
Christel Baier, Nathalie Bertrand, Patricia Bouyer,

Thomas Brihaye, and Marcus Größer

Almost-Sure Model Checking of
Infinite Paths in One-Clock Timed

Automata

Research Report LSV-07-29

19 September 2007

Almost-Sure Model Checking of Infinite Paths

in One-Clock Timed Automata

Christel Baier1, Nathalie Bertrand1,?, Patricia Bouyer2,3,??,
Thomas Brihaye2, and Marcus Größer1

1 Technische Universität Dresden, Germany
2 LSV - CNRS & ENS de Cachan, France

3 Oxford University Computing Laboratory, UK

Abstract. In this paper, we define two relaxed semantics (one based on probabilities and
the other one based on the topological notion of largeness) for LTL over infinite runs of
timed automata which rule out unlikely sequences of events. We prove that these two seman-
tics match in the framework of single-clock timed automata (and only in that framework),
and prove that the corresponding relaxed model-checking problems are PSPACE-Complete.
Moreover, we prove that the probabilistic non-Zenoness can be decided for single-clock timed
automata in NLOGSPACE.

1 Introduction

Nowadays timed automata [AD94] are a well-established formalism for the mod-
elling and analysis of timed systems. Roughly speaking timed automata are finite
state automata enriched with clocks and clock constraints. This model has been in-
tensively studied, and several verification tools have been developed. However, like
most models used in model checking, timed automata are an idealized mathemati-
cal model. In particular it has infinite precision, instantaneous events, etc. Recently,
more and more research is devoted to propose alternative semantics for timed au-
tomata that provide more realistic operational models for real-time systems. Let
us first mention the Almost ASAP semantics introduced in [DDR04] and further
studied in [DDMR04,ALM05,BMR06]. This AASAP semantics somewhat relaxes
the constraints and precision of clocks. However, it induces a very strong notion of
robustness, suitable for really critical systems, but maybe too strong for less critical
systems. Another “robust semantics”, based on the notion of tube acceptance, has
been proposed in [GHJ97,HR00]. In this framework, a metric is put on the set of
traces of the timed automaton, and a trace is robustly accepted if and only if a
tube around that trace is classically accepted. This language-focused notion of ac-
ceptance is not completely satisfactory for implementability issues, because it does
not take into account the structure of the automaton, and hence is not related to
the most-likely behaviours of the automaton.

? Partly supported by a Lavoisier fellowship (program of the French Ministry of Foreign Affairs).
?? Partly supported by a Marie Curie fellowship (program of the European Commission).

Varacca and Völzer recently proposed in [VV06] a probabilistic framework for
finite-state (time-abstract) systems to overcome side-effects of modelling. They use
probabilities to define the notion of being fairly correct as having probability zero to
fail, when every non-deterministic choice has been transformed into a “reasonable”
probabilistic choice. Moreover, in their framework, a system is fairly correct with
respect to some property if and only if the set of traces satisfying that property in
the system is topologically large, which somehow attests the relevance of this notion
of fair correctness.

In the recent paper [BBB+07], we used similar concepts as in [VV06] and pro-
posed two alternative semantics for reasoning about the finite runs of timed au-
tomata: (i) a probabilistic semantics which assigns probabilities both on delays and
on discrete choices, and (ii) a topological semantics, following ideas of [GHJ97,HR00]
but rather based on the structure of the automaton than on its accepted language.
For both semantics, we naturally addressed a model-checking problem for LTL inter-
preted over finite paths. We proved, by means of Banach-Mazur games, that both
semantics coincide and that both model-checking problems for LTL specifications on
finite words are PSPACE-Complete.

The purpose of this paper is to adapt the techniques proposed in [BBB+07] for
analyzing the infinite behaviours of timed automata by means of a probabilistic
almost-sure interpretation of LTL over infinite runs (which requires that the given
LTL formula ϕ holds with probability 1) and a topological interpretation (which
requires topological largeness of the set of infinite runs where ϕ holds). The for-
mal definitions of the almost-sure and topological semantics of LTL interpreted over
the infinite runs in a timed automata are rather straightforward adaptions of the
corresponding definitions in the case of finite runs [BBB+07]. However, to establish
a link between the two semantics and to show that the topological semantics of
LTL is reasonable in the sense that it matches the standard meaning of negation,
the proof techniques used in [BBB+07] are no longer appropriate. Instead, meth-
ods are required that are specific for infinite runs. To confirm that the topological
semantics yields a reasonable interpretation for LTL, we prove that the underlying
topology constitutes a Baire space. For the case of one-clock timed automata, we
will show that some kind of strong fairness is inherent in the almost-sure seman-
tics. This observation will be used to prove that the almost-sure and topological
semantics for infinite paths in one-clock timed automata agree. As the topological
semantics only relies on the graph-structure of the given automaton (but not on
any quantitative assumption on the resolution of the nondeterministic choices as
it is the case for the probabilistic setting), this result yields the key to establish a
polynomially space-bounded model checking algorithm for LTL over infinite words
with respect to our non-standard semantics. In addition, we introduce a notion of
probabilistic non-Zenoness, which requires that the set of Zeno runs have measure 0,
and show that it has a simple topological characterization which can serve as a basis

2

for a nondeterministic logarithmic space-bounded algorithm to checking probabilis-
tic non-Zenoness. We also show that analogous results cannot be established for
timed automata with two or more clocks, as then the probabilistic and topological
semantics for LTL over infinite words do not agree.

Organisation of the paper. Section 2 summarizes our notations for timed au-
tomata, LTL and the relevant topological concepts. The probabilistic space and the
topological space associated with a timed automaton together with the almost-sure
and topological LTL semantics are defined in Section 3. The relation between the
two semantics and the induced model checking problems are studied in Section 4.
Probabilistic Zenoness is considered in Section 5.

2 Preliminaries

2.1 The timed automaton model

Let us first recall the notions of clocks, clock valuations, and guards needed to define
timed automata [AD94]. We denote by X = {x1, . . . , xk} a finite set of clocks. A clock
valuation over X is a mapping ν : X → R+, where R+ denotes the set of nonnegative
reals. We write RX

+ for the set of clock valuations over X. Given a clock valuation ν
and τ ∈ R+, ν + τ is the clock valuation defined by (ν + τ)(x) = ν(x) + τ for every
x ∈ X. If Y ⊆ X, the valuation [Y ← 0]ν is the valuation ν ′ such that ν ′(x) = 0
if x ∈ Y , and ν ′(x) = ν(x) otherwise. A guard over X is a finite conjunction of
expressions of the form x ∼ c where x ∈ X is a clock, c ∈ N is an integer, and ∼
is one of the symbols {<,≤, =,≥, >}. We denote by G(X) the set of guards over
X. The satisfaction relation for guards over clock valuations is defined in a natural
way, and we write ν |= g if the clock valuation ν satisfies the guard g. We denote
by AP a finite set of atomic propositions.

Definition 1. A timed automaton is a tuple A = (L, X,E, I,L) such that: (i) L is
a finite set of locations, (ii) X is a finite set of clocks, (iii) E ⊆ L×G(X)× 2X ×L
is a finite set of edges, (iv) I : L→ G(X) assigns an invariant to each location, and
(v) L : L→ 2AP is a labelling function.

The semantics of a timed automaton A is given by a timed transition system TA =
(S, E, R+,→) where the set S of states is {s = (`, ν) ∈ L × RX

+ | ν |= I(`)}, and
the transition relation → ⊆ (S × (E ∪ R+) × S) is composed of delay and discrete
transitions as follows:

– (delay transition) (`, ν)
τ−→A (`, ν + τ) if τ ∈ R+ and if for all 0 ≤ τ ′ ≤ τ ,

ν + τ ′ |= I(`),
– (discrete transition) (`, ν)

e−→A (`′, ν ′) if e = (`, g, Y, `′) ∈ E is such that ν |=
I(`) ∧ g, ν ′ = [Y ← 0]ν, and ν ′ |= I(`′).

3

A finite (resp. infinite) run % of A is a finite (resp. infinite) sequence of states
obtained by alternating delay and discrete transitions, i.e., % = s0

τ1−→ s′1
e1−→ s1

τ2−→
s′2

e2−→ s2 . . . or more compactly s0
τ1,e1−−→ s1

τ2,e2−−→ s2 . . . We write Runsf (A, s0) (resp.
Runs(A, s0)) for the set of runs (resp. infinite runs) of A from state s0.

If s is a state of A and (ei)1≤i≤n is a finite sequence of edges of A, if C is a
constraint over n variables (ti)1≤i≤n, the (symbolic) path starting from s, determined
by (ei)1≤i≤n, and constrained by C, is the following set of runs:

πC(s, e1 . . . en) = {% = s
τ1,e1−−→ s1 . . .

τn,en−−−→ sn | % ∈ Runsf (A, s) and (τi)1≤i≤n |= C} .

If C is equivalent to ‘true’, we simply write π(s, e1 . . . en). Let πC = πC(s, e1 . . . en)
be a finite symbolic path, we define the cylinder generated by πC as

Cyl(πC) = {% ∈ Runs(A, s) | ∃%′ ∈ Runsf (A, s), finite prefix of %, s.t. %′ ∈ πC} .

In the following, we will also use infinite symbolic paths defined, given s a state of
A and (ei)i≥1 an infinite sequence of edges, as:

π(s, e1e2 . . .) = {% = s
τ1,e1−−→ s1

τ2,e2−−→ s2 . . . | % ∈ Runs(A, s)} .

If % ∈ Runs(A, s), we write π% for the unique symbolic path containing %. Given s

a state of A and e an edge, we define I(s, e) = {τ ∈ R+ | s
τ,e−→ s′} and I(s) =S

e I(s, e). Note that I(s, e) is an interval, whereas I(s) is a finite union of intervals.
The timed automaton A is said non-blocking if, for every state s, I(s) 6= ∅.

2.2 The region automaton abstraction

The well-known region automaton construction [AD94] is an abstraction of timed
automata which can be used for verifying many properties, for instance regular
untimed properties.

Let A be a timed automaton. Define M as the largest constant to which clocks
are compared in guards or invariants of A. Two clock valuations ν and ν ′ are said
region-equivalent (written ν ≈ ν ′) whenever the following conditions hold:

– bν(x)c = bν ′(x)c or ν(x), ν ′(x) > M , for all x ∈ X;
– {ν(x)} = 0 iff {ν ′(x)} = 0, for all x ∈ X with ν(x) ≤M ;
– {ν(x)} ≤ {ν(y)} iff {ν ′(x)} ≤ {ν ′(y)}, for all x, y ∈ X with ν(x), ν(y) ≤M .

where, b·c denotes the integral part, and {·} denotes the fractional part.
This equivalence relation on clock valuations has a finite (exponential) index,

and extends to the states of A, saying that (`, ν) ≈ (`′, ν ′) iff ` = `′ and ν ≈ ν ′.
We use [ν] (resp. [(`, ν)]) to denote the equivalence class to which ν (resp. (`, ν))
belongs. A region is an equivalence class of valuations. The set of all the regions is
denoted by R. If r is a region, we denote by cell(r) the smallest guard defined with

4

constants smaller than M , and which contains r. We denote by cell(R) the set of all
the cell(r).

The original region automaton [AD94] is a finite automaton which is the quotient
of the timed transition system TA by the equivalence relation ≈. Here, we use a slight
modification of the original construction, which is still a timed automaton, but which
satisfies very strong properties.

Definition 2. Let A = (L, X,E, I,L) be a timed automaton. The region automa-
ton of A is the timed automaton R(A) = (Q,X, T, κ, λ) such that:

– Q = L×R;

– κ((`, r)) = I(`), and λ((`, r)) = L(`) for every (`, r) ∈ L×R;

– T ⊆ (Q× cell(R)× 2X ×Q), and (`, r)
cell(r′′),e,Y−−−−−−→ (`′, r′) is in T iff e = `

g,Y−−→ `′

is in E, and there exists ν ∈ r, τ ∈ R+ with (`, ν)
τ,e−→ (`′, ν ′), ν + τ ∈ r′′, and

ν ′ ∈ r′.

We recover the usual region automaton of [AD94] by labelling the transitions “e”
instead of “cell(r′′), e, Y ”, and by interpreting R(A) as a finite automaton. However,
the above timed interpretation satisfies strong timed bisimulation properties that
we do not detail here (we assume the reader is familiar with this construction).
To every finite path π((`, ν), e1 . . . en) in A corresponds a finite set of paths in
π(((`, [ν]), ν), f1 . . . fn) in R(A), each one corresponding to a choice in the regions
that are crossed. If % is a run in A, then we write ι(%) its (unique) image in R(A).
Note that if A is non-blocking, then so is R(A).

In the rest of the paper we assume that timed automata are non-blocking, even
though general timed automata could also be handled (but at a technical extra cost).
In all examples, if a state has no outgoing transition, we implicitly add a self-loop
on that state with no constraints, so that the automaton is non-blocking.

2.3 The logic LTL

We consider the linear-time temporal logic LTL [Pnu77] defined inductively as:

LTL 3 ϕ ::= p | ϕ ∨ ϕ | ϕ ∧ ϕ | ¬ϕ | ϕUϕ

where p ∈ AP is an atomic proposition. We use classical shorthands like tt
def
= p∨¬p,

ff
def
= p ∧ ¬p, ϕ1 ⇒ ϕ2

def
= ¬ϕ1 ∨ ϕ2, Fϕ

def
= ttUϕ, and Gϕ

def
= ¬F (¬ϕ). We assume

the reader is familiar with the semantics of LTL, that we interpret here on infinite
runs of a timed automaton.

5

2.4 Largeness, meagerness and the Banach-Mazur game

We assume the reader is familiar with basic notions of topology (see e.g. [Mun00]).
However, we recall the more elaborate notions of meagerness and largeness. If (A, T)
is a topological space, a set B ⊆ A is nowhere dense if the interior of the closure of
B is empty. A set is meager if it is a countable union of nowhere dense sets, and a set
is large if its complement is meager. These notions have very nice characterizations
in terms of Banach-Mazur games.

Definition 3 (Banach-Mazur game). Let (A, T) be a topological space and B be
a family of subsets of A satisfying the two following properties:

– for all B ∈ B, B̊ 6= ∅, and
– given O a non-empty open set of A, there exists B ∈ B such that B ⊆ O.

Fix C a subset of A. Two players alternate their moves: Player 1 starts and chooses
an element B1 of B; Player 2 then responds by choosing an element B2 of B such
that B1 ⊇ B2; Then Player 1 responds by choosing B3 in B such that B2 ⊇ B3, and
so on. This way, they build a decreasing sequence of sets Bi:

A ⊇ B1 ⊇ B2 ⊇ B3 · · ·

where the B2i+1’s (resp. B2i’s) are the choices of Player 1 (resp. Player 2), for i ∈ N.
Player 1 wins the game if the intersection of all Bi’s intersects C, i.e.,

∞\
i=1

Bi ∩ C 6= ∅ .

Otherwise, Player 2 wins the game.

Banach-Mazur games are not always determined, even for simple topological
spaces (see [Oxt57, Remark 1]). Still a natural question is to know when the players
have winning strategies. The following result gives a partial answer and relates
Banach-Mazur games and meagerness:

Theorem 4 (Banach-Mazur [Oxt57]). Player 2 has a winning strategy in the
Banach-Mazur game with target set C if and only if C is meager.

3 Probabilistic and Topological Semantics for Timed
Automata

In [BBB+07], we defined two relaxed semantics for LTL over finite runs of timed au-
tomata: the almost-sure semantics, based on probabilities, and the large semantics,
based on the topological notion of largeness. In this section, we extend, in a natural
way these semantics and the notion of dimension to infinite runs of timed automata.

6

3.1 A probabilistic semantics for LTL

Let A be a timed automaton. As in [BBB+07], we assume probability distributions
are given from every state s of A both over delays and over enabled moves. For
every state s of A, the probability measure µs over delays in R+ (equipped with
the standard Borel σ-algebra) must satisfy several requirements. A first series, is
denoted (?) in the sequel:

– µs(I(s)) = µs(R+) = 1,4

– Denoting λ the Lebesgue measure, if λ(I(s)) > 0, µs is equivalent5 to λ on I(s);
Otherwise, µs is equivalent on I(s) to the uniform distribution over points of
I(s).

This last condition denotes some kind of fairness w.r.t. enabled transitions, in that
we cannot disallow one transition by putting a probability 0 to delays enabling that
transition.

For technical reasons, we also ask for additional requirements (denoted (†)):
– (s, a, b) 7→ µs

�
{d | s + d ∈ [a, b]}

�
is continuous on {(s, a, b) | ∃e s.t. [a, b] ⊆

I(s, e)};
– If s′ = s + t for some t ≥ 0, and 0 /∈ I(s + t′, e) for every 0 ≤ t′ ≤ t, then

µs(I(s, e)) ≤ µs′(I(s′, e));
– There is 0 < λ0 < 1 s.t. for every state s with I(s) unbounded, µs([0, 1/2]) ≤ λ0.

Remark 5. The three last requirements are technical and needed to deal with infi-
nite behaviours, but they are natural and easily satisfiable. For instance, a timed
automaton equipped with uniform (resp. exponential6) distributions on bounded
(resp. unbounded) intervals satisfy these conditions. If we assume exponential dis-
tributions on unbounded intervals, the very last requirement corresponds to the
bounded transition rate condition in [DP03], required to have reasonable and real-
istic behaviours.

For every state s of A, we also assume a probability distribution ps over edges,
such that for every edge e, ps(e) > 0 iff e is enabled in s (i.e., s

e−→ s′ for some s′).
Moreover, to simplify, we assume that ps is given by weights on transitions, as it
is classically done for resolving non-determinism: we associate with each edge e a
weight w(e) > 0, and for every state s, for every edge e, ps(e) = 0 if e is not enabled
in s, and ps(e) = w(e)/(

P
e′ enabled in s w(e′)) otherwise. As a consequence, if s and s′

are region equivalent, then for every edge e, ps(e) = ps′(e). We then define a measure
over finite symbolic paths from state s as

PA(π(s, e1 . . . en)) =
Z

t∈I(s,e1)
ps+t(e1) PA(π(st, e2 . . . en)) dµs(t)

4 Note that this is possible, as we assume A is non-blocking, hence I(s) 6= ∅ for every state s of A.
5 Two measures ν and ν′ are equivalent whenever for each measurable set A, ν(A) = 0 ⇔ ν′(A) = 0.
6 With bounded transition rates, see [DP03].

7

where s
t−→ (s + t)

e1−→ st, and we initialize with PA(π(s)) = 1.7 The formula for
PA relies on the fact that the probability of taking transition e1 at time t coincides
with the probability of waiting t time units and then choosing e1 among the enabled
transitions, i.e., ps+t(e1)dµs(t). Note that, time passage and actions are independent
events.

The value PA(π(s, e1 . . . en)) is the result of n successive one-dimensional inte-
grals, but it can also be viewed as the result of an n-dimensional integral. Hence,
we can easily extend the above definition to finite constrained paths πC(s, e1 . . . en)
when C is Borel-measurable. This extension to constrained paths is needed to deal
with Zeno behaviours (see Section 5). The measure PA can then be defined on cylin-
ders, letting PA(Cyl(π)) = PA(π) if π is a finite (constrained) symbolic path. Finally
we extend PA in a standard and unique way to the σ-algebra generated by these
cylinders, that we note Ωs

A.

Proposition 6. Let A be a timed automaton. For every state s, PA is a probability
measure over (Runs(A, s), Ωs

A).

The proof of the proposition also justifies the construction for the probability mea-
sure PA and is given in the appendix (see page i).

Example 7. Consider the timed automaton A depicted on Fig. 1, and assume for all
states both uniform distributions over delays and discrete moves. If s0 = (`0, 0) is
the initial state, then

PA(Cyl(π(s0, e1e1))) = PA(π(s0, e1e1)) =
1

4
and PA(π(s0, e1

ω)) = 0 .

– Indeed,

PA(π(s0, e1e1)) =
Z

t∈I(s,e1)
ps+t(e1) PA(π((`0, t), e1)) dµs0(t)

=
Z 1

0

1

2
PA(π((`0, t), e1)) dλ(t)

=
1

2

Z 1

0

�Z
t∈I(st,e2)

pst+u(e2) PA(π((`1, u))) dµst(u)
�

dλ(t)

=
1

2

Z 1

0

�Z 1

t

1

2

1

1− t
dλ(u)

�
dλ(t) =

1

4

because µs0 = λ (resp. µst = λ
1−t

) is the uniform distribution over [0, 1] (resp.
over [t, 1]).

7 In [BBB+07] the definition was slightly different since we wanted the measure of all finite paths to be 1.
We therefore used a normalisation factor 1/2 so that the measure of all paths of length i were 1/2i+1.

8

– In a similar way we can show that PA(π(s0, e1
n)) = 1

2n , for n ∈ N; and thus
conclude that PA(π(s0, e1

ω)) = 0. M

`0

x≤1

`1

{p1}

`2

x≤2

{p2}

`3

{p1}e2, x≤1

e3, x=1

e4, x≥3, x:=0

e5, x≤2

e6, x=0
e1, x≤1 e7, x≤1

Fig. 1. A running example

We have seen in [BBB+07] how to transfer probabilities from A to R(A), and
proved the correctness of the transformation. Under the same hypotheses (for every

state s in A, µAs = µ
R(A)
ι(s) , and for every t ∈ R+ pAs+t = p

R(A)
ι(s)+t) this correctness still

holds in our case by definition of the probability measure:

Lemma 8. Assume measures in A and in R(A) are related as above. Then, for

every set S of runs in A we have: S ∈ Ωs
A iff ι(S) ∈ Ω

ι(s)
R(A), and in this case

PA(S) = PR(A)(ι(S)).

Proof. The two measures coincide on finite constraints paths (see [BBB+07, Lemma 7]),
thus on cylinders, and finally on any measurable set of infinite runs. ut

We can therefore lift results proved on R(A) to A. In the sequel, we write A =
R(A) when we consider a region automaton rather than a general timed automaton.

Given an infinite symbolic path π and an LTL formula ϕ, either all concretizations
of π (i.e., concrete runs % ∈ π) satisfy ϕ, or they all do not satisfy ϕ. Hence,
the set {% ∈ Runs(A, s0) | % |= ϕ} is measurable (in Ωs0

A), as it is an ω-regular
property [Var85]. In the sequel, we write PA(s0 |= ϕ) for PA{% ∈ Runs(A, s0) | % |=
ϕ}.

Definition 9. Let ϕ be an LTL formula and A a timed automaton. We say that A
almost-surely satisfies ϕ from s0, and we then write A, s0 |≈P ϕ, whenever PA(s0 |=
ϕ) = 1. The almost-sure model-checking problem asks, given A, ϕ and s0, whether
A, s0 |≈P ϕ.

Example 10. Consider the timed automaton A of Fig. 1 again with both uniform
distributions over delays and discrete moves in all states and initial state s0 = (`0, 0).
Then, A, s0 |≈P F (p1 ∧ G (p1 ⇒ F p2)). Indeed, in state (`0, ν) with 0 ≤ ν ≤
1, the probability of firing e2 (after some delay) is always 1/2 (guards of e1 and
e2 are the same, there is thus a uniform distribution over both edges), thus the
location `1 is reached with probability 1. In `1, the transition e3 will unlikely happen,
because its guard x = 1 is much too “small” compared to the guard x ≥ 3 of the

9

transition e4. The same phenomenon arises in location `2 between the transitions e5

and e6. In conclusion, the runs of the timed automaton A (from s0) are almost surely
following sequences of transitions of the form e1

∗e2(e4e5)
ω. Hence, with probability

1, the formula F (p1 ∧G (p1 ⇒ F p2)) is satisfied. Note that the previous formula
is not satisfied with the classical LTL semantics. Indeed several counter-examples to
the satisfaction of the formula can be found: ‘staying in `0 forever ’, ‘reaching `3’,
etc... All these counter-examples are unlikely and vanish thanks to our probabilistic
semantics. M

Although the values PA(s0 |= ϕ) depend on the chosen weights ps(e) and mea-
sures µs, we will see that for one-clock timed automata the almost-sure satisfaction
relation is not affected by the choice of the weights and distributions. This will be
crucial for the decidability of the almost-sure model checking problem. The way to
establish this result is to prove the equivalence of the almost-sure semantics and a
topological semantics, which is defined on the basis of the so-called dimension of
symbolic paths.

3.2 The dimension, a tool to almost-surely analyze timed automata

In [BBB+07], we introduced a notion of dimension for finite constrained symbolic
paths. Intuitively, a path is of defined dimension if it corresponds to a polyhe-
dron of maximal dimension (in the space induced by the automaton). Formally, let
πC = πC(s, e1 . . . en) be a constrained path of a timed automaton A. We define its
associated polyhedron as follows:

Pol(πC) = {(τi)1≤i≤n ∈ (R+)n | s τ1,e1−−→ s1 · · ·
τn,en−−−→ sn ∈ πC(s, e1 . . . en)} .

For each 0 ≤ i ≤ n, we write Ci for the constraint induced by the projection of
Pol(πC) over the i first coordinates, with the convention that C0 is true. We say that
the dimension of πC is undefined, denoted dimA(πC) = ⊥, whenever there exists some
index 1 ≤ i ≤ n with

dim
�
Pol
�
πCi

(s, e1 . . . ei)
��

< dim
�
∪e Pol

�
πCi−1

(s, e1 . . . ei−1e)
��

.

Otherwise we say that the dimension of πC is defined, denoted dimA(πC) = >.
The notion of dimension naturally extends to infinite symbolic paths: If π =

π(s, e1e2 . . .) is an infinite symbolic path, its dimension is

dimA(π) = lim
n→∞

dimA(π(s, e1 . . . en)).

Remark 11. If for some index n, dimA(π(s, e1e2 . . . en)) = ⊥, then for every index
m ≥ n, dimA(π(s, e1e2 . . . em)) = ⊥. This is a consequence of [BBB+07, Lemma 22].

Example 12. On the automaton A of Fig. 1 with s0 = (`0, 0), dimA(π(s0, e1
ω)) = >

and dimA(π(s0, e1(e2e3)
ω)) = ⊥.

10

– Let us first consider the infinite path π(s0, e1
ω), and show that all its finite

prefixes π(s0, e
n
1) have defined dimension.

Pol(π(s0, e1
n)) = {(τ1, . . . , τn) ∈ (R+)n | (0 ≤ τ1 ≤ 1) ∧ · · · ∧ (0 ≤ τ1 + · · ·+ τn ≤ 1)} ,

thus clearly enough dim(Pol(π(s0, e1
n))) = n. Moreover we have that Pol(π(s0, e1

n−1))
is equal to the projection of Pol(π(s0, e1

n)) on the n − 1 first coordinates; we
denote by Cn−1 the constraint induced by this projection. In particular, we
have that: πCn−1(s0, e1

n−1, e) = π(s0, e1
n−1, e). We can now conclude that, for

1 ≤ i ≤ n:

dim
�[

e

Pol
�
πCi−1

(s0, e1
i−1e)

��
= dim

�[
e

Pol
�
π(s0, e1

i−1e)
��

= dim
�
Pol
�
π(s0, e1

i)
��

= i,

proving that dim(π(s0, e1
n)) = >, for n ∈ N, and thus dim(π(s0, e1

ω)) = >.
– Let us now consider the infinite path π(s0, e1(e2e3)

ω). In order to show that its
dimension is undefined, we exhibit a finite prefix of undefined dimension. First
notice that:

Pol(π(s0, e1e2e3)) = {(τ1, τ2, τ3) | (0 ≤ τ1 ≤ 1) ∧ (0 ≤ τ1 + τ2 ≤ 1) ∧ (τ1 + τ2 + τ3 = 1)} ,

Pol(π(s0, e1e2e4)) = {(τ1, τ2, τ3) | (0 ≤ τ1 ≤ 1) ∧ (0 ≤ τ1 + τ2 ≤ 1) ∧ (τ1 + τ2 + τ3 ≥ 3)} ,

thus dim(Pol(π(s0, e1e2e3))) = 2 < dim(Pol(π(s0, e1e2e4))) = 3 which implies
that dim(π(s0, e1e2e3) = ⊥. The definiion of the dimension clearly implies that
all extensions of paths of undefined dimension have undefined dimension too.
Hence we conclude that dim(π(s0, e1(e2e3)

ω) = ⊥. M

In the context of finite paths, a symbolic path has probability 0 iff it has an
undefined dimension. In the context of infinite paths, this is not quite true as infinite
paths with defined dimension can have probability 0, like π(s0, e

ω
1) in the automaton

of Fig. 1. However, writing PA(s |= dim undef) for PA{% ∈ Runs(A, s) | dimA(%) =
⊥}, the following holds:

Lemma 13. If A is a timed automaton, for every state s in A,

PA(s |= dim undef) = 0 .

Proof. Let π be an infinite path in A with undefined dimension. By definition of
the dimension for infinite paths, π admits a finite prefix8 π1 that has undefined
dimension too. Moreover, any continuation of π1 also has an undefined dimension.
Therefore, the whole cylinder set generated by π1 is composed of infinite paths
of undefined dimension. By definition, PA(Cyl(π1)) is the probability of the finite

8 As A = R(A), projections and prefixes match.

11

symbolic path π1, which is equal to 0 thanks to the equivalence for finite paths
between zero-probability and undefined dimension (see [BBB+07]).

The set of infinite paths which have undefined dimension can be written has the
denumerable union of cylinders generated by finite prefixes with undefined dimen-
sion:

{% ∈ Runs(A, s) | dim(π%) = ⊥} =
[

π=π(s,e1...en)
s.t. dim(π)=⊥

Cyl(π).

Hence
PA(s |= dim undef) ≤

X
π=π(s,e1...en)
s.t. dim(π)=⊥

PA(Cyl(π)) = 0 .

ut

3.3 A topological semantics for LTL

Let A be a timed automaton, and s be a state of A. Let T s
A be the topology over

the set of runs of A starting in s defined with the following basic opens sets: either
the set Runs(A, s), or the cylinders Cyl(πC) where πC = πC(s, e1e2 . . . en) is a finite
constrained symbolic path of A such that: (i) dim(πC) = >, (ii) C is convex (and
Borel-measurable), and (iii) Pol(πC) is open in Pol(π) for the classical topology on
Rn.

We first prove that our topological space is a Baire space:9 indeed, in non Baire
spaces, the notions of largeness and meagerness do not always make sense. For
instance, in Q with the classical topology, every set is both meager and large. Hence
negation would have little meaning in our topological satisfaction. In Baire spaces,
however, if a set is large its complement is not.

Proposition 14. Let A be a timed automaton. For every state s of A, the topolog-
ical space (Runs(A, s), T s

A) is a Baire space.

The proof of Proposition 14 heavily relies on the Banach-Mazur game but is not a
consequence of the same result for finite runs [BBB+07].

Proof. To prove that (Runs(A, s), T s
A) is a Baire space, we prove that every non-

empty basic open set in T s
A is not meager. Let Cyl(πC(s, e1 . . . en)) be a basic open

set, where πC(s, e1 . . . en) is a finite constrained symbolic path. Using Banach-Mazur
games (see page 6 or [Oxt57]), we prove that Cyl(πC(s, e1 . . . en)) is not meager by
proving that Player 2 does not have a winning strategy for the Banach-Mazur game
playing with basic open sets and where the goal set is C = Cyl(πC(s, e1 . . . en)).

Player 1 starts by choosing a set B1 = Cyl(πC(s, e1 . . . en)). Then Player 2 picks
some basic open set B2 = Cyl(πC2(s, e1 . . . en . . . en1)) such that B1 ⊇ B2.

9 Recall that a topological space (A, T) is a Baire space if every non-empty open set in T is not meager.

12

Let us now explain how Player 1 can build her move in order to avoid to reach
the empty set. Since B2 is an open set, we have that (i) dim(πC2) = > and (ii)
Pol(πC2(s, e1 . . . en1)) is open in Pol(π(s, e1 . . . en1)) ⊆ Rn1

+ . Since the topology on
Pol(π(e1 . . . en1)) is induced from a distance, we know that there exists a closed,
bounded and convex set denoted K1 such that K̊1 6= ∅ and K1 ⊆ Pol(πC2(s, e1 . . . en1)).
Let D1 be the set of constraints associated with K1, we clearly have that the cylinder
Cyl(πD1(s, e1 . . . en1)) is included in B2. Let O be a convex open set included in K1

and C3 be the set of constraints associated with O. Applying Corollary D of the re-
search report correponding to [BBB+07], we know that dimA(πC3(s, e1 . . . en1)) = >.
Hence clearly enough, we have that Cyl(πC3(s, e1 . . . en1)) is an open set. Player 1’s
move will be to take B3 = Cyl(πC3(s, e1 . . . en1)). By iterating the same process for
the strategy of Player 1, we obtain the following sequence:

B1 ⊇ B2 ⊇ Cyl(πD1) ⊇ B3 ⊇ B4 ⊇ Cyl(πD2) ⊇ . . . ⊇ B2i−1 ⊇ B2i ⊇ Cyl(πDi) ⊇ · · ·

where for each i, Ki = Pol(πDi) is a closed and bounded subset of Pol(π(e1, . . . , eni
)) ⊆

Rni
+ (where the ni’s form a non-decreasing sequence of N). We then have that:

∞\
i=1

Bi =
∞\
i=1

Cyl(πDi) .

We would like to guarantee that the above intersection in non-empty This is not
completely straightforward since the polyhedra Ki = Pol(πDi) belong to different
powers of R+. We distinguish between two cases:

– either the sequence (ni)i≥1 diverges to +∞. In that case, we will embed
T∞

i=1 Ki

into a compact set of RN
+. We first define

fKj = Proj{nj−1+1,...,nj}Kj and fK =
Y
j≥1

fKj .

Note that fKj is a compact set, since it is the projection of a compact set. Each

Ki can naturally be embedded in fK by considering the sets K ′
i defined by

K ′
i = Ki ×

Y
j>i

fKj .

The decomposition is illustrated on Figure 2. The K ′
i’s form a nested chain of

closed sets of fK. By Tychonoff’s theorem, fK is compact. Hence we can ensure
that

T∞
i=1 K ′

i is non-empty (Heine-Borel Theorem). Take a sequence (τj)j≥1 inT∞
i=1 K ′

i. Each subsequence (τj)1≤j≤ni
straightforwardly belongs to Ki. Hence,

the run s
τ1,e1−−→ s1

τ2,e2−−→ s2 . . . is in
T∞

i=1 Bi, which completes the proof in this
case.

– either the sequence (ni)i≥1 is upper bounded. In that case, we embed
T∞

i=1 Ki

into a compact set of RN
+ where N = limi→+∞. We let the details to the reader,

as they are very similar to (and easier than) the previous case. ut

13

Rn1
+

Rn2
+

Rn2−n1
+

K1

K2
eK2

K′
1

Fig. 2. The decomposition of the Ki’s

We can now define a topological semantics for LTL based on the (topological)
notion of largeness.

Definition 15. Let ϕ be an LTL formula and A a timed automaton. We say that
A largely satisfies ϕ from s0, and we write A, s0 |≈T ϕ, if {% ∈ Runs(A, s0) | % |= ϕ}
is topologically large. The large model-checking problem asks, given A, ϕ and s0,
whether A, s0 |≈T ϕ.

Example 16. On the timed automaton A of Fig. 1 with initial state s0 = (`0, 0),
A, s0 |≈T F (p1 ∧G (p1 ⇒ F p2)).

In order to prove that formula ϕ ≡ F (p1 ∧G (p1 ⇒ F p2)) is largely satisfied,

we show that the set C
def
= {π(s0, e1

ie2(e4e5)
ω)|i ∈ N} is large. Indeed, each run

of C satisfies ϕ, and thus, if C is large then A, s0 |≈T ϕ, since largeness is closed
under subsumption. To prove that C is large (or equivalently that its complement
is meager) we use a Banach-Mazur game [Oxt57], and show that Player 2 has a
strategy to avoid the complement of C, hence to reach C. The game is played with
the basic open sets of (Runs(A, s0)). The strategy of Player 2 is as follows:

– We assume Player 1 has chosen a cylinder Cyl(π(s0, e1
n1)), for some n1 ∈ N0 (if

Player 1 leaves `0 at her first move, we skip the first move of Player 2)

– Player 2 chooses Cyl(π(s0, e1
n1e2)),

– Notice that Player 1 is not allowed to extend the symbolic path π(s0, e1
n1e2) with

sequences of transitions including e3 or e6, since both symbolic paths π(s0, e1
n1e2e3)

and π(s0, e1
n1e2e4e6) have undefined dimension. Thus she can only play moves

of the form Cyl(π(s0, e1
n1(e2e3)

n2)) or Cyl(π(s0, e1
n1e2(e3e2)

n2)).

– Player 2 takes Cyl(π(s0, e1
n1(e2e3)

n3)), with n3 > n2.

One can easily be convinced that by repeating infinitely often the two last moves,
we will obtain a run of C, proving that Player 2 won the game and thus that C is
large.

14

Notice that both players could also play with constrained paths. This would not
be interesting for Player 1, since it could only cause the intersection to be empty (in
which case Player 2 wins as well). M

Although the topological spaces given by A and R(A) are not homeomorphic,
the topologies in A and in R(A) somehow match, as stated by the next proposition.
This allows to lift result from R(A) to A.

Proposition 17. Let A be a timed automaton, and s a state of A. Let S ⊆ Runs(A, s).

Then, S is large in (Runs(A, s), T s
A) iff ι(S) is large in (Runs(R(A), ι(s)), T ι(s)

R(A)).

The proof of this proposition relies on the following technical lemma. Indeed, it
is now sufficient to simulate a Banach-Mazur game from A to R(A) and vice-versa
to get the expected result.

Lemma 18. Let ι : Runsf (A, s)→ Runsf (R(A), ι(s)) be the projection of finite runs
% in A onto the region automaton (see page 5). Then ι is continuous, and for every

non-empty open set O ∈ T s
A,

◦ùι(O)6= ∅.

Proof. Let us first proof that ι is continuous. Let Cyl(πC) be a basic open set of

T ι(s)
R(A), we need to prove that ι−1(Cyl(πC)) is an open set of T s

A. One can easily be

convinced that ι−1(Cyl(πC)) = Cyl(ι−1(πC)). By [BBB+07, Lemma 16], we have that
ι−1(πC) is a finite symbolic path with defined dimension whose polyhedron is open
in its ambient space. Hence Cyl(ι−1(πC)) is open, and ι is thus continuous.

Let us now prove that for every non-empty open set O ∈ T s
A,

◦ùι(O)6= ∅. Let
Cyl(πC) be a basic open set of TA. Again using [BBB+07, Lemma 16], we obtain that
ι(πC) contains a symbolic path π′ with defined dimension whose polyhedron is open
in its ambient space. Hence Cyl(π′) is open and since Cyl(π′) ⊆ Cyl(ι(πC)), we obtain
the desired result. ut

Remark 19. Note that ι is not an homeomorphism from Runsf (A, s) to Runsf (R(A), ι(s))
since ι−1 : Runsf (R(A), s)→ Runsf (A, ι−1(s)) is not continuous. Indeed, let us con-
sider the automaton A of Fig. 3, with s0 = (`0, 0). The set of runs O = Cyl(π(s0, e1))
is open in T s0

A since π(s0, e1) is a symbolic unconstrained path of defined dimen-

sion. However, ι(π(s0, e1)) = Cyl(π(s0, f1)) ∪ Cyl(π(s0, f2)) is not open in T ι(s0)
R(A) as

dimR(A)(π(s0, f1)) = ⊥ and hence Cyl(π(s0, f1)) is not a basic open. Thus ι(O) is
not open and ι−1 is not continuous.

4 The Two Semantics Match

In the previous section, we defined two relaxed semantics for LTL over infinite runs in
timed automata: the almost-sure satisfaction based on probabilistic interpretations

15

`0

`1

`2

x<1, e1

1<x<2, e2

`0,x=0

`1,x=0

`1,0<x<1

`2,1<x<2

x=0, f1

x<1, f2

1<x<2, f3

Fig. 3. An automaton and its region automaton

of delays and discrete choices, and the large satisfaction based on a topology defined
on runs of the automaton. In this section, we prove that the two semantics match
in the case of one-clock timed automata, and provide a decidability algorithm for
the almost-sure (or equivalently large) LTL model-checking problem. It is however
not a straightforward consequence of the same result for finite runs [BBB+07]. It is
indeed rather involved and requires the development of techniques mixing classical
probabilistic techniques and strong properties of one-clock timed automata. Note
that these techniques only apply in the one-clock framework!

We first recall a construction made in [BBB+07] to decide the almost-sure model
checking of LTL interpreted over finite paths. Any edge e in R(A) is colored in red if
µs(I(s, e)) = 0, and in blue otherwise. Then, a finite path in R(A) has an undefined
dimension iff it crosses a red edge. Hence, having a defined (or undefined) dimension
for a path can be specified locally in R(A). We say that a blue (resp. red) edge has a
defined (resp. undefined) dimension. We call Gb(A) the restriction of R(A) to edges
with defined dimension.

4.1 A notion of fairness

In the case of finite paths, if PA(s |= ϕ) = 1, then only paths of undefined dimension
may not satisfy ϕ. Unfortunately, this is in general wrong for infinite paths. Indeed,
on the timed automaton A of Fig. 1, when starting from s = (`0, 0), location `1 is
clearly reached with probability 1. However the infinite path π(s, e0

ω) has defined
dimension although it never reaches `1. This kind of behaviours forces us to restrict
our study to fair infinite paths, which is rather natural since probabilities and strong
fairness are closely related [Pnu83].

Let A = R(A) be a timed automaton. An infinite region path q0
e1−→ q1

e2−→ q2 . . .
in A is fair iff for every edge e with defined dimension, if e is enabled in infinitely
many qi with i ∈ N, then ei = e for infinitely many i ∈ N. Note that region paths
and symbolic paths are closely related, as we assume A = R(A): to any non-empty
symbolic path π(s, e1e2 . . .), we associate a unique region path q0

e1−→ q1
e2−→ q2 . . .

with s ∈ q0. Hence, we say that a symbolic path π(s, e1e2 . . .) is fair whenever

16

its corresponding region path is fair. Finally, we say that an infinite run % is fair
whenever π% is fair. Obviously, the set of fair infinite runs from s is Ωs

A-measurable,
as fairness is an ω-regular property over infinite paths. Writing PA(s |= fair) for
PA{% ∈ Runs(A, s) | % is fair}, we get the following property:

Lemma 20. If A is a one-clock timed automaton, for every state s in A,

PA(s |= fair) = 1 .

The proof of this lemma is fairly involved, we first briefly sketch the main steps of
the proof, and will then give the complete proof.

(i) We first prove that any edge with defined dimension is almost-surely taken
infinitely often within a compact (for the value of the unique clock), provided
it is enabled infinitely often within that compact.

(ii) Then, restricting to runs with infinitely many resets, those paths will pass
infinitely often in a given configuration (because we only have one clock, hence
resetting the clock and going to location q means entering the configuration
(q, 0)). We can then apply the previous lemma, and get that any sequence of
edges with defined dimension will be taken infinitely often with probability 1.

(iii) Concerning the runs ending up in the unbounded region (with no more resets
of the clock), we prove that the distributions over edges correspond ultimately
to a finite Markov chain, and hence that these runs are fair with probability
1.

(iv) Finally, restricting to runs ending up in a bounded region (with no more resets
of the clock), only edges labelled with that precise region as a constraint can
be enabled, and it will ultimately behave like a finite Markov chain, hence
leading to the fairness property with probability 1.

Proof of Lemma 20. The first step (i) relies on Lemma 21 below. A subregion of a
region q is a pair (q, J) such that J ⊆ q is an interval. If s ∈ J , we may write s ∈ (q, J)
as well. If (q, J) and (q′, I) are subregions, we write (q, J)

e−→ (q′, I) to express that

(q, v)
e,t−→ (q′, v′) for some v ∈ J , v′ ∈ I and t ∈ R+. In the sequel to ease the reading,

we will use LTL-like notations, like PA(s, �♦(q, J)
e−→ (q′, I) | �♦(q, J)), which

denotes the conditional probability of the set of real runs s0
t1,e1−−→ s1

t2,e2−−→ s2 · · ·
such that s0 = s and {si

ei+1−−→ si+1 | si ∈ J, ei+1 = e, and si+1 ∈ I} is infinite,
assuming that the set {si | si ∈ J} is infinite. We will use other such notations, that
we expect are sufficiently explicit to be understandable.

Lemma 21. 1. For every subregion (q, J) of q such that (i) J is non-empty and
open in q (for the induced topology), and (ii) J ⊆ q is compact,

2. for every edge e enabled in q such that dimA(e) 6= ⊥,

17

3. for every subregion (q′, I) of q′ such that for every s ∈ (q, J), e(s)∩I is non-empty

and open in q′ (for the induced topology), where e(s) = {s′ | ∃t ∈ R+ s.t. s
t,e−→ s′},

4. for every state s of A such that PA(s, �♦(q, J)) > 0,10

PA(s, �♦(q, J)
e−→ (q′, I) | �♦(q, J)) = 1 .

Proof. We write PA(s
e−→ (q′, I)) for the probability of the set of runs starting from

s with a move s
t,e−→ s′ with s′ ∈ (q′, I) and for some t ∈ R+.11

Let λ
def
= infs∈(q,J) PA(s

e−→ (q′, I)). Since J ⊆ q is compact and ∀s ∈ q, PA(s
e−→

(q′, I)) > 0 (because dimA(e) 6= ⊥ and e(s) ∩ I is non-empty and open), λ > 0.
Indeed we have supposed that µs

�
{d | s + d ∈ [a, b]}

�
is continuous on {(s, a, b) |

[a, b] ⊆ I(s)}, see the first hypothesis in (†), hence s 7→ PA(s
e−→ (q′, I)) is continuous.

Denote Ek the set of paths in A that visit (q, J) infinitely often, but from the
k-th passage in (q, J) on never fire (q, J)

e−→ (q′, I) anymore. Note that the set Ek

is PA-measurable, and that PA(Ek) ≤
Q∞

k (1 − λ) = 0. Then note that the setS
k≥1 Ek can be equivalently defined by B ∧ ¬A where B is ‘�♦(q, J)’ and A is

‘�♦(q, J)
e−→ (q′, I)’. Hence, we get that PA(s, B ∧¬A) ≤ limk→+∞ PA(Ek) = 0, and

thus

PA(s, A | B) = PA(s,A∧B)
PA(s,B)

by definition

= PA(s,A∧B)
PA(s,A∧B)+PA(s,¬A∧B)

by Bayes formulas

= 1 because PA(s, B ∧ ¬A) = 0

which is exactly PA(s, �♦(q, J)
e−→ (q′, I) | �♦(q, J)) = 1. ut

Remark 22. This lemma holds for all timed automata, not only one-clock timed
automata.

We have done the proof for a single transition, but this lemma can be extended
straightforwardly to finite sequences of edges as follows:

Lemma 23. 1. For all regions (qi)0≤i≤p,
2. for all edges (ei)1≤i≤p such that ei is enabled in qi−1 and dimA(ei) 6= ⊥
3. for all subregions ((qi, Ji))0≤i≤p such that (i) Ji is non-empty and open in qi

(for the induced topology), (ii) Ji ⊆ qi is compact, and (iii) for every s ∈ Ji,

ei(s) ∩ Ji+1 is non-empty and open, where ei(s) = {s′ | ∃t ∈ R+ s.t. s
t,ei−−→ s′},

4. for every edge e enabled in q such that dimA(e) 6= ⊥,
5. for every subregion (q′, I) of q′ such that for every s ∈ (qp, Jp), e(s) ∩ I is non-

empty and open, where e(s) = {s′ | ∃t ∈ R+ s.t. s
t,e−→ s′},

10 This is for the next conditional probability to be defined.
11 Note that this set is PA-measurable because it can be seen as Cyl(πCI (s, e)) for some constraint CI

enforcing the first move to lead to I.

18

6. for every state s of A such that PA(s, �♦(q0, J0)) > 0

PA(s, �♦σ
e−→ (q′, I) | �♦σ) = 1

where σ = (q0, J0)
e1−→ (q1, J1) . . .

ep−→ (qp, Jp).

Now, we can turn back to the proof of Lemma 20.

Proof (of Lemma 20). Let s be a state. We decompose the set of infinite runs into:

(F1) the set of runs with infinitely many resets,
(F2) the set of runs with finitely many resets, and which are ultimately in the un-

bounded region (M, +∞),
(F3) the set of runs with finitely many resets, and which ultimately stay forever in a

bounded region, either {c} with 0 ≤ c ≤ M , or (c, c + 1) with 0 ≤ c < M . We

write (F
(c,c+1)
3) (resp. (F c

3)) for condition F3 restricted to (c, c + 1) (resp. {c}).

We write PA(s, Fi) for the probability of the runs starting in s and satisfying
condition Fi. The three sets of runs above are disjoint, cover the set of all runs, and
are measurable. Hence

P
i=1,2,3 PA(s, Fi) = 1, and PA(s |= fair) =

P
i=1,2,3 PA(s |=

fair | Fi)·PA(s, Fi) (application of the Bayes formula).12 We now distinguish between
the three cases.

Case F1 We consider the set of runs with infinitely many resets. Let π = s0
e1−→

s1
e2−→ . . . be such a run. There exists q such that for infinitely many i with

i ∈ N, si = (q, 0). Now, fix a state (q, 0) and assume that PA(s, �♦(q, 0)) > 0
(otherwise the set of runs visiting infinitely often (q, 0) will be negligible). For
every sequence σ of edges and compact sets (as in the statement of Lemma 23),
we get that

PA(s, �♦σ | �♦(q, 0)) = 1 .

Hence, for sequences of edges (ei)1≤i≤p such that such a σ exists, we get that

PA(s, �♦(q, 0)
e1−→ q1 . . .

ep−→ qp | �♦(q, 0)) = 1 . (1)

Now notice that such a σ always exists whenever these edges have defined di-
mension.
Fix an edge e with defined dimension, and assume that the set of paths pass-
ing through (q, 0) infinitely often and enabling e infinitely often, has a positive
probability. We will then prove that

PA(s, (�♦e enabled)⇒ (�♦ e−→) | �♦(q, 0)) = 1 ,

which will imply that PA(s |= fair | F1) = 1.

12 If PA(s, Fi) = 0, we remove the i-th term from the sum, as the conditional probability PA(s |= fair | Fi)
is then not defined, but the restricted sum is then still equal to PA(s |= fair).

19

– Assume that e is reachable from (q, 0) following edges of defined dimension,
say (ei)1≤i≤p with ep = e. Then, applying (?), we get that PA(s, �♦(q, 0)

e1−→
q1 . . .

ep−→ qp | �♦(q, 0)) = 1, hence that PA(s, �♦ e−→| �♦(q, 0)) = 1.
– Assume on the contrary that e is not reachable from (q, 0) following edges of

defined dimension. If e is not reachable from (q, 0), then PA(s, �♦e enabled |
�♦(q, 0)) = 0. Let W be the set of finite sequences of edges (ei)1≤i≤p leading
from (q, 0) to a state where e is enabled. Then:

PA(�♦e enabled | �♦(q, 0)) = PA(�♦
[

w∈W

w | �♦(q, 0))

≤ PA(♦
[

w∈W

w | �♦(q, 0))

= 0 because one of the edges in w
has undefined dimension

In both cases, we get the expected property.
Case F2 We consider the set of runs with finitely many resets and which end up

in the unbounded region (M, +∞). Let π = s
e1−→ s1

e2−→ . . . be such a run,
and assume that from sn on, all states are in the unbounded region. From that
state on, all edges which are enabled have defined dimension and have guard
x > M where M is the maximal constant of the automaton. From region q,
the probability of Cyl(π(s, e)) for every s ∈ q is independent of the choice of s.
Hence, ultimately, after having reached the unbounded region (and never leave
it anymore), it will behave like a finite Markov chain!
Assume now that a resetting edge e is enabled infinitely often along π. Then,
by a similar argument to the one in the proof of Lemma 21 with the Ek, as the
probability distribution of taking an edge is lower-bounded (because we are now
in a finite Markov chain), then any edge will be almost surely taken infinitely
often. Hence,

PA(s, �♦ resetting edge enabled | F2) = 0 ,

and thus
PA(s,¬(�♦ resetting edge enabled) | F2) = 1 .

Once more, due to the distribution over edges (which is a finite Markov chain),
when there is no more resetting edges, we get

PA(s |= fair | F2) = 1 .

Case F3 We consider the set of runs with finitely many resets and which end up in
a bounded region (either x = c with c ≤ M or c < x < c + 1 with c < M). We
assume the region c < x < c+1. Let π = s

e1−→ s1
e2−→ . . . be a witness run, and we

assume that from sn on, we are in region c < x < c+1. If si and sj with n ≤ i < j
correspond to the same location, then the clock value of si is less than (or equal

20

to) that of sj. Hence, if an edge e with defined dimension and whose guard is
included in [c + 1, +∞) is enabled in si (and thus also in sj), the probability of
taking e from sj is greater than (or equal to) the probability of taking e from
si (due to the second hypothesis in (†) on µ’s and to the fact that the discrete
probability over edges is constant by regions). Hence, there is a positive lower
bound for the probability of taking e, and if e is enabled infinitely often, it will be
taken infinitely often. Such an enabled edge is thus only possible with probability
0 under the assumption made in this case. Hence, with probability 1, only edges
with guard c < x < c + 1 are enabled. For these edges, as previously, the system
behaves like a finite Markov chain. We thus get that

PA(s |= fair | F (c,c+1)
3) = 1 .

If we now assume the region x = c, the reasoning is very similar to the previous
one. Given a location ` along the suffix of the path where x = c always holds,
the edges enabled in (`, x = c) are equipped with a distribution defining a finite
Markov chain. Hence any edge enabled infinitely often will be taken infinitely
often almost surely, which implies that

PA(s |= fair | F c
3) = 1 .

Gathering all cases, we get the desired property, i.e., PA(s |= fair) = 1. ut
Remark 24. This proof really relies on the one-clock hypothesis (cases F1 and F3).

A two-clock counter-example to Lemma 20. We shortly argue why Lemma 20
requires the restriction to single-clock timed automata. As pointed out in [CHR02],
timed automata admit various time converging behaviours, and some of these be-
haviours, not occurring in one-clock timed automata, can lead to “big” sets of un-
fair executions. Inspired by an example of [CHR02], we design a two-clock timed
automaton A (see Fig. 4) which does not satisfy Lemma 20. When A is equipped
with uniform distributions, one can show that the probability to run forever through
the cycle `0 `3 `4 `0 is positive and therefore PA((`0, 0, 0) |= fair) < 1.

`0

{p}

`1 `2

y<1

`3

{p}

`4

{p}

y<1

e1, y<1 e2, y=1

y:=0

e0, x>1

x:=0

e3, 1<y<2e4, y=2

y:=0

e5, x>2

x:=0

Fig. 4. A two-clock example with non negligible set of unfair runs

We prove that this automaton does not satisfy Lemma 20: Indeed, in `0, both
edges leading to the leftmost and the rightmost loops have defined dimension, but
we show that with a positive probability, the rightmost loop will never be taken.

21

Proposition 25. Let 0 < t0 < 1. We let St0 be the set of runs starting in (`0, (0, t0)),
which only take the leftmost loop of the automaton. Then,

P
�
St0

�
> 0 .

Proof. For every N ≥ 1, we write SN
t0

for the set of runs starting in s0 = (`0, (0, t0)),
which only take the leftmost loop of the automaton for the N first times. Then,
obviously, P

�
St0

�
= limN→+∞ P

�
SN

t0

�
.

We now would like to express PA(SN
t0

) as a multiple integral. First notice that:

P
�
SN

t0

�
= P

�
π(s0, (e3e4e5)

N)
�

In order to take the leftmost loop, we need to choose a first delay ensuring that the
valuation of the clock y satifies the guard 1 < y < 2. The location `4 is then reached
with the clock valuation (2− t0, 0) . From there a second positive time delay has to
be chosen in order to reach location `0. We thus have that:

P
�
π(s0, (e3e4e5)

N)
�

=
1

2− t0

Z 2

τ=1

1

1− t0

Z 1

t1=t0
P
�
π(s1, (e3e4e5)

N−1)
�
dt1dτ

=
1

2− t0
· 1

1− t0

Z 1

t1=t0
P
�
π(s1, (e3e4e5)

N−1)
�
dt1

where s1 = (`0, (0, t1)). By iterating this process, we obtain that:

P
�
SN

t0

�
=

1

2− t0
.

1

1− t0

Z 1

t1=t0

1

2− t1
· 1

1− t1

Z 1

t2=t1
. . .

1

2− tN−1

· 1

1− tN−1

Z 1

tN=tN−1

dtN . . . dt1

We write

γN
i =

1

1− ti−1

Z 1

ti=ti−1

1

2− ti
· 1

1− ti

Z 1

ti+1=ti
. . .

1

2− tN−1

· 1

1− tN−1

Z 1

tN=tN−1

dtN . . . dti

and we can prove by a descending induction on i (see Lemma E in the appendix for
a detailed proof) that

γN
i ≥

2N+1−i − 1

2N−i
− 2N−i − 1

2N−i
· (2− ti−1).

Thus, we deduce that

P
�
SN

t0

�
=

1

2− t0
· γN

1

≥ 1

2− t0
·
�

2N − 1

2N−1
− 2N−1 − 1

2N−1
· (2− t0)

�
Hence, computing the limit, we get that

P
�
St0

�
≥ t0

2− t0
> 0

This concludes the proof of the proposition. ut

22

Remark 26. In the previous proof, we don’t get that P(S0) (i.e. P(St0) for t0 = 0) is
positive. However, roughly, after one loop, we will have t1 > 0, hence we can apply
the above result from the second loop on. Hence, we can write:

P(S0) =
1

2− 0
· 1

1− 0
.
Z 1

0
P(St1) dt1

≥ 1

2
.
Z 1

0

t1
2− t1

dt1

≥ 1

2
.
Z 1

0

�
−1 +

2

2− t1

�
dt1

≥ 1

2
. [−t1 − 2 log(2− t1)]

1
t1=0

≥ log(2)− 1

2
> 0

This allows to extend Proposition 25 to the case t0 = 0.

Corollary 27. Let 0 ≤ t0 < 1, and s0 = (`0, (0, t0)). Then P(s0 |= fair) < 1.

Proof. Assume 0 ≤ t0 < 1, and consider the set of runs in A starting in state
(`0, (0, t0)). For all these runs, edge e1 (from `0 to `1) is infinitely often enabled.
However, the subset of runs that always ignore edge e1 is not negligible. Recall that
e1 has a defined dimension. As a consequence, the set of fair runs has probability
strictly less than 1. ut

4.2 Relating probabilities and fair symbolic paths

We now come to one of the main results of this paper: relating fair infinite paths of
defined dimension and sets of runs of probability 0.

Theorem 28. Let A be a one-clock (non-blocking) timed automaton such that A =
R(A), and ϕ be an LTL formula. If s is a state of A, then PA(s |= ϕ) > 0 iff there
exists a fair infinite symbolic path π = π(s, e1e2 . . .) such that dimA(π) = >, and
π |= ϕ.

Proof. We prove the two implications separately.

(=⇒) Let us assume that PA(s |= ϕ) > 0. Thanks to Lemmas 13 and 20, PA(s |=
ϕ) = PA(s |= ϕ ∧ fair ∧ ¬dim undef). Hence,

PA(s |= ϕ ∧ fair ∧ ¬dim undef) > 0

In particular, there must exist an infinite path π = π(s, e1e2 · · ·) satisfying the
three following conditions: π |= ϕ, π is fair, and dimA(π) = >.

23

(⇐=) Let π = π(s, e1e2 · · ·) be a symbolic path in A such that π is fair, dimA(π) =
>, and π |= ϕ.

We first assume ϕ is a location-based ω-regular accepting condition13. We color
the graph A as it is done on page 16 (remind that A = R(A)). Since dimA(π) =
>, all edges in π are “blue” edges. Hence π is also a path in the graph Gb(A),
restriction of A to blue edges. Let us consider Gb(A) in more details, and par-
ticularly its strongly connected components. As π is a fair path, it eventually
reaches a BSCC in Gb(A) and from then on takes each edge of the BSCC in-
finitely often. Otherwise, this would mean that π ignores a blue edge (hence an
edge with dimension) forever, and contradict the fairness assumption. Let Bπ be
the BSCC that π eventually reaches and πpref the shortest prefix of π leading
from s to Bπ (note that it has a defined dimension). Consider the following set
of paths in A:

E
def
= {π′ ∈ Cyl(πpref) | dimA(π′) = > and π′ |= fair} .

Thanks to Lemmas 13 and 20, PA(E) = PA(Cyl(πpref)) > 0. It now suffices to
show that all paths in E satisfy ϕ. This is rather clear if we assume that ϕ is a
location-based regular property. Indeed, in such cases, the satisfiability of ϕ only
depends on the set of states that are visited infinitely often, and it is the case
that such states for paths in E are exactly the states in Bπ.

We now assume that ϕ is an LTL formula. We first need to build the product of a
deterministic Muller automaton14 for ϕ and our timed automaton A. We detail
below this product construction and show that the probability distribution over
paths in A is closely related to the one in the product. Given A = (L, X,E, I,L)
a timed automaton, and B = (S, s0, 2

AP,→B,F) a complete and deterministic
Muller automaton with alphabet 2AP, initial state s0, and accepting condition
F ⊆ 2S, the product A× B is the timed automaton ÜA = (ÜL, X, ÜE, eI, ÜL) where:

– ÜL = L× S,

– if e = (`, g, Y, `′) ∈ E then for all s ∈ S s.t. s
L(`)−−→B s′ (this edge is unique by

determinism), there is an edge ees = ((`, s), g, Y, (`′, s′)) in ÜE,
– for all s ∈ S, eI(`, s) = I(`), and ÜL(`, s) = ∅.

Remark 29. It should be clear enough that ÜA = A × B is non-blocking as soon
as A is. Moreover, for all states s of A, for all states s of B, and for all edges
e ∈ E, I(s, e) = I((s, s), ees).

Since the intervals I(s, e) and I((s, s), ees) coincide (for all s ∈ S), it is legitimate
to assign the same measure over delays in (s, s) and in s.

13 I.e., a Büchi, Muller, parity, Rabin or Streett condition.
14 Or Streett, Rabin, parity etc...

24

Lemma 30. Let A be a timed automaton (such that A = R(A)) and Bϕ a
complete deterministic Muller automaton for formula ϕ with accepting condition
F . Assume furthermore that µ(s,s) is set to µs for every state s of Bϕ and every
state s of A. Then:

PA(s |= ϕ) = PA×Bϕ((s, s0) |= F) .

Proof. To each run % = s0
τ1,e1−−→ s1

τ2,e2−−→ s2 · · · in A corresponds a unique run
of the form (s0, s0)

τ1,e1−−→ (s1, s1)
τ2,e2−−→ (s2, s2) · · · in A× Bϕ. This run is denoted

%Bϕ and its existence and unicity are consequences of Bϕ being complete and
deterministic. Moreover, IA(si) = IA×Bϕ(si, si). Conversely, each run in A × Bϕ

has a unique preimage in A (obtained by removing the Bϕ component in each
state). Together with the assumption µ(s,s) = µs, this yields that the measure
of a set of runs in A is the same as the measure of the set of their images in
A × Bϕ: PA(E) = PA×Bϕ({%Bϕ | % ∈ E}). The lemma is then a consequence of
the following observation: π in A is accepted by Bϕ if and only if πBϕ |= F . ut

This completes the proof of Theorem 28. ut

Remark 31. Note that the latter theorem would not hold for general timed au-
tomata: For the two-clock example of Fig. 4, P((`0, 0, 0) |= G p) > 0 but there is no
fair path satisfying G p.

Indeed, from Proposition 25 (and Remark 26), we know that the set of runs
starting in s0 and which only take the left circuit has positive probability. Hence
P(s0 |= G p) > 0. However, any fair run issued from s0 cannot always avoid taking
edge e1 since this edge has defined dimension. Hence, there is no fair run satisfying
G p.

4.3 Equivalence of the almost-sure and large semantics

We can now state the second main result of this paper, relating the almost-sure
and the large semantics for LTL. In particular, this result shows that the almost-
sure semantics does not depend on the concrete choice of the weights ps(e) and the
measures µs.

Theorem 32. Let A be a one-clock (non-blocking) timed automaton, and ϕ an LTL
formula. Let s be a state of A. Then,

A, s |≈P ϕ ⇔ A, s |≈T ϕ .

Proof. We prove the theorem for ω-regular location-based acceptance conditions.
The extension to LTL formulae can be done as in the proof of Theorem 28.

Applying Lemma 8, we get that

PA(s |= ϕ) = 1 iff PR(A)(ι(s) |= ϕ) = 1 .

25

Similarly, applying Corollary 17, we get that

{% ∈ Runs(A, s) | % fair} is large iff {% ∈ Runs(R(A), ι(s)) | % fair} is large.

Thus, the theorem is equivalent to the same result for R(A) instead of A. We
thus now assume w.l.o.g. that A = R(A).

The proof then partly relies on Theorem 28. We indeed prove that these two
properties are equivalent:

(1) the set of fair infinite runs satisfying ϕ is large,
(2) for every fair infinite symbolic path π such that dimA(π) = >, π |= ϕ.15

First note that the set of fair infinite runs satisfying ϕ is the union of the fair infinite
symbolic paths satisfying ϕ. We write JϕKfair for the set of runs that are read over
fair infinite symbolic paths starting from s, with defined dimension, and satisfying
ϕ.

We first prove that (2) implies (1). We prove that JϕKc
fair (the complement of

JϕKfair) is meager using Banach-Mazur games (see definition on page 6, or [Oxt57]),
which will imply that JϕKfair is large, hence point (1) holds. We define as earlier B,
the family we play with, as the set of all basic open sets. We will prove that Player
2 has a winning strategy to avoid JϕKc

fair. The strategy of Player 2 is as follows:

– Player 1 has chosen a cylinder Cyl(α0) which ends up in state q0 (with dim(α0) =
>),

– Player 2 then chooses Cyl(α1) such that α0 is a strict prefix of α1 with defined
dimension, and α1 ends up in a BSCC B of Gb(A).

– Then, whatever Player 1 chooses, Player 2 can ensure that all possible edges with
defined dimension of the BSCC B are visited infinitely often.

Under that strategy, the outcome is an infinite symbolic path,16 which is fair,
has defined dimension (because all chosen cylinders have defined dimension), and
hence satisfies ϕ by hypothesis. Hence, its intersection with JϕKc

fair is empty, which
yields the expected result.

We now prove that (1) implies (2) (or more precisely its contrapositive). We
assume that there exists a fair infinite path π such that dim(π) = > and π 6|= ϕ, and
show that the set JϕKfair is not large. This fair infinite path π ends up in a BSCC
of Gb(A). Let π′ be the shortest prefix of π which ends in this BSCC. Then, as ϕ is
location-based, every fair infinite path with prefix π′ (i.e., in Cyl(π′)) will not satisfy
ϕ. Hence JϕKc

fair is non-meager (because (Runs(A, s), T s
A) is a Baire space) and JϕKfair

is not large. ut
15 Thanks to Theorem 28, this is equivalent to PA(s |= ϕ) = 1.
16 Formally, it would be included in such an infinite symbolic path, as all its prefixes are supposed to be

constrained. Note that if the obtained constrained symbolic path is empty, Player 2 automatically wins
the game, as desired.

26

Remark 33. Theorem 32 does not hold for general timed automata. Indeed for the
two-clock exampleA of Fig. 4, with s0 = (`0, 0, 0),A, s0 |≈T F¬p butA, s0 6|≈P F¬p.

Indeed, the set of runs starting in s0 and satisfying F¬p is large. Indeed we show
that JG pK is meager, using (once more!) Banach-Mazur games. Player 2 clearly has
a strategy to ensure ∩iBi∩ JG pK = ∅, by visiting locations from the right-hand side
loop, whatever the first move of Player 1 is. Thus, in a single round of the game,
Player 2 wins, and JG pK is meager. However, P(s0 |= F¬p) < 1 as a consequence
of Proposition 25 (and Remark 26).

4.4 Decidability of the model-checking problems

Gathering the results of this section and using an “optimized version” of one-
dimensional regions [LMS04], we get the following results for the two model-checking
problems:

Corollary 34. The almost-sure and large model-checking problems for one-clock
timed automata are

(i) NLOGSPACE-Complete for location-based ω-regular properties, and
(ii) PSPACE-Complete for LTL properties.

Proof. In everything that precedes, we have assumed that regions of the timed au-
tomaton are intervals of length one, by splitting constraints with respect to all con-
stants c below M , the maximal constant appearing in the timed automaton. This
can be improved [LMS04] by considering regions of the form (c, d) or {c} where c and
d are two consecutive constants appearing in the automaton. This leads to a region
automaton whose size is no more exponential in the size of the original automaton,
but whose size becomes only polynomial in the size of the automaton. All results
we have obtained in the refined framework can be obtained as well in this optimized
construction. It is hence sufficient to look for a reachable BSCC in the blue optimized
graph, also denoted Gb(A), which satisfies the ω-regular property we want to verify.
We focus here on a Streett accepting condition of the form

V
1≤i≤p(�♦αi → �♦βi)

where αi and βi are sets of states of Gb(A).17 We assume that given a finite graph G,
q a state of G, and S a set of states of G, ReachabilityG(q, S) decides whether a state
of S is reachable from q in G. Such a procedure runs in NLOGSPACE (in the size
of G). We propose the following non-deterministic procedure to decide the negation
of the above Streett accepting condition on Gb(A) (interpreted in a probabilistic
manner):

Guess an index 1 ≤ i ≤ p
Guess a state q (of Gb(A)) in αi such that ReachabilityGb(A)(q0, {q})

(where q0 is the initial state of Gb(A))
If not ReachabilityGb(A)(q, βi),

17 This means that for every 1 ≤ i ≤ p, if αi is visited infinitely often, then so is βi.

27

then if not notBSCCGb(A)(q)
then return false

where notBSCCG(q) decides whether q is not in a BSCC of a finite graph G as follows:
Guess a state q′ of G
If ReachabilityG(q, {q′})
then if not ReachabilityG(q

′, {q})
then return false

Globally, this algorithm can be turned (applying Immerman-Szelepcsényi Theorem,
stating that co-NLOGSPACE coincides with NLOGSPACE) into an NLOGSPACE al-
gorithm. Note that there was no need to first construct Gb(A), as edges with defined
dimension can be guessed locally. The NLOGSPACE lower bound is trivial from that
of the reachability problem in a finite graph.

The complexity result for LTL properties comes from the exponential blowup
due to the product of a deterministic automaton for the formula with the timed
automaton. ut

5 A Note on Zeno Behaviours

In timed automata, and more generally in continuous-time models, some runs are
Zeno.Recall that a run % = s0

τ1·e1−−→ s1
τ2·e2−−→ · · · of a timed automaton is Zeno ifP∞

i=1 τi <∞ (i.e., infinitely many actions happen in a finite amount of time). Zeno
behaviours are problematic since they most of the time have no physical interpre-
tation. As argued in [DP03], some fairness constraints are often put on executions,
enforcing non-Zeno behaviours, but in probabilistic systems, probabilities are sup-
posed to replace fairness assumptions, and it is actually the case in continuous-time
Markov chains in which Zeno runs have probability 0 [BHHK03]. In our framework,
it is hopeless to get a similar result because some timed automata are inherently
Zeno. For instance, all runs are Zeno in the automaton consisting of a single location
with a non-resetting loop guarded by x ≤ 1. However, we show that we can decide
whether the probability of the set of Zeno runs in a (one-clock) timed automaton is
0. We also give a nice characterization of the one-clock timed automata for which
Zeno behaviours are negligible. This class is natural, since it corresponds to those
automata which have no ‘inherently Zeno components’ (reachable with a positive
probability). Finally, we will see that the so-defined class encompasses classical def-
initions of non-Zeno timed automata.

5.1 Checking probabilistic non-Zenoness

We write PA(s |= Zeno) for the probability of the set of Zeno runs in A from s. This
set is measurable (in Ωs

A), as it can be written as
S

M∈N
T

n∈N Cyl(πCn,M
(s, e1, . . . , en))

where Cn,M is the constraint
P

1≤i≤n τi ≤ M .

28

Theorem 35. Given a single-clock (non-blocking) timed automaton A and a state
s of A, one can decide in NLOGSPACE whether PA(s |= Zeno) = 0.

Proof. Thanks to Lemma 8, w.l.o.g. we can assume that A = R(A). Note that we
can first remove syntactically all resets from edges labelled by x = 0. Fix a state s
in A. As in the previous section we decompose the set of infinite runs into:

(F1) the set of runs with infinitely many resets,
(F2) the set of runs with finitely many resets, and which are ultimately in the un-

bounded region (M, +∞),
(F3) the set of runs with finitely many resets, and which ultimately stay forever in a

bounded region, either {c} with 0 ≤ c ≤M , or (c, c + 1) with 0 ≤ c < M .

We borrow notations from the previous section, and in that case, we also have that

PA(s |= Zeno) =
X

i=1,2,3

PA(s |= Zeno | Fi) · PA(s, Fi) (2)

when these conditional probabilities are well-defined (otherwise it is correct to re-
move the term from the sum).

The proof of the theorem is then decomposed into two parts, first we prove that
the two first terms of the above sum always equal to 0, and then that we can decide
whether the last term is equal to 0.

Lemma 36. PA(s |= Zeno | F1) = 0 and PA(s |= Zeno | F2) = 0.

Proof. We distinguish between the two cases.

Case F1 We consider the set of runs with infinitely many resets. This set can be
decomposed according to the states (q, 0) (where q ∈ Q is a region) that are
visited infinitely often. We show that PA(s |= Zeno | �♦(q, 0)) = 0. In order
to prove this, we distinguish the four following subcases depending on the set
I((q, 0)): either (i) I((q, 0)) ∩ [0, 1) = ∅, or (ii) (0, 1) ⊆ I((q, 0)), or (iii) {0} (
I((q, 0)), or (iv) {0} = I((q, 0)).
Let us first treat the easy case (i). If I((q, 0)) ∩ [0, 1) = ∅, since the timed
automaton is non-blocking, this means that each time the automaton arrives in
state (q, 0) at least 1 time unit elapses before the next transition. Hence a run
visiting infinitely often such state (q, 0) is necessarily non-Zeno.
Let us now consider case (ii), i.e., we assume that (0, 1) ⊆ I((q, 0)). Since the
probability distribution over the delays is then equivalent to the Lebesgue mea-
sure (see hypothesis (?)), the probability of waiting a time delay τ ≤ 1

2
in (q, 0) is

positive and strictly smaller than 1 (we write λ(q,0) for this value: 0 < λ(q,0) < 1).
Let Ek be the set of runs starting from s, visiting (q, 0) infinitely often, and such
that from the k-th passage on, the time elapsed from state (q, 0) (before taking
an action) is less than 1

2
. We have PA(Ek) ≤

Q∞
k λ(q,0) = 0, and as a consequence

PA
�
s |= Zeno | �♦(q, 0) ∧ (ii)

�
≤

∞X
k=0

P(Ek) = 0 .

29

In case (iii), we assume that {0} (I((q, 0)). If (0, 1) ⊆ I((q, 0)), we are done
by case (ii). We can thus suppose that if 0 6= τ ∈ I((q, 0)), we have that τ ≥ 1.
If I((q, 0)) reduces to a finite union of points, the probability λ0 of waiting a
delay greater than or equal to 1 is positive and strictly smaller than 1 (because
the measure is then equivalent to the uniform measure over those points, see
hypothesis (?)). When going infinitely often through (q, 0), we will thus wait
infinitely often a time greater than or equal to 1. If I((q, 0)) contains an open
interval, the probability of waiting a delay greater or equal than 1 from (q, 0) is
1 (by hypothesis (?)). From this we can easily derive that:

P
�
s |= Zeno | �♦(q, 0) ∧ (iii)

�
= 0 .

Let us conclude with case (iv) where I((q, 0)) = {0}. Since no positive delay can
elapse from (q, 0), the probability of taking any edge enabled in (q, 0) is positive
(the distribution over edges indeed becomes uniform). Hence, any state (qe, 0)
reachable from (q, 0) taking edge e, is almost surely infinitely often visited (as
soon as (q, 0) is). From (qe, 0), again two situations are possible: either I((qe, 0)) =
{0} or not. In the first case, note that it is necessarily the case that such a chain

(q, 0)
0,e1−−→ (q1, 0)

0,e2−−→ (q2, 0) · · · is finite, otherwise the run would contain only
finitely many resets18. Thus we surely reach infinitely often a state (q′, 0) such
that I((q′, 0)) 6= {0} allowing us to rely on the previous cases to obtain the
desired results.
Gathering the four cases, we conclude that PA(s |= Zeno | �♦(q, 0)) = 0. Hence

PA(s |= Zeno | F1) = 0 .

Case F2 We consider the set of runs with finitely many resets and which end up
in the unbounded region. From any state s in the unbounded region, the set of
potential delays is necessarily of the form [0, +∞)19. From hypothesis (†) on the
distributions over delays, the probability of waiting a time delay τ ≤ 1

2
from s,

denoted λs, can be bounded by a constant: 0 < λs ≤ λ0 < 1. Let Ek denote the
set of executions which, at the k-th step, are in the unbounded resgion without
leaving it afterwards, and such that all delays afterwards are less than 1

2
. The

probability of being Zeno when in Ek satisfies: P(Ek) ≤
Q

i>k λ0 = 0, from which
we derive:

P(s |= Zeno | F2) ≤
∞X

k=0

P(Ek) = 0 .

This concludes the proof of the first lemma. ut

The case of condition F3 is not similar to the two previous cases. Indeed, it is
worth noticing that every execution satisfying the condition F3 is Zeno. Hence, if

18 Recall that edges labelled with x = 0 are not labelled with a reset.
19 Otherwise the clock would be compared to a constant greater than the maximal one

30

PA(s |= F3) 6= 0 (otherwise the term PA(s |= Zeno | F3)·PA(s |= F3) does not appear
in the sum 2), then PA(s |= Zeno | F3) = 1. It remains to compute or characterize
the value PA(s |= F3).

A BSCC B in Gb(A) is called a Zeno BSCC if it is bounded and contains no
resetting edges. Note that in a Zeno BSCC the value of the clock lies in a unique
interval (c, c + 1) (with 0 ≤ c < M) or {c} (with 0 ≤ c ≤M).

Lemma 37. PA(s |= F3) =
X

B Zeno BSCC

PGb(A)(s |= ♦B).

Proof. Runs in A are almost surely fair (thanks to Lemma 20), hence PA(s |= F3) =
PA(s |= F3 ∧ fair). By definition of a fair run, if a blue edge is enabled infinitely
often, then this edge appears infinitely often along that run. Now any fair path in
A which takes a red edge has probability 0, hence it is sufficient to consider fair
paths in Gb(A). In that case, fair runs correspond to paths in Gb(A) which end up
in a BSCC. It is now sufficient to remark that for fair runs in F3, the BSCC should
be bounded and without resetting edges. Indeed, if one of these condition does not
hold, the run would not be in F3 (either it would end up in an unbounded region, or
have infinitely many resets). Conversely, any run ending up in a Zeno BSCC satisfy
F3. Hence, the mentioned equality holds. ut

From all these results, we get that

PA(s |= Zeno) = 0 iff ∀B Zeno BSCC, PGb(A)(s |= ♦B) = 0

Applying results from [BBB+07], it is easy to decide the right-hand side of the equiv-
alence. It reduces to checking whether there exists a Zeno BSCC in Gb(A), reachable
in Gb(A), i.e., reachable in A via blue edges. This can be done in NLOGSPACE, if
we take the optimized one-dimensional region automaton already mentioned in the
proof of Theorem 28. ut

5.2 Topological characterization of probabilistic non-Zenoness

In Section 4, we gave a topological characterization of the probability of sets of runs
defined by an LTL formula. Although Zeno runs cannot be defined in LTL, we obtain
a similar result.

Theorem 38. Let A be a one-clock (non-blocking) timed automaton and s a state
of A. Then, PA(s |= Zeno) = 0 iff the set of Zeno runs starting in s is meager.

The proof of this theorem once more relies on an application of Banach-Mazur
games.

Proof. Assume first that PA(s |= Zeno) = 0. Then no BSCC of Gb(A) is Zeno. We
once more play a Banach-Mazur game using the basic open sets. Player 1 plays some
move α0 (possibly with some constraint), and player 2 then plays a move α1 leading
to a BSCC B of Gb(A). By hypothesis, B is not a Zeno BSCC, hence either it is not
bounded, or it contains resetting edges.

31

– We first consider the case where B contains no resetting edges. In that case, it
means that the clock value when in B is always above the maximal constant.
Hence, the game can keep going on, and each time Player 2 chooses a move, he
first chooses a move which constrains the cylinder saying that the delay has to be
larger than 1. This is always possible, due to the form of the constraints, which
all include (M, +∞). In that case, it is not difficult to check that the resulting
runs are all non-Zeno.

– We now consider the case where B has resetting edges. Note that the clock can
become larger than 0. In that case, Player 2 can always choose a move so that
it terminates with a resetting edge, but has visited a positive region, and has
enforced that the value of the clock in that precise region was larger than 1/2.
In that case also, all runs resulting from that play are non-Zeno.

Hence, we get that Player 2 has a strategy to avoid the set of Zeno runs, hence this
set is meager.

Conversely assume that the set of Zeno runs is meager, but assume also that
PA(s |= Zeno) > 0. Once more, let’s play the Banach-Mazur game. Player 2 has a
strategy to avoid Zeno behaviours. However, as PA(s |= Zeno) > 0, Player 1 can play
a first move leading to a Zeno BSCC B of Gb(A). Then B has no resetting edges
and lies within an interval (c; c + 1) or {c}. Then whatever move chooses Player 2,
the resulting runs will all be Zeno, hence contradicting the assumption that the set
of Zeno runs is meager. The claim follows. ut

5.3 Relation with classical non-Zenoness assumptions

The proof of Theorem 35 gives a characterization of automata for which the proba-
bility of Zeno runs is 0: they are those timed automata A in which there are no Zeno
BSCCs in Gb(A). In the literature, several assumptions can be found, to handle Zeno
runs. We pick two such assumptions, and show that our framework gives probability
zero to Zeno runs under those restrictions.
In their seminal paper about timed automata, Alur and Dill [AD94] want to decide
the existence of non-Zeno accepted behaviours. They prove it is equivalent to having,
in the region automaton, a reachable SCC (strongly connected component) satisfying
the following progress condition: the SCC is either not bounded or with a reset of a
clock. This condition is looser than the strong non-Zenoness of [AMPS98] (a witness
is the simple automaton A0 depicted on Fig. 5) but is stronger than our condition
on Zeno BSCC in Gb(A). Indeed our condition only constrains bottom SCCs of
Gb(A), and only those reachable by finite paths of defined dimension. Hence, any
automaton A such that the region automaton contains no bounded SCC without
resetting edges satisfies PA(s |= Zeno) = 0. The automaton A1 (resp. A2) of Fig. 6
(resp. Fig. 7) is not strongly non-Zeno and does not satisfy the progress condition,
however it satisfies PA1(s |= Zeno) = 0 (resp. PA2(s |= Zeno) = 0). Let us notice

32

that A1 does not satisfy the progress condition since its region automaton contains
a bounded SCC without resetting edges (which is not a bottom SCC). The A2 does
not satisfy the progress condition for the same reason, however in this case, the
bounded SCC without resetting edges is a bottom SCC, but it is only reachable by
finite paths of undefined dimension.

`0

x ≥ 1

Fig. 5. A0

`0 `1

x ≤ 1 x ≥ 1

x ≥ 1

Fig. 6. A1

`0 `1

x ≥ 1 x ≤ 1

x = 1

Fig. 7. A2

Let us give a final example of timed automata which does not satisfy the progress
condition although the probability of its set of Zeno runs is zero. As forA1 the reason
A3 (see Fig. 8) does not satisfy the progress condition is that its region automaton
(Fig. 9) contains a bounded SCC without resetting edges (which is not a bottom
SCC).

`0

x ≤ 1
x := 0 x ≤ 1

Fig. 8. A3

`0, x = 0 `0, 0 < x < 1 `0, x = 1

Fig. 9. The region automaton of A3

6 Conclusion

The goal of this paper was to present non-standard semantics for LTL interpreted
over timed automaton that rule out “unlikely” events, but do not affect the decidabil-
ity and complexity of the model checking problem. For this purpose, we introduced a
probabilistic almost-sure semantics that relies on some mild stochastic assumptions
about the delays and the resolution of the nondeterministic choices, and a topolog-
ical semantics based on the notion of largeness. For one-clock timed automata we
proved the equivalence of the two semantics. The topological characterization of the
almost-sure semantics has several important consequences: first, it shows that the
precise choice of the measures used in the definition of the almost-sure semantics
are irrelevant and second, as the topology is defined by the local conditions (using
the notion of dimension), it yields a graph-based model-checking algorithm.

33

Although the formal definitions of the probabilistic and topological semantics
reuse concepts of [BBB+07], where similar questions have been studied when inter-
preting LTL over finite words, the results for LTL over infinite words presented in
this paper cannot be viewed as consequences of [BBB+07]. This becomes clear from
the observation that the almost-sure and topological semantics for LTL over infinite
words do not agree for timed automata with two or more clocks, while the approach
of [BBB+07] does not impose any restrictions on the number of clocks. In fact, our
proof for the topological dimension-based characterization of the almost-sure seman-
tics LTL over infinite words in one-clock timed automata relies on a combination of
techniques for the analysis of probabilistic systems with properties that are specific
for timed automata with a single clock. Moreover, for one-clock timed automata, we
obtain a nice characterization of timed automata having non-Zeno behaviours with
probability one, and show that it can be decided in NLOGSPACE if an automaton
has this property.

As future works, we obviously plan to study the general case of n-clock timed
automata. We will also look at timed games and see how probabilities can help
simplify the techniques (used for instance in [dFH+03,BHPR07]) for handling Zeno
behaviours.

Acknowledgment: We are grateful to Nicolas Markey for insightful discussions
about complexity classes.

References

[AD94] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183–
235, 1994.

[ALM05] R. Alur, S. La Torre, and P. Madhusudan. Perturbed timed automata. In Proc. 8th Interna-
tional Workshop on Hybrid Systems: Computation and Control (HSCC’05), vol. 3414 of LNCS,
pp. 70–85. Springer, 2005.

[AMPS98] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed automata. In
Proc. IFAC Symposium on System Structure and Control, pp. 469–474. Elsevier Science, 1998.

[BBB+07] C. Baier, N. Bertrand, P. Bouyer, Th. Brihaye, and M. Größer. Probabilistic and topological
semantics for timed automata. In Proc. 27th Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS’07), LNCS. Springer, 2007. To appear.

[BHHK03] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model-checking algorithms for
continuous-time Markov chains. IEEE Transactions on Software Engineering, 29(7):524–541,
2003.

[BHPR07] Th. Brihaye, Th. A. Henzinger, V. Prabhu, and J.-F. Raskin. Minimum-time reachability in
timed games. In Proc. 34th International Colloquium on Automata, Languages and Program-
ming (ICALP’07), vol. 4596 of LNCS, pp. 825–837. Springer, 2007.

[BMR06] P. Bouyer, N. Markey, and P.-A. Reynier. Robust model-checking of timed automata. In Proc.
7th Latin American Symposium on Theoretical Informatics (LATIN’06), vol. 3887 of LNCS,
pp. 238–249. Springer, 2006.

[CHR02] F. Cassez, Th. A. Henzinger, and J.-F. Raskin. A comparison of control problems for timed
and hybrid systems. In Proc. 5th International Workshop on Hybrid Systems: Computation
and Control (HSCC’02), vol. 2289 of LNCS, pp. 134–148. Springer, 2002.

[DDMR04] M. De Wulf, L. Doyen, N. Markey, and J.-F. Raskin. Robustness and implementability of timed
automata. In Proc. Joint Conference on Formal Modelling and Analysis of Timed Systems and

34

Formal Techniques in Real-Time and Fault Tolerant System (FORMATS+FTRTFT’04), vol.
3253 of LNCS, pp. 118–133. Springer, 2004.

[DDR04] M. De Wulf, L. Doyen, and J.-F. Raskin. Almost ASAP semantics: From timed models to timed
implementations. In Proc. 7th International Workshop on Hybrid Systems: Computation and
Control (HSCC’04), vol. 2993 of LNCS, pp. 296–310. Springer, 2004.

[dFH+03] L. de Alfaro, M. Faella, Th. A. Henzinger, R. Majumdar, and M. Stoelinga. The element
of surprise in timed games. In Proc. 14th International Conference on Concurrency Theory
(CONCUR’03), vol. 2761 of LNCS, pp. 142–156. Springer, 2003.

[DP03] J. Desharnais and P. Panangaden. Continuous stochastic logic characterizes bisimulation of
continuous-time Markov processes. Journal of Logic and Algebraic Programming, 56:99–115,
2003.

[GHJ97] V. Gupta, Th. A. Henzinger, and R. Jagadeesan. Robust timed automata. In Proc. Inter-
national Workshop on Hybrid and Real-Time Systems (HART’97), vol. 1201 of LNCS, pp.
331–345. Springer, 1997.

[HR00] Th. A. Henzinger and J.-F. Raskin. Robust undecidability of timed and hybrid systems. In
Proc. 3rd International Workshop on Hybrid Systems: Computation and Control (HSCC’00),
vol. 1790 of LNCS, pp. 145–159. Springer, 2000.

[KSK76] J. G. Kemeny, J. L. Snell, and A. W. Knapp. Denumerable Markov Chains. Graduate Texts
in Mathematics. Springer, 1976.

[LMS04] F. Laroussinie, N. Markey, and Ph. Schnoebelen. Model checking timed automata with one
or two clocks. In Proc. 15th International Conference on Concurrency Theory (CONCUR’04),
vol. 3170 of LNCS, pp. 387–401. Springer, 2004.

[Mun00] J. R. Munkres. Topology. Prentice Hall, 2nd edition, 2000.
[Oxt57] J. C. Oxtoby. The Banach-Mazur game and Banach category theorem. Annals of Mathematical

Studies, 39:159–163, 1957. Contributions to the Theory of Games, volume 3.
[Pnu77] A. Pnueli. The temporal logic of programs. In Proc. 18th Annual Symposium on Foundations

of Computer Science (FOCS’77), pp. 46–57. IEEE Comp. Soc. Press, 1977.
[Pnu83] A. Pnueli. On the extremely fair treatment of probabilistic algorithms. In Proc. 15th Annual

Symposium on Theory of Computing (STOC’83), pp. 278–290. ACM Press, 1983.
[Var85] M. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In Proc.

26th Symposium on Foundations of Computer Science (FOCS’85), pp. 327–338. IEEE Comp.
Soc. Press, 1985.

[VV06] D. Varacca and H. Völzer. Temporal logics and model checking for fairly correct systems. In
Proc. 21st Annual Symposium on Logic in Computer Science (LICS’06), pp. 389–398. IEEE
Comp. Soc. Press, 2006.

35

Technical appendix

The proof of the next proposition will also justify the construction for the probability
measure PA.

Proposition 6. Let A be a timed automaton. For every state s, PA is a probability
measure over (Runs(A, s), Ωs

A).

Proof. We first recall a basic property in measure theory [KSK76].

Proposition A Let ν be a non-negative additive set function defined on some set
space F such that for every A ∈ F , ν(A) < ∞. The three following properties are
equivalent:

1. ν is σ-additive,

2. for every sequence (An)n of elements of F such that A0 ⊆ A1 ⊆ A2 ⊆ · · · and
A =

S
n An ∈ F , limn ν(An) = ν(A),

3. for every sequence (Bn)n of elements of F such that B0 ⊇ B1 ⊇ B2 ⊇ · · · andT
n Bn = ∅, limn ν(Bn) = 0.

For every n ∈ N, we write Fn(s) for the ring20 generated by the set of (basic)
cylinders from s of length n, i.e., all Cyl(πC(s, e1 . . . en)). The elements of Fn(s) are
thus finite unions of basic cylinders of length n. We then define

F(s) =
[
n

Fn(s)

Lemma B For every n, PA is a probability measure on Fn(s).

Proof. First, by induction on n, it is not difficult to prove that for every n ∈ N,

X
(e1,...,en)

PA(π(s, e1 . . . en)) = PA(π(s)) = 1 (3)

We fix n ∈ N. PA is obviously additive, non-negative and finite over Fn(s).
Take a sequence (Ai)i of elements of Fn(s) such that A0 ⊆ A1 ⊆ A2 ⊆ · · · and
A =

S
i Ai ∈ Fn(s). There are finitely many distinct sequences of edges of length n.

Hence, by intersectiong each of the Ai’s with each of the symbolic paths π(s, e1 . . . en)
of length n, we assume w.l.o.g. that each Ai is a single constrained finite symbolic
path.

Let e1 . . . en be the sequence of edges underlying all constrained symbolic paths
Ai, and write Ci for the tightest constraint defining Ai (i.e., Ai = πCi

(s, e1 . . . en)).

20 A ring R ⊆ 2S is such that ∅ ∈ R, R is closed by finite union and by complement.

i

We have that Ci ⊆ Ci+1, and (Ci)i converges to C, which corresponds to the constraint
associated with A. We can write, if 1α is the characteristic function of set α, that:

lim
i

PA(Ai) = lim
i

Z
τ1∈I(s,e1)

ps+τ1(e1)
Z

τ2∈I(sτ1∈I(sτ1 ,e2))
psτ1+τ2(e2) · · ·Z

τn∈I(sτ1···τn−1 ,en)
psτ1···τn−1+τn(en)1Ci

(τ1, . . . , τn) dµsτ1···τn−1
(τn) · · · dµs(τ1)

=
Z

τ1∈I(s,e1)
ps+τ1(e1)

Z
τ2∈I(sτ1∈I(sτ1 ,e2))

psτ1+τ2(e2) · · ·Z
τn∈I(sτ1···τn−1 ,en)

psτ1···τn−1+τn(en)
�

lim
i
1Ci

(τ1, . . . , τn)
�

dµsτ1···τn−1
(τn) · · · dµs(τ1)

(by dominated convergence and equation (3))

=
Z

τ1∈I(s,e1)
ps+τ1(e1)

Z
τ2∈I(sτ1∈I(sτ1 ,e2))

psτ1+τ2(e2) · · ·Z
τn∈I(sτ1···τn−1 ,en)

psτ1···τn−1+τn(en)1C(τ1, . . . , τn) dµsτ1···τn−1
(τn) · · · dµs(τ1)

= PA(A)

This shows that PA is a measure on Fn(s), for all n ∈ N. It is moreover a probability
measure since PA(Fn(s)) = PA(π(s)) = 1. ut

Lemma C PA is a probability measure on F(s).

Proof. Obviously PA is non-negative on F(s), additive (because Fn(s) ⊆ Fn+1(s)
for every n ∈ N) and finite over F(s). It remains to prove that it is σ-additive.
For this, we use Proposition A, and consider a sequence (Bn)n of sets in F(s) such
that B0 ⊇ B1 ⊇ B2 ⊇ · · · and

T
n Bn = ∅. W.l.o.g. we assume that for every i,

Bn ∈ Fn(s). We want to prove that limn PA(Bn) = 0. Applying a reasoning similar
to that of [KSK76, Lemmas 2.1, 2.2, 2.3], it is sufficient to do the proof when Bn

is some Cyl(πn) where πn is a finite (constrained) symbolic path of length n. We
write Cn for the tightest constraint over variables (τi)i≤n corresponding to πn. We
define pi the constraint from Ri+1

+ onto the i first components (thus in Ri
+). Note

that this projection is continuous (for the product topologies). In πn, if i < n, the i
first variables are constrained by Ci

n = pi(Ci+1
n). Moreover, for every i ≤ n, we have

that
Ci

n+1 ⊆ Ci
n and Ci

n ⊆ Ci−1
n

Fix some i, the sequence (Ci
n)n is nested, hence converges to Ci, and Ci ⊆ Ci−1. By

continuity of the projection over the i first components, we have that Ci = pi(Ci+1).
If none of the Ci is empty, we can thus construct an element in

T
i Ci as follows:

we take some τ1 satisfying the constraint C1; we have that C1 = p1(C2) (and C2

is a constraint over τ1 and τ2), hence there exists τ2 such that (τ1, τ2) satisfies C2

ii

(while τ1 still satisfies C1); we do the same step-by-step for all τi and construct a
sequence (τi)i which satisfies all constraints Ci. This sequence corresponds to a run
in
T

i Cyl(πi). As we assumed at the beginning of the paragraph that
T

i Cyl(πi) = ∅,
it thus means that there exists some i ∈ N such that Ci = ∅.

We will use the fact that Ci =
T

n≥i Ci
n is empty to prove that limn PA(πn) = 0.

We write, still with the notation that 1α is the characteristic function of set α:

PA(Cyl(πn)) =
Z

τ1∈I(s,e1)
ps+τ1(e1)

Z
τ2∈I(sτ1∈I(sτ1 ,e2))

psτ1+τ2(e2) · · ·Z
τn∈I(sτ1···τn−1 ,en)

psτ1···τn−1+τn(en)1Cn(τ1, . . . , τn) dµsτ1···τn−1
(τn) · · · dµs(τ1)

≤
Z

τ1∈I(s,e1)

Z
τ2∈I(sτ1∈I(sτ1 ,e2))

· · ·
Z

τi∈I(sτ1···τi−1 ,ei)
1Ci

n
(τ1, . . . , τi) dµsτ1···τi−1

(τi) · · · dµs(τ1)

Applying the dominated convergence theorem, we get that:

lim
n

PA(Cyl(πn)) =
Z
···

Z
···
· · ·
Z
···

�
lim

n
1Ci

n
(τ1, . . . , τi)

�
dµsτ1···τi−1

(τi) · · · dµs(τ1)

= 0

This concludes the proof that PA is σ-additive on F , and thus the proof that PA is
a probability measure on F(s). ut

We conclude the proof using the following classical measure extension theorem:

Theorem D (Carathéodory’s extension theorem) Let S be a set, and ν a σ-
finite measure defined on a ring R ⊆ 2S. Then, ν can be extended in a unique manner
to the σ-algebra generated by R.

We apply Theorem D to the set S = Runs(A, s), R = F(s), and ν = PA which
is a σ-finite measure on F(s). Hence, there is a unique extension of PA on Ωs

A, the
σ-algebra generated by the cylinders, which is a probability measure. ut

We now detail a proof omitted in the main text and which serves proving Propo-
sition 25 (see page 22).

Lemma E If γN
i = 1

1−ti−1

R 1
ti=ti−1

1
2−ti
· 1
1−ti

R 1
ti+1=ti

. . . 1
2−tN−1

· 1
1−tN−1

R 1
tN=tN−1

dtN . . . dti,

then:

γN
i ≥

2N+1−i − 1

2N−i
− 2N−i − 1

2N−i
· (2− ti−1).

iii

Proof. The base case is when i = N . In that case,

γN
N =

1

1− tN−1

Z 1

tN=tN−1

dtN = 1

which proves the property.
We assume we have proved the property for i + 1, and want to prove it for i.

γN
i =

1

1− ti−1

Z 1

ti=ti−1

1

2− ti
· γN

i+1 dti

≥ 1

1− ti−1

Z 1

ti=ti−1

1

2− ti
·
�

2N−i − 1

2N−i−1
− 2N−i−1 − 1

2N−i−1
· (2− ti)

�
dti (by i.h.)

≥ 1

1− ti−1

�
−2N−i − 1

2N−i−1
· log(2− ti)−

2N−i−1 − 1

2N−i−1
· ti
�1

ti=ti−1

≥ 1

1− ti−1

�
2N−i − 1

2N−i−1
· log(2− ti−1)−

2N−i−1 − 1

2N−i−1
· (1− ti−1)

�

Now, when 0 ≤ x ≤ 1 we know that log(1 + x) ≥ x− x2

2
(see Lemma F). Applying

this inequality to x = 1− ti−1, we get the following inequality:

γN
i ≥

1

1− ti−1

�
2N−i − 1

2N−i−1
·
�
(1− ti−1)−

(1− ti−1)
2

2

�
− 2N−i−1 − 1

2N−i−1
· (1− ti−1)

�

≥
�

2N−i − 1

2N−i−1
− 2N−i−1 − 1

2N−i−1

�
− 2N−i − 1

2N−i
· (1− ti−1)

≥ 2N−i+1 − 1

2N−i
− 2N−i − 1

2N−i
· (2− ti−1)

This concludes the inductive case. ut

Lemma F Let 0 ≤ x ≤ 1. Then log(1 + x) ≥ x− x2

2
.

Proof. First observe that functions t→ 1
1+t

and t→ 1−t+ t2

1+t
coincide on R\{−1}.

This can easily be checked by developping the second function. Let now 0 ≤ x ≤ 1;
the integrales of both functions on the interval [0, x] are equal:Z x

t=0

1

1 + t
dt =

Z x

t=0
(1− t +

t2

1 + t
)dt .

Computing the first integral, and simplifying the second, we deduce:

log(1 + x) = x− x2

2
+
Z x

t=0

t2

1 + t
dt .

For all 0 ≤ t ≤ x, we have 1
1+t
≥ 1

1+x
. Hence

R x
t=0

t2

1+t
dt ≥ 1

1+x

R x
t=0 t2dt = x3

3(1+x)
. Since

x3

3(1+x)
≥ 0 for all x ∈ [0, 1], we obtain the desired inequality: log(1+x) ≥ x− x2

2
. ut

iv

