
On the Expressive Power of

2-Stack Visibly Pushdown Automata

Benedikt Bollig

Research Report LSV-07-27

September 2007

ON THE EXPRESSIVE POWER OF

2-STACK VISIBLY PUSHDOWN AUTOMATA

BENEDIKT BOLLIG

LSV, ENS Cachan, CNRS — 61, avenue du Président Wilson, 94235 Cachan Cedex, France
e-mail address: bollig@lsv.ens-cachan.fr

Abstract. Visibly pushdown automata are input-driven pushdown automata that rec-
ognize some non-regular context-free languages while preserving the nice closure and de-
cidability properties of finite automata. Visibly pushdown automata with multiple stacks
have been considered recently by La Torre, Madhusudan, and Parlato, who exploit the con-
cept of visibility further to obtain a rich pushdown-automata class that can even express
properties beyond the class of context-free languages. At the same time, their automata
are closed under boolean operations, come up with a decidable emptiness and inclusion
problem, and enjoy a logical characterization in terms of monadic second-order logic over
nested words, which add a nesting structure to ordinary words. These results require a
restricted version of visibly pushdown automata with multiple stacks whose behavior can
be split up into a fixed number of phases.

In this paper, we consider 2-stack visibly pushdown automata (i.e., visibly pushdown
automata with two stacks) in their unrestricted form. Our main results in this regard read
as follows:
(1) 2-stack visibly pushdown automata are expressively equivalent to the existential frag-

ment of monadic second-order logic.
(2) Over nested words, monadic second-order quantifier alternation forms an infinite

hierarchy (unlike in the restricted framework by La Torre et al., where full monadic
second-order logic is only as expressive as its existential fragment).

(3) 2-stack visibly pushdown automata are not closed under complementation.
Finally, we discuss the expressive power of Büchi 2-stack visibly pushdown automata

running over infinite (nested) words. Extending the logic by an infinity quantifier, we can
likewise establish equivalence to existential monadic second-order logic.

1. Introduction

The notion of a regular word language has ever played an important rôle in computer
science, as it constitutes a robust concept that comes up with manifold representations in
terms of finite automata, regular expressions, monadic second-order logic, etc. Generalizing
regular languages towards richer classes and more expressive formalisms is often accompa-
nied by the loss of robustness and decidability properties. It is, for example, well-known that
the class of context-free languages, represented by pushdown automata, is no longer closed
under complementation and that universality, equivalence, and inclusion are undecidable
problems [10].

Key words and phrases: visibly pushdown automata, nested words, monadic second-order logic.

1

2 ON THE EXPRESSIVE POWER OF 2-STACK VISIBLY PUSHDOWN AUTOMATA

Visibly pushdown languages have been introduced by Alur and Madhusudan to over-
come this deficiency while subsuming many interesting and useful context-free properties
[1]. Visibly pushdown languages are represented by special pushdown automata whose stack
operations are driven by the input. More precisely, the underlying alphabet of possible ac-
tions is partitioned into (1) call, (2) return, and (3) internal actions, which, when reading
an action, indicates if (1) a stack symbol is pushed on the stack, (2) a stack symbol is
read and popped from the stack, or (3) the stack is not touched at all, respectively. Such
a partition gives rise to a call-return alphabet. Though this limits the expressive power of
pushdown automata, the such defined class of visibly pushdown languages is rich enough
to model various interesting non-regular properties for program analysis. Even more, this
class preserves some important closure properties of regular languages, such as the closure
under boolean operations, and it comes up with decidable problems, such as inclusion, that
are undecidable in the context of general pushdown automata. Last but not least, the visi-
bly pushdown languages are captured by a monadic second-order logic that makes use of a
binary nesting predicate. Such a logic is suitable in the context of visibility, as the nesting
structure of a word is uniquely determined, regardless of a particular run of the pushdown
automaton. The logical characterization smoothly extends the classical theory of regular
languages [5, 8].

Visibly pushdown automata with multiple stacks have been considered recently and
independently by La Torre, Madhusudan, and Parlato [16], as well as Carotenuto, Murano,
and Peron [6]. The aim of these papers is to exploit the concept of visibility further to obtain
even richer classes of non-regular languages while preserving important closure properties
and decidability of verification-related problems such as emptiness and inclusion.

In [16], the authors consider visibly pushdown automata with arbitrarily many stacks.
To retain the nice properties of visibly pushdown automata with only one stack, the idea
is to restrict the domain, i.e., the possible inputs, to those words that can be divided into
at most k phases for a predefined k. In every phase, pop actions correspond to one and
the same stack. These restricted visibly pushdown automata come up with a decidable
emptiness problem, which is shown by a reduction to the emptiness problem for finite tree
automata, and are closed under union, intersection, and complementation (wrt. the domain
of k-phase words). Moreover, a word language is recognizable if and only if it can be defined
in monadic second-order logic where the usual logic over words is expanded by a matching
predicate that matches a push with its corresponding pop event. As mentioned above, such
a matching is unique wrt. the underlying call-return alphabet. The only negative result in
this regard is that multi-stack visibly pushdown automata cannot be determinized.

The paper [6] considers visibly pushdown automata with two stacks and call-return
alphabets that appear more general than those of [16]: Any stack is associated with a
partition of one and the same alphabet into call, return, and local transitions so that an
action might be both a call action for the first stack and, at the same time, a return action
for the second. In this way, both stacks can be worked on simultaneously. Note that, if
we restrict to the alphabets of [16] where the stack alphabets are disjoint, the models from
[6] and [16] coincide. Carotenuto et al. show that the emptiness problem for their model is
undecidable (with the call-return alphabet belonging to the input). Their approach to gain
decidability and, moreover, interesting closure properties is to exclude simultaneous pop
operations by introducing an ordering constraint on stacks. More precisely, a pop operation
on the second stack is only possible if the first stack is empty. Under these restrictions,
the emptiness problem turns out to be decidable in polynomial time, and one obtains a

ON THE EXPRESSIVE POWER OF 2-STACK VISIBLY PUSHDOWN AUTOMATA 3

language class that is closed under union, intersection, and complementation. Unlike the
model of [16], any restricted automaton can be transformed into an equivalent deterministic
one.

In this paper, we consider 2-stack visibly pushdown automata (i.e., visibly pushdown
automata with two stacks) where any action is exclusive to one of the stacks, unless we deal
with an internal action, which does not affect the stacks at all. Thus, we adopt the model
of [16], though we have to restrict to two stacks for our main results. One of these results
states that the corresponding language class is precisely characterized by the existential
fragment of monadic second-order logic where a first-order kernel is preceded by a block
of existentially quantified second-order variables. In a second step, we show that the full
monadic second-order logic is strictly more expressive than its existential fragment so that
we conclude that 2-stack visibly pushdown automata are not closed under complementation.

The key technique in our proofs is to consider words over call-return alphabets as
relational structures, called nested words [2]. Nested words augment ordinary words with
a nesting relation that, as the logical atomic predicate mentioned above, relates push with
corresponding pop events. More precisely, we consider a nested word to be a graph whose
nodes are labeled with actions and are related in terms of a matching and an immediate-
predecessor relation. We thus deal with structures of bounded degree: any node has at
most two incoming edges (one from the immediate successor and one from a push event if
we deal with a pop event operating on the non-empty stack) and, similarly, at most two
outgoing edges. As there is a one-to-one correspondence between words and their nested
counterpart, we may consider nested-word automata [2], which are equivalent to visibly
pushdown automata but operate on the enriched word structures. There have been several
notions of automata on graphs and partial orders [13, 14] that are similar to nested-word
automata and have one idea in common: the state that is taken after executing some event
depends on the states that have been visited in neighboring events. Such defined automata
may likewise operate on models for concurrent-systems executions such as Mazurkiewicz
traces [7] and message sequence charts [4]. In the framework of nested-word automata, to
determine the state after executing a pop operation, we therefore have to consider both the
state of the immediate-predecessor position and the state that had been reached after the
execution of the corresponding push event. To obtain a logical characterization of nested-
word automata over two stacks, we adopt a technique from [4]: for a natural number r,
we compute a nested-word automaton Br that computes the sphere of radius r around any
event i, i.e., the restriction of the input word to those events that have distance at most
r from i. Once we have this automaton, we can apply Hanf’s Theorem, which states that
satisfaction of a given first-order formula depends on the number of these local spheres
counted up to a threshold that depends on the quantifier-nesting depth of the formula [9].
This finally leads us to a logical characterization of 2-stack visibly pushdown automata
in terms of existential monadic second-order logic. Note that our construction of Br is
close to the nontrivial technique applied in [4]. In the context of nested words, however,
the correctness proof is more complicated. The fact that we deal with two stacks only is
crucial, and the construction fails as soon as a third stack comes into play.

Then, we exploit the concept of nested words to show that full monadic second-order
logic is more expressive than its existential fragment. This is done by a first-order interpre-
tation of nested words over two stacks into grids, for which the analogous result has been
known [12].

4 ON THE EXPRESSIVE POWER OF 2-STACK VISIBLY PUSHDOWN AUTOMATA

An extension of Hanf’s Theorem has recently been established to cope with infinite
structures [3]. This allows us to apply the automaton Br to also obtain a logical charac-
terization of the canonical extension of 2-stack visibly pushdown automata towards Büchi
automata running over infinite words.

Outline of the paper. In Section 2, we introduce multi-stack visibly pushdown automata,
running over words, as well as multi-stack nested-word automata, which operate on nested
words. We establish expressive equivalence of these two models. Section 3 recalls monadic
second-order logic over relational structures and, in particular, nested words. There, we
also state Hanf’s Theorem, which provides a normal form of first-order definable properties
in terms of spheres. The construction of the sphere automaton Br, which is, to some extent,
the core contribution of this paper, is the subject of Section 4. By means of this automaton,
we can show expressive equivalence of 2-stack visibly pushdown automata and existential
monadic second-order logic (Section 5). Section 6 establishes the gap between this fragment
and the full logic, from which we conclude that 2-stack visibly pushdown automata cannot
be complemented in general. By slightly modifying our logic, we obtain, in Section 7, a
characterization of Büchi 2-stack visibly pushdown automata, running on infinite words.
We conclude with Section 8 stating some related open problems.

2. Multi-Stack Visibly Pushdown Automata

The set {0, 1, 2, . . .} of natural numbers is denoted by N, the set {1, 2, . . .} of positive
natural numbers by N+. We call any finite set an alphabet. For a set Σ, we denote by Σ∗,
Σ+, and Σω the sets of finite, nonempty finite, and infinite strings over Σ, respectively.1

The empty word is denoted by ε. For a natural number n ∈ N, we let [n] stand for the set
{1, . . . , n} (i.e., [0] is the empty set). In this paper, we will identify isomorphic structures
and we use both = and ∼= to denote isomorphism.

Let K ≥ 1. A (K-stack) call-return alphabet is a collection 〈{(Σs
c,Σ

s
r)}s∈[K],Σint〉 of

pairwise disjoint alphabets. We allow Σint to be empty whereas the other alphabets are
supposed to be nonempty. Intuitively, Σs

c contains the actions that call the stack s, Σs
r is

the set of returns of stack s, and Σint is a set of internal actions, which do not involve any
stack operation.

We fixK ≥ 1 and aK-stack call-return alphabet Σ̃ = 〈{(Σs
c,Σ

s
r)}s∈[K],Σint 〉. Moreover,

we set Σc =
⋃

s∈[K] Σ
s
c, Σr =

⋃
s∈[K] Σ

s
r, and Σ = Σc ∪ Σr ∪ Σint .

2.1. Multi-Stack Visibly Pushdown Automata.

Definition 2.1. A multi-stack visibly pushdown automaton (Mvpa) over Σ̃ is a tuple A =
(Q,Γ, δ, QI , F) where

• Q is its finite set of states,
• QI ⊆ Q is the set of initial states,
• F ⊆ Q is the set of final states,
• Γ is the finite stack alphabet containing a special symbol ⊥, and

1From now on, to avoid confusion with nested words, we use the term “string” rather than “word” if we
deal with elements from Σ∗.

ON THE EXPRESSIVE POWER OF 2-STACK VISIBLY PUSHDOWN AUTOMATA 5

• δ provides the transitions in terms of a triple 〈δc, δr, δint〉 with

δc ⊆ Q× Σc × (Γ \ {⊥})×Q,

δr ⊆ Q× Σr × Γ×Q, and

δint ⊆ Q× Σint ×Q .

A 2-stack visibly pushdown automaton (2vpa) is an Mvpa that is defined over a 2-stack
alphabet (i.e., K = 2).

A transition (q, a, A, q′) ∈ δc, say with a ∈ Σs
c, is a push-transition meaning that, being

in state q, the automaton can read a, push the symbol A ∈ Γ\{⊥} onto the s-th stack, and
go over to state q′. A transition (q, a, A, q′) ∈ δr, say with a ∈ Σs

r, allows us to pop A 6= ⊥
from the s-th stack when reading a, while the control changes from state q to state q′. If,
however, A = ⊥, then the stack is not touched, i.e., ⊥ is never popped. Finally, a transition
(q, a, q′) ∈ δint is applied when reading internal actions a ∈ Σint . They do not involve any
stack operation and, actually, do not even allow us to read from the stack.

Let us formalize the behavior of the Mvpa A. A stack contents is a nonempty finite
sequence from Cont = (Γ \ {⊥})∗ · {⊥}. The leftmost symbol is thus the top symbol of the
stack contents. A configuration of A consists of a state and a stack contents for any stack.
Hence, it is an element of Q×Cont [K]. Consider a string w = a1 . . . an ∈ Σ+. A run of the
Mnwa A on w is a sequence ρ = (q0, σ

1
0, . . . σ

K
0) . . . (qn, σ

1
n, . . . σ

K
n) ∈ (Q× Cont [K])+ such

that q0 ∈ QI , σ
s
0 = ⊥ for any stack s ∈ [K], and, for any i ∈ {1, . . . , n}, the following hold:

[Push]: If ai ∈ Σs
c for s ∈ [K], then there is a stack symbol A ∈ Γ \ {⊥} such that

(qi−1, ai, A, qi) ∈ δc, σ
s
i = A · σs

i−1, and σs′
i = σs′

i−1 for any s′ ∈ [K] \ {s}.
[Pop]: If ai ∈ Σs

r for s ∈ [K], then there is a stack symbol A ∈ Γ such that

(qi−1, ai, A, qi) ∈ δr, σ
s′
i = σs′

i−1 for any s′ ∈ [K] \ {s}, and either A 6= ⊥ and
σs

i−1 = A · σs
i , or A = ⊥ and σs

i−1 = σs
i = ⊥.

[Internal]: If ai ∈ Σint , then (qi−1, ai, qi) ∈ δint , and σs
i = σs

i−1 for any s ∈ [K].

The run ρ is accepting if qn ∈ F . A string w ∈ Σ+ is accepted by A if there is an accepting
run of A on w. The set of accepted strings forms the (string) language of A, which is
denoted by L(A).2

Example 2.2. There is no Mvpa that recognizes the context-sensitive language {anbncn |
n ≥ 1}, no matter which call-return alphabet we chose. Note that, however, with the more
general notion of a call-return alphabet from [6], it is possible to recognize this language by

means of two stacks. Now consider the 2-stack call-return alphabet Σ̃ given by Σ1
c = {a1},

Σ1
r = {b1}, Σ2

c = {a2}, Σ2
r = {b2}, and Σint = ∅. The language L = {(a1a2)

nbn+1
1 bn+1

2 | n ≥

1} can be recognized by some 2vpa over Σ̃, even by the restricted model of 2-phase 2vpa

from [16], as any word from L can be split into at most two return phases. In the following,

we define a 2vpa A = ({q0, . . . , q4}, {$,⊥}, δ, {q0}, {q0}) over Σ̃ such that L(A) = L+, which
is no longer divisible into a bounded number of return phases. The transition relation δ is

2To simplify the presentation, the empty word ε is excluded from the domain.

6 ON THE EXPRESSIVE POWER OF 2-STACK VISIBLY PUSHDOWN AUTOMATA

given as follows:

δc : (q0, a1, $, q2) δr : (q3, b1, $, q3)

(q2, a2, $, q1) (q3, b1,⊥, q4)

(q1, a1, $, q2) (q4, b2, $, q4)

(q2, a2, $, q3) (q4, b2,⊥, q0)

The idea is that the finite-state control ensures that an input word matches the regular
expression ((a1a2)

+b+1 b
+
2)+. To guarantee that, in any iteration, the number of ak is by one

less than the number of bk, any push action ak stores a stack symbol $ in stack k, which
can then be removed by the corresponding pop actions unless the symbol ⊥ is discovered.

2.2. Nested Words and Multi-Stack Nested-Word Automata. We will now see how
strings over symbols from the call-return alphabet Σ̃ can be represented by relational struc-
tures. Basically, to a string, we add a binary predicate that combines push with correspond-
ing pop events. Let s ∈ [K]. A string w ∈ Σ∗ is called s-well formed if it is generated by
the following context-free grammar:

A ::= aAb | AA | ε | c

where a ∈ Σs
c, b ∈ Σs

r, and c ∈ Σ \ (Σs
c ∪ Σs

r).

Definition 2.3. A nested word over Σ̃ is a structure ([n],⋖, µ, λ) where n ≥ 1 (we call the
elements from [n] positions, nodes, or events), ⋖ = {(i, i+1) | i ∈ [n− 1]}, λ : [n]→ Σ, and
µ =

⋃
s∈[K] µ

s ⊆ [n] × [n] where, for any s ∈ [K] and (i, j) ∈ [n] × [n], (i, j) ∈ µs iff i < j,

λ(i) ∈ Σs
c, λ(j) ∈ Σs

r, and λ(i+ 1) . . . λ(j − 1) is s-well formed.

The set of nested words over Σ̃ is denoted by NW(Σ̃).
Note that µ and its inverse µ−1 can be seen as partial maps [n] 99K [n] in the ob-

vious manner. Moreover, observe that, given nested words W = ([n],⋖, µ, λ) and W ′ =
([n′],⋖′, µ′, λ′), n = n′ ∧ λ = λ′ implies W = W ′. It is therefore justified to represent W
as the string string(W) := λ(1) . . . λ(n) ∈ Σ+. This naturally extends to sets L of nested
words and we set string(L) := {string(W) | W ∈ L}. Vice versa, given a string w ∈ Σ+,

there is precisely one nested word W over Σ̃ such that string(W) = w. This unique nested
word is denoted nested(w). For L ⊆ Σ+, we let nested(L) := {nested(w) | w ∈ L}.

Example 2.4. Consider the 2-stack call-return alphabet Σ̃ from Example 2.2, which was
given by Σ1

c = {a1}, Σ1
r = {b1}, Σ2

c = {a2}, Σ2
r = {b2}, and Σint = ∅. Figure 1 depicts

a nested word W = ([n],⋖, µ, λ) over Σ̃ with n = 10. The straight arrows represent ⋖,
the curved arrows capture µ (those above the horizontal correspond to the first stack).
For example, (2, 9) ∈ µ. Thus, µ(2) and µ−1(9) are defined, whereas both µ−1(7) and
µ−1(10) are not. In terms of visibly pushdown automata, this means that positions 7
and 10 are employed when the first/second stack is empty, respectively. Observe that
W = nested(a1a2a1a2b1b1b1b2b2b2) and string(W) = a1a2a1a2b1b1b1b2b2b2.

We now turn to an automata model that is suited to nested words and, to some extent,
is equivalent to Mvpa. This model has been considered in [2] for nested words over 2-stack
call-return alphabets.

ON THE EXPRESSIVE POWER OF 2-STACK VISIBLY PUSHDOWN AUTOMATA 7

a1 −→ a2 −→ a1 −→ a2 −→ b1 −→ b1 −→ b1 −→ b2 −→ b2 −→ b2

Figure 1: A nested word

Definition 2.5. A generalized multi-stack nested-word automaton (generalized Mnwa) over

Σ̃ is a tuple B = (Q, δ,QI , F, C) where

• Q is the finite set of states,
• QI ∈ Q is the set of initial states,
• F ⊆ Q is the set of final states,
• C ⊆ Q is a set of calling states, and
• δ is a pair 〈δ1, δ2〉 with δ1 ⊆ Q × Σ × Q and δ2 ⊆ Q × Q × Σr × Q, which contain

the transitions.

We call B a multi-stack nested-word automaton (Mnwa) if C = ∅.
A (generalized) 2-stack nested-word automaton (2nwa) is a (generalized, respectively)

Mnwa that is defined over a 2-stack alphabet (i.e., K = 2).

Intuitively, δ1 contains all the local and push transitions, as well as all the pop transi-
tions that act on an empty stack (i.e., in terms of nested words and nested-word automata,
those transitions that perform an action from Σr that is not matched by a correspond-

ing calling action). A run of B on a nested word W = ([n],⋖, µ, λ) over Σ̃ is a mapping
ρ : [n] → Q such that (q, λ(1), ρ(1)) ∈ δ1 for some q ∈ QI , and, for any i ∈ {2, . . . , n}, we
have {

(ρ(µ−1(i)), ρ(i− 1), λ(i), ρ(i)) ∈ δ2 if λ(i) ∈ Σr and µ−1(i) is defined

(ρ(i− 1), λ(i), ρ(i)) ∈ δ1 otherwise

The run ρ is accepting if ρ(n) ∈ F and, for any i ∈ [n] with ρ(i) ∈ C, we have both λ(i) ∈ Σc

and µ(i) is defined. The language of B, denoted by L(B), is the set of nested words that
allow for an accepting run of B.

Recall that there is a one-to-one correspondence between strings and nested words. We
let therefore L(A) with A an Mvpa stand for the set nested(L(A)).

Example 2.6. Consider again the 2-stack call-return alphabet Σ̃ given by Σ1
c = {a1},

Σ1
r = {b1}, Σ2

c = {a2}, Σ2
r = {b2}, and Σint = ∅. In Example 2.2, we have seen that, for L =

{(a1a2)
nbn+1

1 bn+1
2 | n ≥ 1}, the iteration L+ is the language of some 2vpa over Σ̃. We can

also specify a 2nwa B = ({q0, . . . , q4}, δ, {q0}, {q0}, ∅) over Σ̃ such that L(B) = nested(L+).
Note that L(B) will contain, for example, the nested word that is depicted in Figure 1. The

8 ON THE EXPRESSIVE POWER OF 2-STACK VISIBLY PUSHDOWN AUTOMATA

transition relation δ is given as follows:

δ1 : (q0, a1, q2) δ2 : (q2, q3, b1, q3)

(q2, a2, q1) (q3, q4, b2, q4)

(q1, a1, q2) (q1, q4, b2, q4)

(q2, a2, q3)

(q3, b1, q4)

(q4, b2, q0)

Similarly to Example 2.2, the finite-state control will ensure the general regular structure
of a word without explicit counting. This “counting” is then implicitly done by the relation
δ2, which requires a matching ak for any bk. A general technique for a reduction from Mvpa

to Mnwa and vice versa can be found below (Lemma 2.8).

We can show that the use of calling states does not increase the expressiveness of
Mnwa. Note that, however, the concept of calling states will turn out to be helpful when
building the sphere automaton in Section 4.

Lemma 2.7. For any generalized Mnwa B over Σ̃, there is an Mnwa B′ over Σ̃ such that
L(B′) = L(B).

Proof. In the construction of an Mnwa, we exploit the following property of a nested
word W = ([n],⋖, µ, λ): given (i, j) ∈ µ, say, with i ∈ Σs

c, µ(i′) is defined for all i′ ∈
{i + 1, . . . , j − 1} satisfying i′ ∈ Σs

c. Basically, B′ will simulate B. In addition, whenever
a calling state is assigned to a position labeled with an element from Σs

c, we will set a
flag b[s] = 1, which can only be resolved and turn into a final state (b[s] = 0) when a
matching return position has been found. As any interim call position that concerns stack
s is matched anyway, the flags b[s] in that interval are set to 2. Thus, while a flag is 1 or
2, there is still some unmatched calling position. Hence, a final state requires any flag to
equal 0, which also designates the initial state.

Let us become more precise and let B = (Q, δ,QI , F, C) be a generalized Mnwa. We

determine the Mnwa B′ = (Q′, δ′, Q′
I , F

′, ∅) by Q′ = Q×{0, 1, 2}[K], Q′
I = QI ×{(0)s∈[K]},

F ′ = F × {(0)s∈[K]}, and δ′ = 〈δ′1, δ
′
2〉 where

• δ′1 is the set of triples ((q, b), a, (q′, b
′
)) ∈ Q′×Σ×Q′ such that (q, a, q′) ∈ δ1, q

′ ∈ C
implies a ∈ Σc, and, for any s ∈ [K],

b
′
[s] =

2 if b[s] ∈ {1, 2}

1 if b[s] = 0 and a ∈ Σs
c and q′ ∈ C

0 otherwise

• δ′2 is the set of quadruples ((p, c), (q, b), a, (q′, b
′
)) ∈ Q′ × Q′ × Σr × Q

′ such that
(p, q, a, q′) ∈ δ2 and, for any s ∈ [K],

b
′
[s] =

{
0 if c[s] = 1

b[s] otherwise

In fact, we have L(B) = L(B′).

ON THE EXPRESSIVE POWER OF 2-STACK VISIBLY PUSHDOWN AUTOMATA 9

Lemma 2.8. Let L ⊆ NW(Σ̃) be a set of nested words over Σ̃. The following are equivalent:

(1) There is an Mvpa A over Σ̃ such that L(A) = L.

(2) There is an Mnwa B over Σ̃ such that L(B) = L.

Proof. Given an Mvpa A = (Q,Γ, δ, QI , F), we define an Mnwa B = (Q′, δ′, Q′
I , F

′, ∅) with
L(A) = L(B) as follows: Q′ = Q× Γ, Q′

I = QI × {⊥}, F
′ = F × Γ, and δ′ = 〈δ′1, δ

′
2〉 where

• δ′1 is the set of triples ((q, A), a, (q′, A′) ∈ Q′ × Σ × Q′ such that (q, a, A′, q′) ∈ δc,
(q, a, q′) ∈ δint , or (q, a,⊥, q′) ∈ δr, and
• δ′2 is the set of quadruples ((p,B), (q, A), a, (q′, A′) ∈ Q′ × Q′ × Σ × Q′ such that

(q, a,B, q′) ∈ δr.

For the converse direction, consider an Mnwa B = (Q, δ,QI , F, ∅). Consider the Mvpa

A = (Q,Q ·∪ {⊥}, δ′, QI , F) where δ′ = 〈δ′c, δ
′
r, δ

′
int
〉 is given by

• δ′c = {(q, a, q′, q′) | (q, a, q′) ∈ δ1 ∩ (Q× Σc ×Q)},
• δ′

int
= δ1 ∩ (Q× Σint ×Q), and

• δ′r is the set of tuples (q, a, A, q′) ∈ Q × Σr × Γ × Q such that either (q, a, q′) ∈ δ1
and A = ⊥, or (A, q, a, q′) ∈ δ1.

We have L(A) = L(B).

3. Monadic Second-Order Logic and Hanf’s Theorem

3.1. Monadic Second-Order Logic over Relational Structures. We fix supplies of
first-order variables x, y, . . . and second-order variables X,Y, Let τ be a function-free
signature. The set MSO(τ) of monadic second-order (MSO) formulas over τ is given by the
following grammar:

ϕ ::= P (x1, . . . , xm) | x1 = x2 | x ∈ X | ¬ϕ | ϕ1 ∨ ϕ2 | ∃xϕ | ∃Xϕ

Hereby, m ∈ N, P ∈ τ is an m-ary predicate symbol, the xk and x are a first-order variables,
and X is a second-order variable. Moreover, we will make use of the usual abbreviations
such as ϕ1 ∧ ϕ2 for ¬(¬ϕ1 ∨ ¬ϕ2), ϕ1 → ϕ2 for ¬ϕ1 ∨ ϕ2, etc. Given a τ -structure
A with universe A, a formula ϕ(x1, . . . , xm, X1, . . . , Xn) ∈ MSO(τ) with free variables in
{x1, . . . , xm, X1, . . . , Xn}, (u1, . . . , um) ∈ Am, and (U1, . . . , Un) ∈ (2A)

n
, we write, as usual,

A |= ϕ[u1, . . . , um, U1, . . . , Un] if A satisfies ϕ when assigning (u1, . . . , um) to (x1, . . . , xm)
and (U1, . . . , Un) to (X1, . . . , Xn).

Let us identify some important fragments of MSO(τ). The set FO(τ) of first order (FO)
formulas over τ comprises those formulas from MSO(τ) that do not contain any second-order
quantifier. Furthermore, an existential MSO (EMSO) formula is of the form ∃X1 . . .∃Xnϕ
with ϕ ∈ FO(τ). The corresponding class of formulas is denoted EMSO(τ). More generally,
given m ≥ 1, we denote by Σm(τ) the set of formulas of the form ∃X1∀X2 . . .∃/∀Xmϕ
where ϕ ∈ FO(τ) and the Xk are blocks of second-order variables, possibly empty or of
different length.

We will later make use of the notion of definability relative to a class of structures.
Let F ⊆ MSO(τ) be a class of formulas and L, C be sets of τ -structures. We say that L is
F -definable relative to C if there is a sentence (i.e., a formula without any free variables)
ϕ ∈ F such that L is the set of τ -structures A ∈ C such that A |= ϕ.

10 ON THE EXPRESSIVE POWER OF 2-STACK VISIBLY PUSHDOWN AUTOMATA

Now let Σ̃ be a call-return alphabet. We define τeΣ
to be the signature {λa | a ∈

Σ} ∪ {⋖, µ} with λa a unary and ⋖ and µ binary predicate symbols. We write the MSO
formula λa(x) as λ(x) = a and the formula ⋖(x1, x2) as x1 ⋖ x2. MSO formulas over τeΣ

can be canonically interpreted over nested words ([n],⋖, µ, λ) ∈ NW(Σ̃), as λ can be seen
as a collection of unary relations λa = {i ∈ [n] | λ(i) = a} where a ∈ Σ. A sample MSO
formula over τeΣ

such that Σ = {a, b} is ∀x∀y (λ(x) = a ∧ µ(x, y)→ λ(y) = b). It expresses
that any calling a is matched by a b. Given a sentence ϕ ∈ MSO(τeΣ

), we denote by L(ϕ)
the set of nested words that satisfy ϕ. We might likewise assign to ϕ the set L(ϕ) of strings
w ∈ Σ+ such that nested(w) |= ϕ.

The quantifier rank rank(ϕ) of a first-order formula ϕ ∈ FO(τeΣ
) is the maximal number

of quantifier nestings in ϕ. More precisely, we define rank(λ(x) = a) = rank(x ⋖ y) =
rank(µ(x, y)) = rank(x = y) = rank(x ∈ X) = 0, rank(¬ϕ) = rank(ϕ), rank(ϕ1 ∨ ϕ2) =
max{rank(ϕ1), rank(ϕ2)}, and rank(∃xϕ) = rank(ϕ) + 1.

Definition 3.1. Let k ∈ N. For nested words U, V ∈ NW(Σ̃), we write U ≡k,eΣ V if, for

any first-order sentence ϕ ∈ FO(τeΣ
) with rank(ϕ) ≤ k, we have U |= ϕ iff V |= ϕ.

Note that ≡
k,eΣ

is an equivalence relation of finite index.

3.2. Spheres, Threshold Equivalence, and Hanf’s Theorem. The notion of a sphere

will play a central role in this paper. Let Σ̃ be a call-return alphabet and let A =
(N,⋖, µ, λ, . . .) be a structure over a signature that subsumes τeΣ

. Given i, j ∈ N , The
distance dA(i, j) of i and j in A is the minimal length of a path from i to j in the graph

(N,⋖ ∪ µ ∪ (⋖ ∪ µ)−1). If dA(i, j) = 1, we also write i ↔A j. We write i →A j if
(i, j) ∈ ⋖ ∪ µ. Let r be a natural number and let i ∈ N . The r-sphere of A around
i, which we denote by r-Sph(A, i), is basically the substructure of A induced by the new
universe {j ∈ N | dA(i, j) ≤ r}, but extended by the constant i as a distinguished element,
called the sphere center. For an example, consider the nested word W from Figure 3. The
2-sphere of W around i = 10 is shown in Figure 2 where the sphere center is marked as
a rectangle. Note that 2-Sph(W, 10) = 2-Sph(W, 14). Given an isomorphism type S of an
r-sphere, we let |A|S := |{i ∈ N | S and r-Sph(A, i) are isomorphic}| denote the number of
points in A that realize S. Let A

′ = (N ′,⋖′, µ′, λ′, . . .) be another structure with a signature
that subsumes τeΣ

. For i, j ∈ N and i′, j′ ∈ N ′, we write (i, j) ⊑A

A′ (i′, j′) if λ(i) = λ′(i′),
λ(j) = λ′(j′), (i, j) ∈ ⋖ implies (i′, j′) ∈ ⋖′, and (i, j) ∈ µ implies (i′, j′) ∈ µ′.

For r ∈ N, we denote by Spheresr(Σ̃) the set of r-spheres that arise from nested words

over Σ̃, i.e., Spheresr(Σ̃) := {r-Sph(W, i) |W ∈ NW(Σ̃) and i is a node of W}.

c −→ a −→ b b −→ b −→ a −→ b −→ b
j1 j2 j

Figure 2: A 2-sphere ...

ON THE EXPRESSIVE POWER OF 2-STACK VISIBLY PUSHDOWN AUTOMATA 11

c −→ a −→ b −→ c −→ a −→ b −→ b −→ b −→ b −→ a −→ b −→ b −→ b −→ a −→ b −→ b
i i′i1 i2

Figure 3: ... embedded into a nested word

Definition 3.2 (Threshold equivalence). Let r, t ∈ N and let U, V ∈ NW(Σ̃) be nested

words. We write U ⇆r,t V if, for any isomorphism type S ∈ Spheresr(Σ̃) of an r-sphere, we
have |U |S = |V |S or both t < |U |S and t < |V |S .

Next, we state Hanf’s locality theorem. For a comprehensive proof thereof, see [11, 15].

Theorem 3.3 (Hanf [9]). Let k ∈ N. There exist r, t ∈ N such that, for any two nested

words U, V ∈ NW(Σ̃), U ⇆r,t V implies U ≡
k,eΣ

V . Hereby, r and t can be computed

effectively such that r ≤ 3k and t ≤ k3k.

Thus, for any first-order sentence ϕ ∈ FO(τeΣ
), there are r ≤ 3|ϕ| and t ≤ |ϕ|3|ϕ|

such that L(ϕ) is the finite union of equivalence classes of ⇆r,t. Observe that ⇆r,t is an
equivalence relation of finite index.

4. The Sphere Automaton

For this section, we fix a 2-stack call-return alphabet Σ̃ = 〈{(Σ1
c ,Σ

1
r), (Σ

2
c ,Σ

2
r)},Σint〉.

The key connection between first-order logic and 2vpa/2nwa is provided by the following
proposition, which states the existence of an automaton that computes the sphere around
any node of a nested word.

Proposition 4.1. Let r be any natural number. There are a generalized 2nwa Br =

(Q, δ,QI , F, C) over Σ̃ and a mapping η : Q→ Spheresr(Σ̃) such that

• L(Br) = NW(Σ̃) (i.e., L(Br) is the set of all nested words), and

• for any nested word W ∈ NW(Σ̃), for any accepting run ρ of Br on W , and for any
node i of W , we have η(ρ(i)) ∼= r-Sph(W, i).

4.1. The Näıve Approach. We first propose a rather obvious approach to constructing
Br, which works in simpler settings, e.g., in the domain of strings, but will fail when con-
sidering nested words over at least two stacks. Namely, a first attempt to construct such a
generalized 2nwa Br would be to make each position i guess its sphere and then to show
that these guesses can be verified by relating the guessed spheres of neighboring positions
(i.e., positions i − 1, i, and µ−1(i) if i performs a pop action on a nonempty stack). We

might thus proceed as follows: We set Q = Spheresr(Σ̃) ·∪ {ι} and QI = {ι}. The set of

final states is given by F = {r-Sph(W,n) | W = ([n],⋖, µ, λ) ∈ NW(Σ̃)}, the set of calling

12 ON THE EXPRESSIVE POWER OF 2-STACK VISIBLY PUSHDOWN AUTOMATA

states by C = {(N,⋖, µ, λ, i) ∈ Spheresr(Σ̃) | µ(i) is defined}. Finally, δ = 〈δ1, δ2〉 is given
as follows:

• For S, S′ ∈ Q and a ∈ Σ, we let (S, a, S′) ∈ δ1 if one of the following holds:

– S = ι and there exists W = ([n],⋖, µ, λ) ∈ NW(Σ̃) such that both λ(1) = a
and S′ ∼= r-Sph(W, 1), or

– there exist W = ([n],⋖, µ, λ) ∈ NW(Σ̃) and i, i′ ∈ [n] such that
(1) λ(i′) = a
(2) (i, i′) ∈ ⋖ \ µ
(3) S ∼= r-Sph(W, i)
(4) S′ ∼= r-Sph(W, i′)

• For Sc, S, S
′ ∈ Q and a ∈ Σr, we let (Sc, S, a, S

′) ∈ δ2 if there exist a nested word

W = ([n],⋖, µ, λ) ∈ NW(Σ̃) and ic, i, i
′ ∈ [n] such that

(1) λ(i′) = a
(2) (ic, i

′) ∈ µ
(3) (i, i′) ∈ ⋖

(4) Sc
∼= r-Sph(W, ic)

(5) S ∼= r-Sph(W, i)
(6) S′ ∼= r-Sph(W, i′)

However, this straightforward approach does not work. Consider W to be the nested word
over the 2-stack call-return alphabet 〈{({a}, {a}), ({b}, {b})}, {c}〉 that is illustrated in Fig-
ure 4. For r = 2, it is possible to define an accepting run of the above automaton on W that
assigns the 2-sphere S from Figure 5 to the first position of W , though S is not isomorphic
to 2-Sph(W, 1). Actually, the sphere 2-Sph(W, 1) exhibits an edge between the a- and the
a-labeled position, which is missing in S. However, a run of our automaton can “pass” the
missing edge through W resulting in an accepting run. The whole run is specified in the
appendix.

b −→ c −→ a −→ c −→ c −→ c −→ c −→ a −→ b

Figure 4: Why the näıve approach fails (1)

4.2. The Solution. We now turn to the correct solution. In any state, the generalized
2nwa Br will guess the current sphere as well as spheres of nodes nearby and the cur-
rent position in these additional spheres. Adding some global information allows us to
locally check whether all the guesses are correct. The rest of this section is devoted to the
construction of Br and a corresponding mapping η to prove Proposition 4.1.

ON THE EXPRESSIVE POWER OF 2-STACK VISIBLY PUSHDOWN AUTOMATA 13

b −→ c −→ a−→ c −→ c −→ c −→ c −→ a −→ b

Figure 5: Why the näıve approach fails (2)

4.2.1. The Construction. Recall that Spheresr(Σ̃) denotes the set of all the r-spheres that

arise from nested words, i.e., Spheresr(Σ̃) = {r-Sph(W, i) | W is a nested word and i is a

position in W}. An extended r-sphere over Σ̃ is a structure E = (N,⋖, µ, λ, γ, α, col) where

core(E) := (N,⋖, µ, λ, γ) ∈ Spheresr(Σ̃) (in particular, γ ∈ N), α ∈ N , and col ∈ [#Col]
with #Col = 4 ·maxN 2 + 1 where maxN is the maximal size of an r-sphere, i.e., maxN =

max{|N | | (N,⋖, µ, λ, i) ∈ Spheresr(Σ̃)}. We say that α is the active node of E and col

is its color. Let eSpheresr(Σ̃) denote the set of all the extended spheres over Σ̃. For an
extended sphere E = (N,⋖, µ, λ, γ, α, col) and an element i ∈ N , we denote by E[i] the
extended sphere (N,⋖, µ, λ, γ, i, col), i.e., the extended sphere that we obtain by replacing
the active node α with i.

The idea of the construction of the generalized 2nwa Br is the following: Any state q of
Br is a set of extended spheres, which reflect the “environment” of a node that q is assigned

to. Now suppose that, in a run of Br on a nested word W̃ = ([ñ], ⋖̃, µ̃, λ̃), q is assigned to
a position i ∈ [ñ] and contains E = (N,⋖, µ, λ, γ, α, col). If the run is accepting, this will

mean that the environment of i in W̃ looks like the environment of α in E. In particular,
q will contain exactly one extended sphere E = (N,⋖, µ, λ, γ, α, col) such that γ and α

coincide, meaning that r-Sph(W̃ , i) ∼= (N,⋖, µ, λ, γ). Of course, Br has to locally guess the
environment of a position. But how can we ensure that a guess is correct? Obviously, we

have to pass a local guess to any neighboring position in W̃ . So suppose again that a state q

containing E = (N,⋖, µ, λ, γ, α, col) is assigned to a node i of W̃ . As α shall correspond to

i, we need to ensure that λ(α) = λ̃(i) (this will be taken care of by item (2) in the definition
of the transition relation below). Now suppose that α has a ⋖-successor j ∈ N , i.e., α ⋖ j.
Then, we have to guarantee that i < ñ. This is done by simply excluding q from the set of
final states. Moreover, j should correspond to i+1, which is ensured by passing E[j] to the
state that will be assigned to i+ 1 (see item (7)). On the other hand, if i comes up with a
⋖̃-successor, then α must have a ⋖-successor j as well such that E[j] belongs to the state
that will be assigned to i + 1. Observe that this rule applies unless dE(γ, α) = r, as then
i+ 1 lies out of the area of responsibility of E (see item (5)). Similar requirements have to
be considered wrt. potential ⋖-/⋖̃-predecessors (see (3), (4), and (6)), as well as wrt. the
relations µ and µ̃ (see (3’)–(7’)). One difficulty in our construction, however, is to guarantee
the lack of an edge. So assume the extended sphere E is the one given by Figure 2 with j1
as the active node. Let us neglect colors for the moment. Suppose furthermore that W̃ is

the nested word from Figure 3. Then, an accepting run ρ of Br on W̃ will assign to i1 a
state that contains E (modulo some coloring). Moreover, the state assigned to i will contain
E[j], where the sphere center and the active node coincide. We observe that, in E, the node
j1 is maximal. In particular, there is no µ-edge between j1 and j2. This should be reflected

14 ON THE EXPRESSIVE POWER OF 2-STACK VISIBLY PUSHDOWN AUTOMATA

in W̃ . A first idea to guarantee this might be to just prevent ρ(i2) from containing the
extended sphere E[j2] (note that (i1, i2) ∈ µ̃). This is, however, too restrictive. Actually,

(r-Sph(W̃ , i), i2) and E[j2] are isomorphic (neglecting the coloring of E) so that ρ(i2) must
contain E[j2]. The solution is already present in terms of the coloring of extended spheres.
More precisely, ρ(i2) is allowed to carry E[j2] as soon as it has a color that is different from
the color of the extended sphere E[j1] assigned to i1. Roughly speaking, there might be

isomorphic spheres in W̃ that are overlapping. To consider them simultaneously, they are
thus equipped with distinct colors.

The construction we obtain following the above ideas indeed allows us to infer, from an
accepting run assigning a state q to a node i, the r-sphere around i. As mentioned above,
we simply consider the (unique) extended sphere (N,⋖, µ, λ, γ, α, col) contained in q such
that γ = α. Then, (N,⋖, µ, λ, γ) is indeed the sphere of interest. It is not obvious that
the above ideas really do work, all the less as the construction will apply to nested words
over two stacks, but no longer to nested words over more than two stacks. After all, the
key argument will be provided by Proposition 4.3, stating an important property of nested
words over two stacks. Intuitively, it states the following: Suppose that, in a nested word,
there is an acyclic path from a node i to another node i′, and suppose this path is of a
certain type w (recording the labelings and edges seen in the path). Then, applying the
same path several times will never lead back to i. This is finally the reason why a cycle in

an extended sphere that occurs in a run on a nested word W̃ is in fact simulated by W̃ .
Let us formally construct the generalized 2nwa Br = (Q, δ,QI , F, C). An element of Q

is a subset E of eSpheresr(Σ̃) such that either E = ∅, which will be the only initial state, or
the following conditions are satisfied:

(a) there is a unique extended sphere (N,⋖, µ, λ, γ, α, col) ∈ E such that γ = α
(we set core(E) := (N,⋖, µ, λ, γ)),

(b) there is a ∈ Σ such that, for any (N,⋖, µ, λ, γ, α, col) ∈ E , λ(α) = a
(so that we can assign a unique label a to E , denoted by label(E)),

(c) for any two elements E = (N,⋖, µ, λ, γ, α, col) and E′ = (N ′,⋖′, µ′, λ′, γ′, α′, col ′)
from E , if core(E) = core(E′) and col = col ′, then α = α′.

So let us turn to the transition relation δ = 〈δ1, δ2〉:

• For E , E ′ ∈ Q and a ∈ Σ, we let (E , a, E ′) ∈ δ1 if E ′ 6= ∅ and the following hold:

(1) for any (N,⋖, µ, λ, γ, α, col) ∈ E ′, α 6∈ dom(µ−1) (i.e., µ−1(α) is not defined)

(2) label(E ′) = a,

(3) for any E = (N,⋖, µ, λ, γ, α, col) ∈ E and i ∈ N ,

E[i] ∈ E ′ =⇒ (α, i) ∈ ⋖

(4) for any E = (N,⋖, µ, λ, γ, α, col) ∈ E ′,

E 6= ∅ ∧ ¬∃i : (i, α) ∈ ⋖ =⇒ dE(γ, α) = r

(5) for any E = (N,⋖, µ, λ, γ, α, col) ∈ E ,

¬∃i : (α, i) ∈ ⋖ =⇒ dE(γ, α) = r

(6) for any E = (N,⋖, µ, λ, γ, α, col) ∈ E ′ and i ∈ N ,

(i, α) ∈ ⋖ =⇒ E[i] ∈ E

(7) for any E = (N,⋖, µ, λ, γ, α, col) ∈ E and i ∈ N ,

(α, i) ∈ ⋖ =⇒ E[i] ∈ E ′

ON THE EXPRESSIVE POWER OF 2-STACK VISIBLY PUSHDOWN AUTOMATA 15

• For Ec, E , E
′ ∈ Q and a ∈ Σr, we let (Ec, E , a, E

′) ∈ δ2 if Ec, E , E
′ 6= ∅ and (2)–(7) as

above hold as well as the following:

(3’) for any E = (N,⋖, µ, λ, γ, α, col) ∈ Ec and i ∈ N ,

E[i] ∈ E ′ =⇒ (α, i) ∈ µ

(4’) for any E = (N,⋖, µ, λ, γ, α, col) ∈ E ′,

α 6∈ dom(µ−1) =⇒ dE(γ, α) = r

(5’) for any E = (N,⋖, µ, λ, γ, α, col) ∈ Ec,

α 6∈ dom(µ) =⇒ dE(γ, α) = r

(6’) for any E = (N,⋖, µ, λ, γ, α, col) ∈ E ′,

α ∈ dom(µ−1) =⇒ E[µ−1(α)] ∈ Ec

(7’) for any E = (N,⋖, µ, λ, γ, α, col) ∈ Ec and i ∈ N ,

α ∈ dom(µ) =⇒ E[µ(α)] ∈ E ′

As already mentioned, the only initial state of Br is the empty set, i.e., QI = {∅}. Moreover,
E ∈ Q is a final state if, for any extended sphere (N,⋖, µ, λ, γ, α, col) ∈ E , both α 6∈ dom(µ)
and there is no i ∈ N such that (α, i) ∈ ⋖. Finally, E is contained in C if there is
(N,⋖, µ, λ, γ, α, col) ∈ E such that α ∈ dom(µ).

The mapping η : Q → Spheresr(Σ̃) as required in Proposition 4.1 is provided by core.
More precisely, we set η(∅) to be some arbitrary sphere and η(E) = core(E) if E 6= ∅.

4.2.2. Any Nested Word Is Accepted. Let W̃ = ([ñ], ⋖̃, µ̃, λ̃) be an arbitrary nested word

over Σ̃. We show that W̃ ∈ L(Br). Let us first distribute colors to each of the involved
spheres. For this, we define the notion of an overlap: for any i, i′ ∈ [ñ], i and i′ are said to

have an r-overlap in W̃ if r-Sph(W̃ , i) ∼= r-Sph(W̃ , i′) and dfW
(i, i′) ≤ 2r + 1. For example,

in Figure 3, i and i′ have a 2-overlap.

Claim 4.2. There is a mapping χ : [ñ] → [#Col] such that, for any i, i′ ∈ [ñ] with i 6= i′,

the following holds: if i and i′ have an r-overlap in W̃ , then χ(i) 6= χ(i′).

Proof. The mapping is obtained as a graph coloring. Consider the graph ([ñ],Arcs), Arcs ⊆
[ñ]× [ñ], where, for i, i′ ∈ [ñ], we have (i, i′) ∈ Arcs iff i 6= i′ and i and i′ have an r-overlap

in W̃ . Clearly, ([ñ],Arcs) cannot be of degree greater than 4 ·maxN 2 (for each i ∈ [n], there
are at most four distinct events i′ such that dfW

(i, i′) ≤ 1). Hence, it can be #Col -colored
by a mapping χ : [ñ] → [#Col] (i.e., χ(i) 6= χ(i′) for any (i, i′) ∈ Arcs), which concludes
the proof of Claim 4.2.

We now specify ρ : [ñ] → Q: for i ∈ [ñ], we set ρ(i) = {(r-Sph(W̃ , i′), i, χ(i′)) | i′ ∈ [ñ]
such that dfW

(i, i′) ≤ r}. With this definition, we can check that, for any i ∈ [ñ], ρ(i) is a

valid state of Br, and that ρ is indeed an accepting run of Br on W̃ . So let i ∈ [ñ] and let
E = (N,⋖, µ, λ, γ, α, col) and E′ = (N ′,⋖′, µ′, λ′, γ′, α′, col ′) be contained in ρ(i).

(a) Assume that γ = α and γ′ = α′. Then, (N,⋖, µ, λ, γ, γ) ∼= (r-Sph(W̃ , i), i) and

(N ′,⋖′, µ′, λ′, γ′, γ′) ∼= (r-Sph(W̃ , i), i). Consequently, we have (N,⋖, µ, λ, γ, γ) ∼=
(N ′,⋖′, µ′, λ′, γ′, γ′). Moreover, col = col ′ = χ(i).

(b) Of course, λ(α) = λ′(α′).

16 ON THE EXPRESSIVE POWER OF 2-STACK VISIBLY PUSHDOWN AUTOMATA

(c) Assume (N,⋖, µ, λ, γ) ∼= (N ′,⋖′, µ′, λ′, γ′) and col = col ′. There are i1, i2 ∈

[ñ] such that dfW
(i, i1) ≤ r, dfW

(i, i2) ≤ r, (N,⋖, µ, λ, γ, α) ∼= (r-Sph(W̃ , i1), i),

(N,⋖, µ, λ, γ, α′) ∼= (r-Sph(W̃ , i2), i), and col = χ(i1) = χ(i2). Clearly, we have

r-Sph(W̃ , i1) ∼= r-Sph(W̃ , i2). Furthermore, i1 = i2 and, therefore, α = α′. This is

because i1 and i2 have an r-overlap in W̃ so that, according to Claim 4.2, i1 6= i2
would imply χ(i1) 6= χ(i2), which contradicts the premise.

Now, for i ∈ {0, . . . , ñ} and i′ = i + 1 with i′ 6∈ dom(µ̃−1), we check that the triple
(ρ(i), λ(i′), ρ(i′)) is contained in δ1, where we let ρ(0) = ∅. Note first that, of course,
ρ(i′) 6= ∅.

(1) Suppose E = (N,⋖, µ, λ, γ, α, col) ∈ ρ(i′). We have E ∼= (r-Sph(W̃ , i′′), i′, χ(i′′)) for
some i′′ ∈ [ñ] with dfW

(i′, i′′) ≤ r. As i′ 6∈ dom(µ̃−1), we deduce α 6∈ dom(µ−1).

(2) Obviously, we have label(ρ(i′)) = λ̃(i′),
(3) Suppose E = (N,⋖, µ, λ, γ, α, col) ∈ ρ(i) (we thus have i ≥ 1) and j ∈ N such that

E[j] ∈ ρ(i′). Recall that we have to show that, then, (α, j) ∈ ⋖. There are i1, i
′
1 ∈

[ñ] such that dfW
(i1, i) ≤ r, dfW

(i′1, i
′) ≤ r, (N,⋖, µ, λ, γ, α) ∼= (r-Sph(W̃ , i1), i),

(N,⋖, µ, λ, γ, j) ∼= (r-Sph(W̃ , i′1), i
′), and col = χ(i1) = χ(i′1). We easily see that

i1 and i′1 have an r-overlap in W̃ . We deduce, according to Claim 4.2, i1 = i′1.

As, then, (N,⋖, µ, λ, γ, α) ∼= (r-Sph(W̃ , i1), i), (N,⋖, µ, λ, γ, j) ∼= (r-Sph(W̃ , i1), i
′),

and (i, i′) ∈ ⋖̃, we can infer (α, j) ∈ ⋖.
(4) Let E = (N,⋖, µ, λ, γ, α, col) ∈ ρ(i′), suppose i′ ≥ 2, and suppose that there is no

j ∈ N such that (j, α) ∈ ⋖. Recall that we have to show that dE(γ, α) = r. There

is i′1 ∈ [ñ] such that dfW
(i′1, i

′) ≤ r and (N,⋖, µ, λ, γ, α) ∼= (r-Sph(W̃ , i′1), i
′). But if

dE(γ, α) < r, then dfW
(i′1, i

′) < r, and there must be a ⋖-predecessor of α, which is
a contradiction. We therefore deduce that dE(γ, α) = r.

(5) Let E = (N,⋖, µ, λ, γ, α, col) ∈ ρ(i) and suppose that there is no j ∈ N such that
(α, j) ∈ ⋖. Similarly to the case (4), we show that dE(γ, α) = r. In fact, there is

i1 ∈ [ñ] such that dfW
(i1, i) ≤ r and (N,⋖, µ, λ, γ, α) ∼= (r-Sph(W̃ , i1), i). Again, if

dE(γ, α) < r, then dfW
(i1, i) < r so that there must be a ⋖-successor of α, which is

a contradiction. We conclude that dE(γ, α) = r.
(6) Let E = (N,⋖, µ, λ, γ, α, col) ∈ ρ(i′) and j ∈ N such that (j, α) ∈ ⋖. We show that,

then, E[j] ∈ ρ(i). There is i′1 ∈ [ñ] such that dfW
(i′1, i

′) ≤ r, (N,⋖, µ, λ, γ, α) ∼=

(r-Sph(W̃ , i′1), i
′), and col = χ(i′1). As (j, α) ∈ ⋖, α is not minimal so that we

have i ≥ 1. Since, furthermore, dE(γ, j) ≤ r implies dfW
(i′1, i) ≤ r, and since

we have (N,⋖, µ, λ, γ, j) ∼= (r-Sph(W̃ , i′1), i) and col = χ(i′1), we deduce E[j] =
(N,⋖, µ, λ, γ, j, col) ∈ ρ(i).

(7) Let E = (N,⋖, µ, λ, γ, α, col) ∈ ρ(i) and j ∈ N such that (α, j) ∈ ⋖. We have to
show that E[j] ∈ ρ(i′). There is i1 ∈ [ñ] such that dfW

(i1, i) ≤ r, (N,⋖, µ, λ, γ, α) ∼=

(r-Sph(W̃ , i1), i), and col = χ(i1). Since dE(γ, j) ≤ r implies dfW
(i1, i

′) ≤ r, and

since we have (N,⋖, µ, λ, γ, j) ∼= (r-Sph(W̃ , i1), i
′) and col = χ(i1), we deduce

E[j] = (N,⋖, µ, λ, γ, j, col) ∈ ρ(i′).

Next, for ic, i, i
′ ∈ [ñ] with i′ = i + 1 and (ic, i

′) ∈ µ̃, we check that the quadruple
(ρ(ic), ρ(i), λ(i′), ρ(i′)) is contained in δ2. Checking (2)–(7) proceeds as in the above cases.

ON THE EXPRESSIVE POWER OF 2-STACK VISIBLY PUSHDOWN AUTOMATA 17

For completeness, we present the cases (3’)–(7’), which are shown analogously. First observe
that, indeed, ρ(ic), ρ(i), and ρ(i′) are all nonempty.

(3’) Suppose E = (N,⋖, µ, λ, γ, α, col) ∈ ρ(ic) and j ∈ N such that E[j] ∈ ρ(i′). We
show that (α, j) ∈ µ. There are i1, i

′
1 ∈ [ñ] such that dfW

(i1, ic) ≤ r, dfW
(i′1, i

′) ≤

r, (N,⋖, µ, λ, γ, α) ∼= (r-Sph(W̃ , i1), ic), (N,⋖, µ, λ, γ, j) ∼= (r-Sph(W̃ , i′1), i
′), and

col = χ(i1) = χ(i′1). Again, i1 and i′1 have an r-overlap in W̃ . According to

Claim 4.2, i1 = i′1. Then, (N,⋖, µ, λ, γ, α) ∼= (r-Sph(W̃ , i1), ic), (N,⋖, µ, λ, γ, j) ∼=

(r-Sph(W̃ , i1), i
′), and (ic, i

′) ∈ µ̃, so that we can deduce (α, j) ∈ µ.
(4’) Let E = (N,⋖, µ, λ, γ, α, col) ∈ ρ(i′) and suppose that there is no j ∈ N such

that (j, α) ∈ µ. We have to show that dE(γ, α) = r. There is i′1 ∈ [ñ] such that

dfW
(i′1, i

′) ≤ r and (N,⋖, µ, λ, γ, α) ∼= (r-Sph(W̃ , i′1), i
′). But if dE(γ, α) < r, then

dfW
(i′1, i

′) < r, so there must be a µ-predecessor of α, which is a contradiction. We
deduce dE(γ, α) = r.

(5’) Let E = (N,⋖, µ, λ, γ, α, col) ∈ ρ(ic) and suppose that there is no j ∈ N such
that (α, j) ∈ µ. We show that, then, dE(γ, α) = r. There is i1 ∈ [ñ] such that

dfW
(i1, ic) ≤ r and (N,⋖, µ, λ, γ, α) ∼= (r-Sph(W̃ , i1), ic). If dE(γ, α) < r, then

dfW
(i1, ic) < r , so there must be a µ-successor of α, which is a contradiction. We

conclude that dE(γ, α) = r.
(6’) Let E = (N,⋖, µ, λ, γ, α, col) ∈ ρ(i′) and j ∈ N such that (j, α) ∈ µ. We show

E[j] ∈ ρ(ic). There is i′1 ∈ [ñ] such that dfW
(i′1, i

′) ≤ r, (N,⋖, µ, λ, γ, α) ∼=

(r-Sph(W̃ , i′1), i
′), and col = χ(i′1). Due to dE(γ, j) ≤ r, we also have dfW

(i′1, ic) ≤ r,

and since (N,⋖, µ, λ, γ, j) ∼= (r-Sph(W̃ , i′1), ic) and col = χ(i′1), we deduce E[j] ∈
ρ(ic).

(7’) Let E = (N,⋖, µ, λ, γ, α, col) ∈ ρ(ic) and j ∈ N such that (α, j) ∈ µ. We have to
show E[j] ∈ ρ(i′). There is i1 ∈ [ñ] such that dfW

(i1, ic) ≤ r, (N,⋖, µ, λ, γ, α) ∼=

(r-Sph(W̃ , i1), ic), and col = χ(i1). From dE(γ, j) ≤ r, it follows dfW
(i1, i

′) ≤ r.

As, moreover, (N,⋖, µ, λ, γ, j) ∼= (r-Sph(W̃ , i1), i
′) and col = χ(i1), we deduce

E[j] = (N,⋖, µ, λ, γ, j, col) ∈ ρ(i′).

4.2.3. Any Run Keeps Track Of Spheres. We will now show that an accepting run reveals
the sphere around any node. This constitutes the more difficult part of the correctness
proof.

We introduce some useful notation: By ∆, we denote the set {→,←,
1

y,
1

x,
2

y,
2

x}

of directions. Now let W = ([n],⋖, µ, λ) ∈ NW(Σ̃) be a nested word, i, j ∈ [n], and let

w = e1 . . . em ∈ ∆∗ (where ek ∈ ∆ for any k ∈ {1, . . . ,m}). We write i
w

==⇒W j if there
are i0, i1, . . . , im ∈ [n] such that i0 = i, im = j, and, for any k ∈ {0, . . . ,m− 1}, one of the
following holds:

(a) ek+1 =→ and ik+1 = ik + 1
(b) ek+1 =← and ik+1 = ik − 1

(c) ek+1 =
s

y and ik ∈ dom(µ) and λ(ik) ∈ Σs
c and ik+1 = µ(ik) (for some s ∈ {1, 2})

(d) ek+1 =
s

x and ik ∈ dom(µ−1) and λ(ik) ∈ Σs
r, and ik+1 = µ−1(ik) (for some

s ∈ {1, 2})

18 ON THE EXPRESSIVE POWER OF 2-STACK VISIBLY PUSHDOWN AUTOMATA

Moreover, we write i
w
−֒→W j if there are pairwise distinct i0, i1, . . . , im−1 ∈ [n] and im ∈

[n] \ {i1, . . . , im−1} such that i0 = i, im = j, and, for any k ∈ {0, . . . ,m − 1}, (a)–(d) as
above hold.

The following proposition is crucial for our project, and it fails when considering nested
words over more than two stacks.

Proposition 4.3. Let W = ([n],⋖, µ, λ) ∈ NW(Σ̃), w ∈ ∆+, and i, i′ ∈ [n] such that

i
w
−֒→W i′. If there is k ≥ 1 such that i

wk

−֒−→W i, then i = i′.

Before we prove Proposition 4.3, note that it does not hold as soon as a third stack
comes into play. To see this, consider Figure 6, describing part of a nested word W over the

3-stack call-return alphabet 〈{({a}, {a}), ({b}, {b}), ({c}, {c})}, ∅〉. For w =
1

y←
2

x←
3

x←,

we have i
w
−֒→W i′ and i

ww
−֒−→W i (where the meaning of

3
x is the expected one). However,

i 6= i′.

a −→ c a −→ c c −→ b c −→ b b −→ a b −→ a

i′ i

Figure 6: Proposition 4.3 fails when considering three stacks

Moreover, it is crucial to require, in the above definition of i
w
−֒→W j, the elements

i0, i1, . . . , im−1 ∈ [n] to be pairwise distinct. This can be seen considering a part of the
nested word W over the 2-stack call-return alphabet 〈{({a}, {a}), ({b}, {b})}, ∅〉 that is

depicted in Figure 7. Let w =
1

y←←
1

x←
2

x←. We have i
ww

===⇒W i, i.e., starting from i,
we can follow the sequence of directions w twice, arriving at i again. However, apart from

i, we have to visit j1 and j2 twice. Indeed, i
w
−֒→W i′, but also i 6

ww
−֒−→W i.

a −→ b a −→ b b −→ a b −→ a a −→ a −−−−−→ a −→ a
ii′ j2 j1

Figure 7: Intermediate positions need to be pairwise distinct

ON THE EXPRESSIVE POWER OF 2-STACK VISIBLY PUSHDOWN AUTOMATA 19

Proof (of Proposition 4.3). Let W = ([n],⋖, µ, λ) ∈ NW(Σ̃), w ∈ ∆+, and i ∈ [n]. We

have to show that, if i
w
−֒→W i, then w cannot be decomposed nontrivially into identical

factors, i.e., there is no u ∈ ∆+ such that w = uk for some k ≥ 2. To see this easily, we

observe that a situation such as i
w
−֒→W i corresponds to a topological circle, as depicted

in Figure 8. A topological circle is a closed line in the two-dimensional plane that never
crosses over itself. Let us construct topological circles according to the following procedure:
We assume a straight (horizontal) line of the plane. Assume further a point i on this line.
Starting from i, we choose another two points as follows: Pick a symbol γ from the alphabet

{
1

y,
1

x}·{
2

y,
2

x}. According to this choice, we first draw a semicircle above the straight line
ending somewhere on the line, and then, without interruption, a semicircle below the line,
again resulting in a point on the line. Each semicircle is drawn in the direction indicated by

γ, e.g.,
1

y
2

x requires to draw the upper semicircle from left to right and the lower one from
right to left. This procedure is continued until we reach the original point i. Observe that,

in Figure 8, we follow the sequence w = (
1

y
2

y)(
1

y
2

y)(
1

x
2

x)(
1

y
2

x)(
1

x
2

x)(
1

x
2

x), starting
in the left outermost point of intersection on the horizontal line. Also note that we have

w 6= uk for any u ∈ ({
1

y,
1

x} · {
2

y,
2

x})+ and k ≥ 2. It is not hard to see that topological
circles behave aperiodically in general.

So suppose that w ∈ ({
1

y,
1

x} · {
2

y,
2

x})+ is of the form u1(
1

y
2

x)u2 (in the other cases,
we follow similar arguments). We have to show that following a sequence wk such that k ≥ 2

will never produce a topological circle. As in any repetition of u1(
1

y
2

x)u2, the segments
belonging to u1 must not intersect and those belonging to u2 cannot intersect either, this

reduces to the problem if the repetition of the atomic sequence
1

y
2

x may yield a topological

circle. But obviously, for k ≥ 2, (
1

y
2

x)k gives rise to a “spiral”, and going back to the
starting point would require to intersect the line that has been drawn hitherto.

To summarize, following a sequence from the set ({
1

y,
1

x} · {
2

y,
2

x})+ several times
(i.e., at least twice) can never produce a topological circle. It is easy to translate this fact

into the nested-word setting over two stacks meaning that i
w
−֒→W i implies that w cannot

be decomposed nontrivially into equal factors.

Figure 8: Proof of Proposition 4.3

We will now show that, indeed, Br discovers the r-sphere around any node of an input
nested word.

20 ON THE EXPRESSIVE POWER OF 2-STACK VISIBLY PUSHDOWN AUTOMATA

Let W = ([n],⋖, µ, λ) ∈ NW(Σ̃) be a nested word and ρ be a run of Br on W . Consider
any i ∈ [n], let (Ni,⋖i, µi, λi, γi) refer to core(ρ(i)), and let col i be the unique element from
[#Col] satisfying Ei := (Ni,⋖i, µi, λi, γi, γi, col i) ∈ ρ(i).

The following statement claims that an arbitrarily long path in Ei is simulated by a
corresponding path in W .

Claim 4.4. Let d ≥ 0 and suppose there are j0, . . . , jd ∈ Ni such that γi = j0 ↔Ei
j1 ↔Ei

. . .↔Ei
jd. Then, there is a (unique) sequence of nodes i0, . . . , id ∈ [n] such that

• i0 = i,

• for each k ∈ {0, . . . , d}, Ei[jk] ∈ ρ(ik) (in particular, λ(ik) = λi(jk)), and

• for any k ∈ {0, . . . , d− 1}, (jk, jk+1) ⊑
Ei

W (ik, ik+1).

Proof. The proof is by induction. Obviously, the statement holds for d = 0. So assume
d ≥ 0 and suppose there are a sequence j0, . . . , jd, jd+1 ∈ Ni such that γi = j0 ↔Ei

j1 ↔Ei

. . .↔Ei
jd ↔Ei

jd+1 and a unique sequence i0, i1, . . . , id ∈ [n] such that i0 = i, Ei[jk] ∈ ρ(i)

for each k ∈ {0, . . . , d}, and (jk, jk+1) ⊑
Ei

W (ik, ik+1) for any k ∈ {0, . . . , d− 1}. We consider
four cases:

• Assume (jd, jd+1) ∈ ⋖i. Then, ρ(id) is not a final state so that id < n. We set
id+1 = id + 1. Due to (7), we have Ei[jd+1] ∈ ρ(id+1).
• Assume (jd+1, jd) ∈ ⋖i. Then, according to (6), id ≥ 2. We set id+1 = id − 1. Due

to (6), we also have Ei[jd+1] ∈ ρ(id+1).
• Assume (jd, jd+1) ∈ µi. Clearly, ρ(id) is a calling state so that µ(id) is defined.

Setting id+1 = µ(id), we have, due to (7’), Ei[jd+1] ∈ ρ(id+1).
• Assume (jd+1, jd) ∈ µi. According to (1), id ∈ dom(µ−1). With (6’), letting id+1 =
µ−1(id), we have Ei[jd+1] ∈ ρ(id+1).

This concludes the proof of Claim 4.4.

Claim 4.5. There is a homomorphism h : r-Sph(W, i)→ core(ρ(i)).

Proof. We show by induction the following statement:

For any d ∈ {0, . . . , r}, there is a homomorphism h : d-Sph(W, i) →
d-Sph((Ni,⋖i, µi, λi), γi) such that, for any i′ ∈ [n] with dW (i, i′) ≤ d, we
have Ei[h(i

′)] ∈ ρ(i′).
(*)

Of course, (*) holds for d = 0. So assume that (*) holds true for some natural number
d ∈ {0, . . . , r−1}, i.e., there is a homomorphism h : d-Sph(W, i)→ d-Sph((Ni,⋖i, µi, λi), γi)
such that Ei[h(i

′)] ∈ ρ(i′) for any i′ ∈ [n] with dW (i, i′) ≤ d. We show that then (*) holds
for d+ 1 as well. For this, let i1, i2 ∈ [n] such that dW (i, i1) = d and dW (i, i2) = d+ 1.

• Suppose i1 ⋖ i2. Since dW (i, i1) < r, we also have dEi
(γi, h(i1)) < r. Due to (5),

there is j2 ∈ Ni such that h(i1) ⋖i j2. Since Ei[h(i1)] ∈ ρ(i1), we obtain, by (7) and
(2), that λi(j2) = λ(i2) and Ei[j2] ∈ ρ(i2).
• Similarly, we proceed if i2 ⋖ i1. By dEi

(γi, h(i1)) < r and (4), there is j2 ∈ Ni

such that j2 ⋖i h(i1). Since Ei[h(i1)] ∈ ρ(i1), we obtain, by (6) and (2), that
λi(j2) = λ(i2) and Ei[j2] ∈ ρ(i2).
• If (i1, i2) ∈ µ, then there exists, exploiting (5’) and (7’), j2 ∈ Ni such that (h(i1), j2) ∈
µi, λi(j2) = λ(i2), and Ei[j2] ∈ ρ(i2).
• If (i2, i1) ∈ µ, then we can find, due to (4’) and (6’), j2 ∈ Ni such that (j2, h(i1)) ∈ µi,
λi(j2) = λ(i2), and Ei[j2] ∈ ρ(i2).

ON THE EXPRESSIVE POWER OF 2-STACK VISIBLY PUSHDOWN AUTOMATA 21

Observe that j2 is uniquely determined by i2 and does not depend on the choice of i1 or
on the relation between i1 and i2: If we obtained distinct elements j2 and j′2, then the
constraints Ei[j2] ∈ ρ(i2) and Ei[j

′
2] ∈ ρ(i2) would imply that ρ(i2) is not a valid state.

The above procedure extends the domain of the homomorphism h by those elements
whose distance to i is d + 1. I.e., for i1, i2 ∈ [n] with dW (i, i1) = dW (i, i2) = d + 1,
we determined two unique elements h(i1), h(i2) ∈ Ni, respectively. Let us show that
(i1, i2) ⊑

W
core(ρ(i)) (h(i1), h(i2)). Suppose i1 ⋖ i2 (the case i2 ⋖ i1 is symmetric). As

Ei[h(i1)] ∈ ρ(i1) and Ei[h(i2)] ∈ ρ(i2), we have, by (3), h(i1) ⋖i h(i2). Similarly, with (3’),
(i1, i2) ∈ µ implies (h(i1), h(i2)) ∈ µi.

Claim 4.6. There is a homomorphism h′ : core(ρ(i))→ r-Sph(W, i).

Proof. We show, again by induction, the following statement:

For any natural number d ∈ {0, . . . , r}, there is a homomorphism h′ :
d-Sph((Ni,⋖i, µi, λi), γi) → d-Sph(W, i) such that, for any j ∈ Ni with
dEi

(γi, j) ≤ d, we have Ei[j] ∈ ρ(h
′(j)).

(**)

Clearly, (**) holds for d = 0. Assume that (**) holds for some natural number d ∈
{0, . . . , r − 1} and let h′ : d-Sph((Ni,⋖i, µi, λi), γi) → d-Sph(W, i) be a corresponding ho-
momorphism. Let j1, j2 ∈ Ni such that dEi

(γi, j1) = d and dEi
(γi, j2) = d+ 1.

Suppose that j1 ⋖i j2. As Ei[j1] ∈ ρ(h
′(j1)), ρ(h

′(j1)) cannot be a final state of Br so
that there is i2 ∈ [n] such that h′(j1) ⋖ i2. Clearly, we have Ei[j2] ∈ ρ(i2). Analogously,
we proceed in the cases j2 ⋖i j1, (j1, j2) ∈ µi, and (j2, j1) ∈ µi to obtain such an element
i2. Note that i2 is uniquely determined by j2 and does not depend on the choice of j1 or on
the specific relation between j1 and j2. This is less obvious than the corresponding fact in
the proof of Claim 4.5 but can be shown along the lines of the following procedure, proving
that the extension of the domain of h′ by elements j ∈ Ni with dEi

(γi, j) = d + 1 is a
homomorphism:

We show that, for j, j′ ∈ Ni with dEi
(γi, j) = dEi

(γi, j
′) = d + 1, we have (j, j′) ⊑Ei

W
(h′(j), h′(j′)) (where the elements h′(j) and h′(j′) are obtained as indicated above). So
suppose j ↔Ei

j′. There are ℓ ∈ {0, . . . , d} and pairwise distinct j0, . . . , j2(d+1)−ℓ ∈ Ni,
such that

jℓ+1 ↔Ei
. . . ↔Ei

jd+1 = j

γi = j0 ↔Ei
. . . ↔Ei

jℓ ↔
E
i

↔
E i ↔

E
i

j2(d+1)−ℓ ↔Ei
. . . ↔Ei

jd+2 = j′

For ease of notation, set D = 2(d+ 1)− ℓ and let, for k ∈ N,

mod(k) =

{
k if k ≤ D

((k − ℓ) mod (D − ℓ+ 1)) + ℓ if k > D

I.e., the mapping mod counts until D and afterwards modulo D − ℓ + 1. According to
Claim 4.4, there is a unique infinite sequence i0, i1, . . . ∈ [n] such that

• i0 = i,

• for any k ∈ N, Ei[jmod(k)] ∈ ρ(ik), and

• for any k ∈ N, (jmod(k), jmod(k+1)) ⊑
Ei

W (ik, ik+1).

22 ON THE EXPRESSIVE POWER OF 2-STACK VISIBLY PUSHDOWN AUTOMATA

In what follows, we show that iD+1 = iℓ, which implies (jd+1, jd+2) ⊑
Ei

W (id+1, id+2) so that

(jd+1, jd+2) ⊑
Ei

W (h′(jd+1), h
′(jd+2)). There is w = eℓ . . . eD ∈ ∆+ such that

• jℓ
w

==⇒Ei
jℓ,

• jℓ
eℓ...eℓ+k−1

=======⇒Ei
jℓ+k for any k ∈ {1, . . . , D − ℓ}, and

• iℓ
wk

==⇒W iℓ+k(D−ℓ+1) for any k ≥ 1.

We can obtain such a w by setting, for any k ∈ {ℓ, . . . , D},

ek =

→ if jk ⋖i jmod(k+1)

← if jmod(k+1) ⋖i jk
1

y if λi(jk) ∈ Σ1
c and (jk, jmod(k+1)) ∈ µi and jk 6⋖i jmod(k+1)

1
x if λi(jk) ∈ Σ1

r and (jmod(k+1), jk) ∈ µi and jmod(k+1) 6⋖i jk
2

y if λi(jk) ∈ Σ2
c and (jk, jmod(k+1)) ∈ µi and jk 6⋖i jmod(k+1)

2
x if λi(jk) ∈ Σ2

r and (jmod(k+1), jk) ∈ µi and jmod(k+1) 6⋖i jk

As [n] is a finite set3, there are p, q ∈ N such that ℓ ≤ p < q and ip = iq. We choose
p and q such that iℓ, . . . , iq−1 are pairwise distinct. We have both Ei[jmod(p)] ∈ ρ(ip) and
Ei[jmod(q)] ∈ ρ(ip). According to the definition of the set of states of Br, this implies
jmod(p) = jmod(q). Let us distinguish three cases:

Case 1: p = ℓ and q = ℓ+ k(D − ℓ+ 1) for some k ≥ 1. Then, iℓ
wk

−֒−→W iℓ+k(D−ℓ+1)

so that, according to Proposition 4.3, we have iℓ = iD+1, and we are done.
Case 2: p > ℓ and q = p + k(D − ℓ + 1) for some k ≥ 1. Setting e = emod(p−1), we

have both ip−1
e
−֒→W ip and iq−1

e
−֒→W ip, which is a contradiction, as ip−1 6= iq−1.

Case 3: p ≥ ℓ and q 6= p+k(D−ℓ+1) for any k ≥ 1. But this implies mod(p) 6= mod(q)
and, as the jℓ, . . . , jD are pairwise distinct, jmod(p) 6= jmod(q), a contradiction.

This concludes the proof of Claim 4.6.

So let h : r-Sph(W, i) → core(ρ(i)) and h′ : core(ρ(i)) → r-Sph(W, i) be the unique
homomorphisms that we obtain following the constructive proofs of Claims 4.5 and 4.6,
respectively. It is now immediate that h is injective, h−1 = h′, and h : r-Sph(W, i) →
core(ρ(i)) is an isomorphism.

Recall that η : Q → Spheresr(Σ̃) shall map the empty set to an arbitrary sphere
and a nonempty set E ∈ Q onto core(E). Indeed, we constructed a generalized 2nwa

Br = (Q, δ,QI , F, C) together with a mapping η : Q→ Spheresr(Σ̃) such that

• L(Br) is the set of all nested words over Σ̃ (cf. Section 4.2.2), and

• for any nested word W ∈ NW(Σ̃), for any accepting run ρ of Br on W , and for any
node i of W , we have η(ρ(i)) ∼= r-Sph(W, i) (cf. Section 4.2.3).

This shows Proposition 4.1.

3In the context of infinite nested words, this argument can be replaced with the fact that, starting in i,
there is no infinite sequence of pairwise distinct nodes that follows the infinite sequence of directions w

ω,
i.e., the infinite repetition of w (see Section 7).

ON THE EXPRESSIVE POWER OF 2-STACK VISIBLY PUSHDOWN AUTOMATA 23

5. 2-Stack Visibly Pushdown Automata vs. Logic

Proposition 4.1, which constitutes the key result from Section 4, can now be used to
establish expressive equivalence of 2vpa and EMSO logic. In this section, we again fix a

2-stack call-return alphabet Σ̃ = 〈{(Σ1
c ,Σ

1
r), (Σ

2
c ,Σ

2
r)},Σint〉.

Lemma 5.1. Let r, t ∈ N and let S ∈ Spheresr(Σ̃) be an r-sphere in some nested word

over Σ̃. There are generalized 2nwa B1 and B2 over Σ̃ such that L(B1) = {W ∈ NW(Σ̃) |

|W |S = t} and L(B2) = {W ∈ NW(Σ̃) | |W |S > t}.

Proof. In both cases, we start from the generalized 2nwa Br = (Q, δ,QI , F, C) and the

mapping η : Q → Spheresr(Σ̃) from Proposition 4.1. For k = 1, 2, we obtain Bk by
extending the state space with a counter that, using η, counts the number of realizations
of S up to t+ 1. The new set of initial states is thus in both cases QI × {0}. However, the
set of final states of B1 is F × {t}, the one of B2 is F × {t+ 1}.

We are now prepared to state the first main result of this paper.

Theorem 5.2. Let L be a set of nested words over the 2-stack call-return alphabet Σ̃. Then,
the following are equivalent:

(1) There is a 2vpa A over Σ̃ such that L(A) = L.
(2) There is a sentence ϕ ∈ EMSO(τeΣ

) such that L(ϕ) = L.

Proof. To prove (1) → (2), one can perform a standard construction of an EMSO for-
mula from a 2nwa, where the latter can be extracted from the given 2vpa according to
Lemma 2.8. Basically, the formula “guesses” a possible run on the input word in terms of
existentially quantified second-order variables and then verifies, in its first-order fragment,
that we actually deal with a run that is accepting.

So let us directly prove (2)→ (1) and let ϕ = ∃X1 . . .∃Xmψ ∈ EMSO(τeΣ
) be a sentence

with ψ ∈ FO(τeΣ
) (we suppose m ≥ 1). We define a new 2-stack call-return alphabet

Σ̂ = 〈{(Σ1
c × 2m,Σ1

r × 2m), (Σ2
c × 2m,Σ2

r × 2m)},Σint × 2m〉

where 2m shall denote the powerset of [m]. From ψ, we obtain an FO formula ψ′ over τbΣ
by replacing any occurrence of λ(x) = a with

∨
M∈2m λ(x) = (a,M) and any occurrence of

x ∈ Xk with
∨

a∈Σ, M∈2m λ(x) = (a,M ∪ {k}). We set L ⊆ NW(Σ̂) to be the set of nested

words that satisfy ψ′. From Hanf’s Theorem (Theorem 3.3), we know that L is a finite
union of ⇆r,t equivalence classes for suitable r and t. It is easy to see that the class of
nested-word languages that are recognized by generalized 2nwa is closed under union and
intersection. Thus, by Lemma 5.1, there is a generalized 2nwa B′ recognizing L.

Now, to check whether some nested word from NW(Σ̃) satisfies ϕ, a generalized 2nwa

B with L(B) = L(ϕ) will guess an additional labeling for any node in terms of an element
from 2m and then simulate B′. By Lemma 2.7 and Lemma 2.8, we finally obtain a 2vpa A
such that L(A) = L(ϕ).

Observe that the number of states of the 2vpa that we construct for a given EMSO
sentence is elementary in the size of the formula. However, we do not know if it can be
computed in elementary time or if it can be computed effectively at all. For this, one has to
check if a representative of an equivalence class of ⇆r,t can be constructed algorithmically.

24 ON THE EXPRESSIVE POWER OF 2-STACK VISIBLY PUSHDOWN AUTOMATA

6. Grids and Monadic Second-Order Quantifier Alternation

In this section, we show that the monadic second-order quantifier-alternation hierarchy
over nested words is infinite. In other words, the more alternation of second-order quantifi-
cation we allow, the more expressive formulas become. From this, we can finally deduce that
2-stack visibly pushdown automata cannot be complemented in general. In the proof, we
use results that have been gained in the setting of grids. By means of first-order reductions
from grids into nested words, we can indeed transfer expressiveness results for grids to the
nested-word setting. Let us first state a general result from [12], starting with the formal
definition of a strong first-order reduction:

Definition 6.1 ([12], Definition 32). Let C and C′ be classes of structures over relational
signatures τ and τ ′, respectively. A strong first-order reduction from C to C′ with rank
m ≥ 1 is an injective mapping Φ : C → C′ such that the following hold:

(1) For any G ∈ C, the universe of Φ(G) is
⋃

k∈{1,...,m}({k}× dom(G)), i.e., the disjoint

union of m copies of dom(G), where dom(G) shall denote the universe of G.
(2) There is ψ(x1, . . . , xm) ∈ FO(τ ′) such that, for any structureG ∈ C, any u1, . . . , um ∈

dom(G), and any k1, . . . , km ∈ [m], we have Φ(G) |= ψ[(k1, u1), . . . , (km, um)]
iff ((k1, u1), . . . , (km, um)) = ((1, u1), . . . , (m,u1)). (The intuition is that a model
((1, u), . . . , (m,u)) of ψ represents u ∈ dom(G).)

(3) For any relation symbol r′ from τ ′, say with arity l, and any κ : [l] → [m], there

is ϕr′
κ (x1, . . . , xl) ∈ FO(τ) such that, for any G ∈ C and any u1, . . . , ul ∈ dom(G),

G |= ϕr′
κ [u1, . . . , ul] iff Φ(G) |= r′[(κ(1), u1), . . . , (κ(l), ul)].

(4) For any relation symbol r from τ , say with arity l, there is ϕr(x1, . . . , xl) ∈ FO(τ ′)
such that, for any G ∈ C and any u1, . . . , ul ∈ dom(G), G |= r[u1, . . . , ul] iff Φ(G) |=
ϕr[(1, u1), . . . , (1, ul)].

Once we have a strong first-order reduction from C to C′, logical definability carries over
from C to C′:

Theorem 6.2 ([12], Theorem 33). Let C and C′ be classes of structures over relational
signatures τ and τ ′, respectively. Let Φ : C → C′ be a strong first-order reduction such that
Φ(C) is Σ1(τ

′)-definable relative to C′. Then, for any L ⊆ C and k ≥ 1, L is Σk(τ)-definable
relative to C iff Φ(L) is Σk(τ

′)-definable relative to C′.

We proceed as follows. We first recall the notion of the class of grids, of which we know
that the monadic second-order quantifier-alternation hierarchy is infinite. Then, we give a
strong first-order reduction from the class of grids to the class of nested words over a simple
2-stack visibly pushdown alphabet so that we can deduce that the monadic second-order
quantifier-alternation hierarchy over nested words is infinite, too. Note that we will add to
ordinary grids some particular labeling in terms of a and b, which will simplify the upcoming
constructions. It is, however, easy to see that well-known results concerning ordinary grids
extend to these extended grids (cf. Theorem 6.3 below).

We fix a signature τGrids = {Pa, Pb, succ1, succ2} with Pa, Pb unary and succ1, succ2

binary relation symbols. Let n,m ≥ 1 be natural numbers. The (n,m)-grid is the τGrids -
structure G(n,m) = ([n]× [m], succ1, succ2, Pa, Pb) such that succ1 = {((i, j), (i+1, j)) | i ∈
[n− 1], j ∈ [m]}, succ2 = {((i, j), (i, j+1)) | i ∈ [n], j ∈ [m− 1]}, Pa = {(i, j) ∈ [n]× [m] | j
is odd}, and Pb = {(i, j) ∈ [n] × [m] | j is even}. The (3, 4)-grid is illustrated in Figure 9.
By G, we denote the set of all the grids.

ON THE EXPRESSIVE POWER OF 2-STACK VISIBLY PUSHDOWN AUTOMATA 25

a

a

a

b

b

b

a

a

a

b

b

b

Figure 9: The (3,4)-grid

Theorem 6.3 ([12]). The monadic second-order quantifier-alternation hierarchy over grids
is infinite. I.e., for any k ≥ 1, there is a set of grids that is Σk+1(τGrids)-definable relative
to G but not Σk(τGrids)-definable relative to G.

For the rest of this section, we suppose that Σ̃ is the 2-stack call-return alphabet given
by Σ1

c = {a}, Σ1
r = {a}, Σ2

c = {b}, Σ2
r = {b}, and Σint = ∅.

We now describe an encoding Φ : G→ NW(Σ̃) of grids into nested words over Σ̃. Given
n,m ≥ 1, we let

Φ(G(n,m)) :=

nested
(
an
[
(ab)n(ba)n

](m−1)/2
an
)

if m is odd

nested
(
an
[
(ab)n(ba)n

]m/2−1
(ab)nbn

)
if m is even

The idea is that the first n a’s (and, as explained below, the corresponding return events)
in a nested word represent the first column of G(n,m) seen from top to bottom; the first n
b’s represent the second column, where the column is seen from bottom to top; the second
n a’s stand for the third column, again considered from top to bottom, and so on. The
encoding Φ(G(3, 4)) of the (3,4)-grid as a nested word is depicted in Figure 10. We claim

that Φ is indeed a strong first-order reduction from the set of grids to the set NW(Σ̃) of

nested words over Σ̃.

a −−−−−→ a −−−−−→ a→ a→ b→ a→ b→ a→ b→ b→ a→ b→ a→ b→ a→ a→ b→ a→ b→ a→ b→ b −−−−−→ b −−−−−→ b

Figure 10: The encoding Φ(G(3, 4)) of the (3,4)-grid as a nested word

Proposition 6.4. We have that Φ : G → NW(Σ̃) is a strong first-order reduction with

rank 2. Moreover, Φ(G) is Σ1(τeΣ
)-definable relative to NW(Σ̃).

Proof. Let us first introduce a useful notation. Given a nested word W = ([n],⋖, µ, λ) and
c ∈ Σ such that W contains at least k positions labeled with c, we let posc(W,k) denote
the least position i in W such that |{j ∈ [i] | λ(j) = c}| = k (i.e., posc(W,k) denotes the
position of the k-th c in W).

26 ON THE EXPRESSIVE POWER OF 2-STACK VISIBLY PUSHDOWN AUTOMATA

Let n,m ≥ 1 and let ([2 · n ·m],⋖, µ, λ) refer to Φ(G(n,m)). Recall that λ can be seen
as the collection of unary relations λc = {i ∈ [2 · n ·m] | λ(i) = c} for c ∈ Σ. Let us map
any node in the (n,m)-grid (i.e., any element from [n] × [m]) to a position of Φ(G(n,m))
by defining a function χn,m : [n]× [m]→ [2 · n ·m] as follows:

χn,m(i, j) =

{
posa(Φ(G(n,m)), n · [(j + 1)/2− 1] + i) if j is odd

posb(Φ(G(n,m)), n · [j/2− 1] + (n+ 1− i)) if j is even

for any (i, j) ∈ [n] × [m]. Intuitively, χn,m(i, j) ∈ [2 · n · m] represents the node (i, j) in
the (n,m)-grid. This mapping is further extended towards a bijection χn,m : {1, 2}× ([n]×
[m]) → [2 · n ·m] as required by Definition 6.1 (item (1)). Namely, we map χn,m(1, (i, j))
onto χn,m(i, j) and χn,m(2, (i, j)) onto µ(χn,m(i, j)).

We are prepared to specify the first-order formulas as supposed in Definition 6.1: Let

ψ(x1, x2) = µ(x1, x2) . (2)

Indeed, for any n,m ≥ 1, k1, k2 ∈ {1, 2}, and u1, u2 ∈ [n]× [m], we have

Φ(G(n,m)) |= ψ[χn,m(k1, u1), χn,m(k2, u2)] iff ((k1, u1), (k2, u2)) = ((1, u1), (2, u1)) .

We will identify a map κ : [l]→ {1, 2} with (κ(1), . . . , κ(l)). Let, for c ∈ Σ and κ ∈ {1, 2},

ϕλc

κ (x) =

Pc(x) if c ∈ {a, b} and κ = 1

Pc(x) if c ∈ {a, b} and κ = 2

false otherwise

(3)

where we let a = a and b = b. For any n,m ≥ 1, κ ∈ {1, 2}, and u ∈ [n]× [m], we have

G(n,m) |= ϕλc

κ (x)[u] iff Φ(G(n,m)) |= (λ(x) = c)[χn,m(κ, u)] .

Further, let, for κ ∈ {1, 2} × {1, 2},

ϕ⋖

κ (x1, x2) =

succ1(x1, x2) ∧ ¬∃z succ2(z, x1) if κ = (1, 1)(
Pa(x1) ∧ succ1(x2, x1) ∧ ¬∃z succ2(x1, z)

∨ Pb(x1) ∧ succ1(x1, x2) ∧ ¬∃z succ2(x1, z)

)
if κ = (2, 2)

(x1 = x2) ∧ Pa(x1) ∧ ¬∃z succ1(x1, z)

∨ (x1 = x2) ∧ Pb(x1) ∧ ¬∃z succ1(z, x1)

∨ Pa(x1) ∧ Pb(x2) ∧ ∃z (succ1(z, x1) ∧ succ2(z, x2))

∨ Pb(x1) ∧ Pa(x2) ∧ ∃z (succ1(z, x1) ∧ succ2(x2, z))

if κ = (1, 2)

(
Pa(x1) ∧ Pb(x2) ∧ succ2(x1, x2)

∨ Pb(x1) ∧ Pa(x2) ∧ succ2(x1, x2)

)
if κ = (2, 1)

For any n,m ≥ 1, κ ∈ {1, 2} × {1, 2}, and u1, u2 ∈ [n]× [m], we have

G(n,m) |= ϕ⋖

κ (x)[u1, u2] iff Φ(G(n,m)) |= (x1 ⋖ x2)[χn,m(κ(1), u1), χn,m(κ(2), u2)] .

Finally, to complete step (3), let, for κ ∈ {1, 2} × {1, 2},

ϕµ
κ(x1, x2) =

{
x1 = x2 if κ = (1, 2)

false otherwise

ON THE EXPRESSIVE POWER OF 2-STACK VISIBLY PUSHDOWN AUTOMATA 27

Then, for any n,m ≥ 1, κ ∈ {1, 2} × {1, 2} and u1, u2 ∈ [n]× [m],

G(n,m) |= ϕµ
κ(x)[u1, u2] iff Φ(G(n,m)) |= (µ(x1, x2))[χn,m(κ(1), u1), χn,m(κ(2), u2)] .

Let
ϕPa(x) = (λ(x) = a) and ϕPb(x) = (λ(x) = b) . (4)

Of course, we have, for any n,m ≥ 1, c ∈ {a, b}, and u ∈ [n]× [m],

G(n,m) |= Pc(x)[u] iff Φ(G(n,m)) |= (ϕPc)[χn,m(1, u)] .

Let

ϕsucc1(x1, x2) =

(
λ(x1) = a ∧ λ(x2) = a ∧ (x1 ⋖ x2 ∨ ∃z (x1 ⋖ z ∧ z ⋖ x2))

∨ λ(x1) = b ∧ λ(x2) = b ∧ ∃z (x2 ⋖ z ∧ z ⋖ x1)

)

and let furthermore
ϕsucc2(x1, x2) = ∃z (µ(x1, z) ∧ z ⋖ x2) .

Then, for any n,m ≥ 1, u1, u2 ∈ [n]× [m], and k ∈ {1, 2}, it holds

G(n,m) |= succk(x1, x2)[u1, u2] iff Φ(G(n,m)) |= (ϕsucck)[χn,m(1, u1), χn,m(1, u2)] .

With the above formulas, it is now immediate to verify that Φ is indeed a strong first-order
reduction.

Now observe that Φ(G) is the “conjunction” of

• the regular expression
(
a+
[
(ab)+(ba)+

]∗
a+
)

+
(
a+
[
(ab)+(ba)+

]∗
(ab)+b+

)
,

• the first-order formula ∀x∃y
(
µ(x, y) ∨ µ(y, x)

)
, and

• the first-order property (written in shorthand)

∀x1, x2, y1, y2

(
λ(x1) = λ(x2) ∧ µ(x1, y1) ∧ µ(x2, y2)

→
(
λ(x1) = a ∧ x2 − x1 = 1 → y1 − y2 ∈ {1, 2}

)

∧
(
λ(y1) = a ∧ y1 − y2 = 1 → x2 − x1 ∈ {1, 2}

)

∧
(
λ(y1) = b ∧ y1 − y2 = 1 → x2 − x1 = 2

)

∧
(
x2 − x1 = 2 ∧ λ(x1 + 1) 6= λ(x1) → y1 − y2 ∈ {1, 2}

)

∧
(
y1 − y2 = 2 ∧ λ(y2 + 1) 6= λ(y2) → x2 − x1 ∈ {1, 2}

))

As the regular expression represents a Σ1(τeΣ
)-definable property, Φ(G) is Σ1(τeΣ

)-definable

relative to NW(Σ̃), which concludes the proof of Proposition 6.4.

Combining Theorem 6.2, Theorem 6.3, and Proposition 6.4, we obtain the following:

Theorem 6.5. The monadic second-order quantifier-alternation hierarchy over nested words

is infinite. I.e., for any k ≥ 1, there is a set of nested words over Σ̃ that is Σk+1(τeΣ
)-

definable relative to NW(Σ̃) but not Σk(τeΣ
)-definable relative to NW(Σ̃).

Note that Theorem 6.5 relies neither on a particular call-return alphabet nor on a
certain number of stacks (unless there is only one stack), as its proof is based on the

simplest possible 2-stack call-return alphabet Σ̃, which is given by Σ1
c = {a}, Σ1

r = {a},
Σ2

c = {b}, Σ2
r = {b}, and Σint = ∅.

Finally, Theorems 5.2 and 6.5 give rise to the following theorem:

28 ON THE EXPRESSIVE POWER OF 2-STACK VISIBLY PUSHDOWN AUTOMATA

Theorem 6.6. The class of nested-word languages that are recognized by 2vpa is not closed

under complementation. More precisely, for any 2-stack call-return alphabet Σ̃, there is a

set L of nested words over Σ̃ such that the following hold:

• There is a 2vpa A over Σ̃ such that L(A) = L.

• There is no 2vpa A over Σ̃ such that L(A) = NW(Σ̃) \ L.

This implies that the deterministic model of a 2vpa (see [16] for its formal definition)
is strictly weaker than the general model. This fact was, however, already shown in [16]:
Consider the language L = {(ab)mcndm−nxnym−n | m ∈ N, n ∈ [m]} and the 2-stack call-

return alphabet Σ̃ given by Σ1
c = {a}, Σ1

r = {c, d}, Σ2
c = {b}, Σ2

r = {x, y}, and Σint = ∅.

Then, L is accepted by some 2vpa over Σ̃ but not by any deterministic 2vpa over Σ̃.

7. Büchi Multi-Stack Visibly Pushdown Automata

We now transfer some fundamental notions and results from the finite case into the
setting of infinite (nested) words.

7.1. Büchi Multi-Stack Visibly Pushdown Automata. Let K ≥ 1, and let Σ̃ =
〈{(Σs

c,Σ
s
r)}s∈[K],Σint〉 be a K-stack call-return alphabet.

Definition 7.1. A Büchi multi-stack visibly pushdown automaton (Büchi Mvpa) over Σ̃ is
a tuple A = (Q,Γ, δ, QI , F) whose components agree with those of an ordinary Mvpa, i.e.,
Q is its finite set of states, QI ⊆ Q is the set of initial states, F ⊆ Q is the set of final states,
Γ is the finite stack alphabet containing the special symbol ⊥, and δ is a triple 〈δc, δr, δint〉
with δc ⊆ Q× Σc × (Γ \ {⊥})×Q, δr ⊆ Q× Σr × Γ×Q, and δint ⊆ Q× Σint ×Q.

A Büchi 2-stack visibly pushdown automaton (Büchi 2vpa) is a Büchi Mvpa that is
defined over a 2-stack alphabet.

Consider an infinite string w = a1a2 . . . ∈ Σω. A run of the Büchi Mvpa A on w

is a sequence ρ = (q0, σ
1
0 , . . . σ

K
0)(q1, σ

1
1, . . . σ

K
1) . . . ∈ (Q× Cont [K])

ω
(recall that Cont =

(Γ \ {⊥})∗ · {⊥}) such that q0 ∈ QI , σ
s
0 = ⊥ for any stack s ∈ [K], and [Push], [Pop], and

[Internal] as specified in the finite case hold for any i ∈ N+. We call the run accepting if
{q | q = qi for infinitely many i ∈ N} ∩ F 6= ∅. A string w ∈ Σω is accepted by A if there is
an accepting run of A on w. The such defined (string) language of A is denoted by Lω(A).

For the infinite case, we can likewise establish a relational structure of infinite nested
words:

Definition 7.2. An infinite nested word over Σ̃ is a structure (N+,⋖, µ, λ) where ⋖ =
{(i, i + 1) | i ∈ N+}, λ : N+ → Σ, and µ =

⋃
s∈[K] µ

s ⊆ N+ ×N+ where, for any s ∈ [K]

and (i, j) ∈ N+ ×N+, (i, j) ∈ µs iff i < j, λ(i) ∈ Σs
c, λ(j) ∈ Σs

r, and λ(i+ 1) . . . λ(j − 1) is
s-well formed.

The set of infinite nested words over Σ̃ is denoted by NW
ω(Σ̃). Again, given infinite

nested words W = (N+,⋖, µ, λ) and W ′ = (N+,⋖
′, µ′, λ′), λ = λ′ implies W = W ′ so that

we can represent W as string(W) := λ(1)λ(2) . . . ∈ Σω. Vice versa, given a string w ∈ Σω,

there is exactly one infinite nested word W over Σ̃ such that string(W) = w, which we
denote nested(w).

ON THE EXPRESSIVE POWER OF 2-STACK VISIBLY PUSHDOWN AUTOMATA 29

Definition 7.3. A generalized Büchi multi-stack nested-word automaton (generalized Büchi

Mnwa) over Σ̃ is a tuple B = (Q, δ,QI , F, C) where Q, δ, QI , F , and C are as in a
generalized Mnwa. Recall that, in particular, δ is a pair 〈δ1, δ2〉 with δ1 ⊆ Q × Σ × Q and
δ2 ⊆ Q × Q × Σr × Q.

We call B a generalized Büchi 2-stack nested-word automaton (generalized Büchi 2nwa)
if it is defined over a 2-stack alphabet.

If C = ∅, then we may call B a Büchi Mnwa (Büchi 2nwa, if K = 2).

A run of B on an infinite nested word W = (N+,⋖, µ, λ) ∈ NW
ω(Σ̃) is a mapping

ρ : N+ → Q such that (q, λ(1), ρ(1)) ∈ δ1 for some q ∈ QI , and, for any i ≥ 2, we have
{

(ρ(µ−1(i)), ρ(i− 1), λ(i), ρ(i)) ∈ δ2 if λ(i) ∈ Σr and µ−1(i) is defined

(ρ(i− 1), λ(i), ρ(i)) ∈ δ1 otherwise

The run ρ is accepting if ρ(i) ∈ F for infinitely many i ∈ N+ and, for any i ∈ N+ with
ρ(i) ∈ C, both λ(i) ∈ Σc and µ(i) is defined. The language of B, denoted by Lω(B), is the

set of infinite nested words over Σ̃ that allow for an accepting run of B.
As we still have a one-to-one correspondence between strings and nested words, we may

let Lω(A) with A a Büchi Mvpa stand for the set {nested(w) | w ∈ Lω(A)}.
It is now straightforward to adapt Lemma 2.7 and Lemma 2.8 to the infinite setting:

Lemma 7.4. For any generalized Büchi Mnwa B, there is a Büchi Mnwa B′ such that
Lω(B′) = Lω(B).

Lemma 7.5. Let L ⊆ NW
ω(Σ̃). The following are equivalent:

(1) There is a Büchi Mvpa A such that Lω(A) = L.
(2) There is a Büchi Mnwa B such that Lω(B) = L.

7.2. Büchi 2-Stack Visibly Pushdown Automata vs. Logic. In this section, we will
again restrict to two stacks. Unfortunately, EMSO logic over nested words turns out to
be too weak to capture all the behaviors of Büchi 2vpa. In this logic, considered over
infinite words, one cannot even express that one particular action occurs infinitely often.
To overcome this deficiency, one can introduce a first-order quantifier ∃∞xϕ meaning that
there are infinitely many positions x to satisfy the property ϕ [3].

So let us fix a 2-stack call-return alphabet Σ̃ = 〈{(Σ1
c ,Σ

1
r), (Σ

2
c ,Σ

2
r)},Σint〉 for the rest

of the paper. We introduce the logic MSO∞(τeΣ
), which is given by the following grammar:

ϕ ::= λ(x) = a | x ⋖ y | µ(x, y) | x = y | x ∈ X |

¬ϕ | ϕ1 ∨ ϕ2 | ∃xϕ | ∃
∞xϕ | ∃Xϕ

where a ∈ Σ. The fragments EMSO∞(τeΣ
) and FO∞(τeΣ

) are defined as one would expect.
The satisfaction relation is as usual concerning the familiar fragment MSO(τeΣ). Moreover,
given a formula ϕ(y, x1, . . . , xm, X1, . . . , Xn) ∈ MSO∞(τeΣ

), an infinite nested word W ,

(i1, . . . , im) ∈ (N+)m, and (I1, . . . , In) ∈ (2N+)n, we set W |= (∃∞yϕ)[i1, . . . , im, I1, . . . , In]
iff W |= ϕ[i, i1, . . . , im, I1, . . . , In] for infinitely many i ∈ N+. Given a sentence ϕ ∈

MSO∞(τeΣ
), we denote by Lω(ϕ) the set of infinite nested words over Σ̃ that satisfy ϕ.

We extend Definition 3.1 towards another equivalence relation of finite index: For

k ∈ N and infinite nested words U, V ∈ NW
ω(Σ̃), we write U ≡∞

k,eΣ
V if, for any first-

order sentence ϕ ∈ FO∞(τeΣ
) with rank(ϕ) ≤ k, we have U |= ϕ iff V |= ϕ. Hereby,

30 ON THE EXPRESSIVE POWER OF 2-STACK VISIBLY PUSHDOWN AUTOMATA

the rank of a formula carries over to the extended logic in a straightforward manner, i.e.,
rank(∃∞xϕ) = rank(ϕ) + 1.

Definition 7.6 ([3]). Let r, t ∈ N and let U, V ∈ NW
ω(Σ̃) be infinite nested words. We

write U ⇆
∞
r,t V if, for any isomorphism type S ∈ Spheresr(Σ̃) of an r-sphere, we have

|U |S = |V |S or both t < |U |S <∞ and t < |V |S <∞.

To establish a connection between the extended logic and our Büchi automata mod-
els, we have to provide an extension of Hanf’s Theorem. Indeed, the extended threshold
equivalence is a refinement of first-order definability in the context of the new quantifier:

Theorem 7.7 ([3]). Let k ∈ N. There exist r, t ∈ N such that, for any two infinite nested

words U, V ∈ NW
ω(Σ̃), U ⇆

∞
r,t V implies U ≡∞

k,eΣ
V .

We observe that the 2nwa Br constructed in the proof of Proposition 4.1 can be easily
adapted to obtain its counterpart for infinite nested words:

Proposition 7.8. Let r ∈ N be any natural number. There are a generalized Büchi 2nwa

Bω
r = (Q, δ,QI , F, C) over Σ̃ and a mapping η : Q→ Spheresr(Σ̃) such that

• Lω(Bω
r) = NW

ω(Σ̃) and

• for any W ∈ NW
ω(Σ̃), for any accepting run ρ of Bω

r on W , and for any node i ∈ N+

of W , we have η(ρ(i)) ∼= r-Sph(W, i).

Proof. First, we observe that Proposition 4.3 and the crucial argument stated in the proof
of Claim 4.6 (see Footnote 3) hold for infinite nested words just as well. Now, look at the
generalized 2nwa Br = (Q, δ,QI , F, C) as constructed in the proof of Proposition 4.1. As
the only purpose of the set F of final states is to ensure progress in some states where
progress is required in terms of spheres with a non-maximal active node, we can set Bω

r to
be (Q, δ,QI , Q,C), and we are done.

With this, we can easily extend Lemma 5.1 and determine a Büchi 2nwa to detect if a
particular sphere occurs infinitely often in an infinite nested word:

Lemma 7.9. Let r, t ∈ N and let S ∈ Spheresr(Σ̃). There is a generalized Büchi 2nwa

B over Σ̃ such that Lω(B) = {W ∈ NW
ω(Σ̃) | there are infinitely many i ∈ N+ such that

r-Sph(W, i) ∼= S}.

Proof. We start from the generalized Büchi 2nwa Bω
r = (Q, δ,QI , Q,C) and the mapping

η : Q→ Spheresr(Σ̃) from Proposition 7.8. To obtain B as required in the proposition, we
simply set the set of final states to be {q ∈ Q | η(q) ∼= S}.

Theorem 7.10. Let L ⊆ NW
ω(Σ̃) be a set of infinite nested words over the 2-stack call-

return alphabet Σ̃. Then, the following are equivalent:

(1) There is a Büchi 2vpa A over Σ̃ such that Lω(A) = L.
(2) There is a sentence ϕ ∈ EMSO∞(τeΣ

) such that Lω(ϕ) = L.

Proof. To prove (1) → (2), one again uses standard methods. Basically, second-order
variables Xq for q ∈ Q encode an assignment of states to positions in a nested word. Then,
the first-order part of the formula expresses that this assignment is actually an accepting run.
To take care of the acceptance condition, we add the disjunction of formulas ∃∞x (x ∈ Xq)
with q a final state.

ON THE EXPRESSIVE POWER OF 2-STACK VISIBLY PUSHDOWN AUTOMATA 31

For the direction (2) → (1), we make use of Lemmas 7.4, 7.5, 7.9, (a simple variation
of) Lemma 5.1, and the easy fact that the class of languages of infinite nested words that
are recognized by generalized Büchi 2nwa is closed under union and intersection. With
this, the proof proceeds exactly as in the finite case.

8. Open Problems

We leave open if visibly pushdown automata still admit a logical characterization in
terms of EMSO logic once they are equipped with more than two stacks.

We conjecture that any first-order definable set of nested words over two stacks is
recognized by some unambiguous 2vpa, i.e., by a 2vpa in which an accepting run is unique.
To achieve such an automaton, the coloring of spheres as performed by Br by simply guessing
and subsequently verifying it has to be done unambiguously.

We do not know if EMSO logic over nested words becomes more expressive if we allow
atomic formulas x < y with the obvious meaning. For this logic, it is no longer possible to
apply Hanf’s theorem as the degree of the corresponding class of structures is not bounded
anymore.

Finally, it might be worthwhile to study if our technique leads to a logical characteri-
zation of 2vpa for more general 2-stack call-return alphabets as introduced in [6].

References

[1] R. Alur and P. Madhusudan. Visibly pushdown languages. In Proceedings of the 36th Annual ACM
Symposium on Theory of Computing (STOC 2004), pages 202–211. ACM Press, 2004.

[2] R. Alur and P. Madhusudan. Adding nesting structure to words. In Proceedings of the 10th Interna-
tional Conference on Developments in Language Theory (DLT 2006), volume 4036 of Lecture Notes in
Computer Science, pages 1–13. Springer, 2006.

[3] B. Bollig and D. Kuske. Distributed Muller automata and logics. Research Report LSV-06-11, Labora-
toire Spécification et Vérification, ENS Cachan, France, May 2006.

[4] B. Bollig and M. Leucker. Message-passing automata are expressively equivalent to EMSO logic. The-
oretical Computer Science, 358(2-3):150–172, 2006.

[5] J. Büchi. Weak second order logic and finite automata. Z. Math. Logik, Grundlag. Math., 5:66–62, 1960.
[6] D. Carotenuto, A. Murano, and A. Peron. 2-visibly pushdown automata. In Proceedings of the 11th

International Conference on Developments in Language Theory (DLT 2007), volume 4588 of Lecture
Notes in Computer Science, pages 132–144. Springer, 2007.

[7] M. Droste, P. Gastin, and D. Kuske. Asynchronous cellular automata for pomsets. Theoretical Computer
Science, 247(1-2):1–38, 2000.

[8] C. C. Elgot. Decision problems of finite automata design and related arithmetics. Trans. Amer. Math.
Soc., 98:21–52, 1961.

[9] W. Hanf. Model-theoretic methods in the study of elementary logic. In J. W. Addison, L. Henkin, and
A. Tarski, editors, The Theory of Models. North-Holland, Amsterdam, 1965.

[10] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory, Languages and
Computability. Addison-Wesley, 2000.

[11] L. Libkin. Elements of Finite Model Theory. Springer, 2004.
[12] O. Matz, N. Schweikardt, and W. Thomas. The monadic quantifier alternation hierarchy over grids and

graphs. Information and Computation, 179(2):356–383, 2002.
[13] W. Thomas. Elements of an automata theory over partial orders. In Proceedings of Workshop on Partial

Order Methods in Verification (POMIV 1996), volume 29 of DIMACS. AMS, 1996.
[14] W. Thomas. Automata theory on trees and partial orders. In Proceedings of Theory and Practice of

Software Development (TAPSOFT 1997), 7th International Joint Conference CAAP/FASE, volume
1214 of Lecture Notes in Computer Science, pages 20–38. Springer, 1997.

32 ON THE EXPRESSIVE POWER OF 2-STACK VISIBLY PUSHDOWN AUTOMATA

[15] W. Thomas. Languages, automata and logic. In A. Salomaa and G. Rozenberg, editors, Handbook of
Formal Languages, volume 3, Beyond Words, pages 389–455. Springer, 1997.

[16] S. La Torre, P. Madhusudan, and G. Parlato. A robust class of context-sensitive languages. In Proceed-
ings of the 22nd IEEE Symposium on Logic in Computer Science (LICS 2007), pages 161–170. IEEE
Computer Society Press, 2007.

Appendix A. The Näıve Approach Fails

b −→ c −→ a −→ c −→ c −→ c −→ c −→ a −→ b

W :

b −→ c −→ a −→ c −→ c −→ c −→ c−→ a −→ b

S5:

b −→ c −→ a−→ c −→ c −→ c −→ c −→ a −→ b

S1:

b −→ c −→ a −→ c −→ c −→ c −→ c −→ a−→ b

S6:

b −→ c −→ a −→ c −→ c −→ c −→ c −→a −→ b

S2:

b −→ c −→ a−→ c −→ c −→ c −→ c −→ a −→ b

S7:

b −→ c −→ a −→ c −→ c−→ c −→ c −→ a −→ b

S3:

b −→ c −→ a −→ c−→ c −→ c −→ c −→ a −→ b

S8:

b −→ c −→ a −→ c −→ c −→ c−→ c −→ a−→ b

S4:

b −→ c −→ a−→ c −→ c −→ c −→ c −→ a −→ b

S9:

Figure 11: An accepting run of the näıve automaton on W

