevin R. O’Neill. Anonymity and information hiding in
multiagent systems. Journal of Computer Security, 13(3):483–512, 2005.

[27] Martin Hirt and Kazue Sako. Efficient receipt-free voting based on homomorphic
encryption. In Advances in Cryptography – Eurocrypt’00, volume 1807 of LNCS,
pages 539–556. Springer, 2000.

[28] Hugo L. Jonker and Erik P. de Vink. Formalising Receipt-Freeness. In Proc.
Information Security (ISC’06), volume 4176 of LNCS, pages 476–488. Springer, 2006.

[29] Hugo L. Jonker and Wolter Pieters. Receipt-freeness as a special case of anonymity
in epistemic logic. In Proc. AVoSS Workshop On Trustworthy Elections (WOTE’06),
2006.

[30] Wen-Shenq Juang and Chin-Laung Lei. A secure and practical electronic voting
scheme for real world environments. IEICE Transaction on Fundamentals of
Electronics, Communications and Computer Science, E80A, 1:64–71, January 1997.

[31] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant electronic
elections. In Proc. Workshop on Privacy in the Electronic Society (WPES’05). ACM
Press, 2005.

[32] Detlef Kähler, Ralf Küsters, and Thomas Wilke. A Dolev-Yao-based Definition
of Abuse-free Protocols. In Proc. 33rd International Colloqium on Automata,
Languages, and Programming (ICALP’06), volume 4052 of LNCS, pages 95–106.
Springer, 2006.

[33] Tadayoshi Kohno, Adam Stubblefield, Aviel D. Rubin, and Dan S. Wallach. Analysis
of an electronic voting system. In Proc. 25th IEEE Symposium on Security and Privacy
(SSP’04), pages 27–28. IEEE Comp. Soc. Press, 2004.

51

[34] Steve Kremer and Mark D. Ryan. Analysis of an electronic voting protocol in the
applied pi-calculus. In Proc. 14th European Symposium On Programming (ESOP’05),
volume 3444 of LNCS, pages 186–200. Springer, 2005.

[35] Byoungcheon Lee, Colin Boyd, Ed Dawson, Kwangjo Kim, Jeongmo Yang, and
Seungjae Yoo. Providing receipt-freeness in mixnet-based voting protocols. In Proc.
Information Security and Cryptology (ICISC’03), volume 2971 of LNCS, pages 245–
258. Springer, 2004.

[36] SjoukeMauw, Jan H.S. Verschuren, and Erik P. de Vink. A formalization of anonymity
and onion routing. In Proc. 9th European Symposium on Research Computer Security
(ESORICS’04), volume 3193 of LNCS, pages 109–124. Springer, 2004.

[37] Jonathan K. Millen and Vitaly Shmatikov. Constraint solving for bounded-process
cryptographic protocol analysis. In Proc. 8th ACM Conference on Computer and
Communications Security (CCS’01), pages 166–175. ACM Press, 2001.

[38] Christoffer Rosenkilde Nielsen, Esben Heltoft Andersen, and Hanne Riis Nielson.
Static analysis of a voting protocol. In Proc. 2nd Workshop on Automated Reasoning
for Security Protocol Analysis (ARSPA’05), 2005.

[39] Tatsuaki Okamoto. An electronic voting scheme. In Proc. IFIP World Conference on
IT Tools, pages 21–30, 1996.

[40] Tatsuaki Okamoto. Receipt-free electronic voting schemes for large scale elections.
In Proc. 5th Int. Security Protocols Workshop, volume 1361 of LNCS, pages 25–35.
Springer, 1997.

[41] Michael K. Reiter and Aviel D. Rubin. Crowds: Anonymity for web transactions.
ACM Trans. Inf. Syst. Secur., 1(1):66–92, 1998.

[42] Steve Schneider and Abraham Sidiropoulos. CSP and anonymity. In Proc. 4th
European Symposium On Research In Computer Security (ESORICS’96), volume
1146 of LNCS, pages 198–218. Springer, 1996.

[43] Andrei Serjantov and George Danezis. Towards an information theoretic metric for
anonymity. In Proc. 2nd International Workshop on Privacy Enhancing Technologies
(PET’02), volume 2482 of LNCS, pages 41–53. Springer, 2002.

[44] Vitaly Shmatikov. Probabilistic analysis of anonymity. In Proc. 15th Computer
Security Foundations Workshop (CSFW’02), pages 119–128. IEEE Comp. Soc. Press,
2002.

[45] Paul F. Syverson, David M. Goldschlag, and Michael G. Reed. Anonymous
connections and onion routing. In Proc. 18th IEEE Symposium on Security and
Privacy (SSP’97), pages 44–54. IEEE Comp. Soc. Press, 1997.

52

Appendix A Proof of Lemma 14

Lemma 14 Let P be a closed plain process and ch a channel name such that
ch "∈ fn(P) ∪ bn(P). We have (P ch)\out(ch,·) ≈# P .

PROOF. Let P be a closed plain process. We show by induction on the size of P
that for any channel name ch such that ch "∈ fn(P)∪bn(P)we haveP ch\out(ch,·) ≈# P .
The size of the null process is defined to be 0. Prefixing the process P by a restric-
tion, an input or an output or putting it under a replication adds 1 to its size. The
size of the process P | Q (resp. if M = N then P else Q) is the sum of the size
of P and Q plus 1.

The base case where P = 0 is trivial. Let ch be a channel name such that ch "∈
fn(P) ∪ bn(P). The possibilities for building P are the following:

• P = P1 | P2. In such a case, we have:

P ch\out(ch,.) =̂ (P1
ch | P2

ch)\out(ch,.)

=̂ νch.(P1
ch | P2

ch |!in(ch, x))

≈# νch.(P1
ch |!in(ch, x)) | νch.((P2)ch |!in(ch, x))

since in(ch, .) occurs neither in P ch
1 nor in P ch

2

≈# P ch\out(ch,.)
1 | P ch\out(ch,.)

2

≈# P1 | P2 by induction hypothesis

= P

• P = νn.P1. We have:

P ch\out(ch,.) = (νn.P1)ch\out(ch,.)

=̂ νch.(νn.out(ch, n).P1
ch |!in(ch, x))

≈# νch.(νn.P1
ch |!in(ch, x))

≡ νn.νch.(P1
ch |!in(ch, x)) since n "= ch

=̂ νn.P1
ch\out(ch,.)

≈# νn.P1 by induction hypothesis

= P

53

• P = in(c, y).P1. Note that c "= ch. We have:

P ch\out(ch,.) = (in(c, y).P1)ch\out(ch,.)

=̂ νch.(in(c, y).out(ch, y).P ch
1 |!in(ch, x))

≈# in(c, y).νch.(out(ch, y).P ch
1 |!in(ch, x))

≈# in(c, y).νch.(P ch
1 |!in(ch, x))

=̂ in(c, y).P ch\out(ch,.)
1

≈# in(c, y).P1

To establish the last step, we can see that for any ground term M , the processes
Q1 and Q2 such that in(c, y).P ch\out(ch,.)

1
in(c,M)
−−−−→ Q1 and in(c, y).P1

in(c,M)
−−−−→ Q2

are such that Q1 ≡ P1{M/y}ch\out(ch,.) and Q2 ≡ P1{M/y}. By induction hy-
pothesis, we have thatQ1 andQ2 are bisimilar. Note that for this step we assume
that w.l.o.g. ch "∈ fv(M). This can always be obtained by α-renaming ch. Lastly,
we conclude thanks to the fact that in(c, y).P1 = P .

• P = out(c,M).P1. Note that c "= ch. We have:

P ch\out(ch,.) = (out(c,M).P1)ch\out(ch,.)

=̂ νch.(out(c,M).P ch
1 |!in(ch, x))

≈# out(c,M).νch.(P ch
1 |!in(ch, x))

=̂ out(c,M).P ch\out(ch,.)
1

≈# out(c,M).P1 by induction hypothesis

= P

• P = !P1. In such a case, we have:

P ch\out(ch,.) =̂ (!P1)ch\out(ch,.)

=̂ νch.(!P ch
1 |!in(ch, x))

≈# νch.!(P ch
1 |!in(ch, x))

≈# !(νch.(P ch
1 |!in(ch, x))) since in(ch, .) does not occur in P ch

1

=̂ !P ch\out(ch,.)
1

≈# !P1 by induction hypothesis

= P

• P = ifM = N then P1 else P2. Hence, we have:

54

P ch\out(ch,.) = (ifM = N then P1 else P2)ch\out(ch,.)

=̂ νch.(ifM = N then P ch
1 else P ch

2 |!in(ch, x))

≈# νch.(ifM = N then (P ch
1 |!in(ch, x) else (P ch

2 |!in(ch, x)))

≈# νch.(ifM = N then (P ch
1 |!in(ch, x) else (P ch

2 |!in(ch, x)))

≈# ifM = N then νch.(P ch
1 |!in(ch, x)) else νch.(P ch

2 |!in(ch, x))

since in(ch, .) occurs neither in P ch
1 nor in P ch

2

=̂ ifM = N then P ch\out(ch,.)
1 else P ch\out(ch,.)

2

≈# ifM = N then P1 else P2

= P

This last case conludes the proof. !

55

