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Abstract

We consider formulas which, in addition to the symbols
in the vocabulary, may use two designated symbols≺ and+
that must be interpreted as a linear order and its associated
addition. Such a formula is called addition-invariant if, for
each fixed interpretation of the initial vocabulary, its result
is independent of the particular interpretation of≺ and+.

This paper studies the expressive power of addition-
invariant first-order logic,+-inv-FO, on the class of finite
strings. Our first main result gives a characterization of
the regular languages definable in+-inv-FO: we show that
these are exactly the languages definable inFO with ex-
tra predicates, denoted by “lm” for short, for testing the
length of the string modulo some fixed number. Our sec-
ond main result shows that every language definable in
+-inv-FO, that is bounded or commutative or determinis-
tic context-free, is regular. As an immediate consequence of
these two main results, we obtain that+-inv-FO is equiva-
lent toFO(lm) on the class of finite colored sets.

Our proof methods involve Ehrenfeucht-Fraı̈sśe games,
tools from algebraic automata theory, and reasoning about
semi-linear sets.

1 Introduction

The model checking problem consists in testing whether
a relational structure satisfies a property expressed in a log-
ical formalism. It is a central problem in many areas of
computer science such as databases or automated verifica-
tion. In order to perform model checking in an automated
way, the structure must be stored on the disk, and this in-
duces a linear order on it. The logical formalism could then
make use of this linear order, typically for looping through
all the elements of the structure. A desirable property, how-
ever, is that the result should only depend on the structure
itself and not on the linear order that is specific to its cur-
rent representation on the disk. This is known as thedata
independence principlein the database context or asclosure
under isomorphismsof the logical formalism.

In this paper, we call this propertyorder-invariance, de-
noted “≺-inv-”. A logical formalismℒ, with a designated

binary symbol “≺” for accessing an extra linear order, is
said to be order-invariant if, over any structure, its output
is independent on the actual extra linear order. Two typ-
ical, celebrated examples are≺-inv-LFP, which captures
all properties computable in PTime, and≺-inv-PFP, which
captures all properties computable in PSpace [10, 21],
whereas the least fixed-point logic LFP and the partial fixed-
point logic PFP themselves are known to be too weak for
capturing all of PTime and PSpace.

This shows that access to an arbitrary linear order in-
creases expressiveness when one deals with powerful log-
ics that can express recursive operators. What about weaker
logics, such as first-order logic (FO)? A famous exam-
ple due to Gurevich (see Theorem 5.3 in [11]) shows that
≺-inv-FO is more expressive than FO. But still,≺-inv-FO
is actually not very expressive. It can express onlylocal
queries [9]. Furthermore, it lacks arithmetic: while LFP is
able to define addition and multiplication from the order,
this is no longer the case for FO.

This paper deals with a setting, where the FO-formulas
not only have access to an arbitrary extra linear order, but
also to the addition and multiplication induced by this order.
As for order-invariance, the result should be independent on
the extra linear order. When only addition is used, we write
“+-inv-” while, when both addition and multiplication are
used, we write “(+, ∗)-inv-”. Note that the least fixed-point
formalism of≺-inv-LFP is strong enough to define arith-
metic, thus≺-inv-LFP is equivalent to(+, ∗)-inv-LFP.

For weaker logics such as monadic least-fixed point
logic MLFP or monadic second-order logic MSO, how-
ever, the presence of extra arithmetic enables the logics
to express interesting properties that they could not do
with just the extra linear order. For instance, on strings,
≺-inv-MSO and≺-inv-MLFP both capture the regular lan-
guages and are no more expressive than MSO and MLFP.
But +-inv-MLFP can define all properties in DLIN (i.e.,
computable by a deterministic linear time random access
machine), while+-inv-MSO captures the linear time hier-
archy LinH [14, 17].

What about the first-order case? Notice that, unlike
for MLFP and MSO, multiplication is no longer definable
from addition, and hence we need to distinguish between
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+-inv-FO and(+, ∗)-inv-FO. Apart from the fact that all
properties expressible in+-inv-FO or(+, ∗)-inv-FO belong
to uniform AC0, not much is known about these two for-
malisms. As a step towards understanding their expres-
sive power, we propose to investigate simple structures.
We mainly considerstrings, as structures of finite labeled
graphs whose edges form a single directed path, andtran-
sitive strings, as the corresponding structures in which also
the transitive closure of the edge relation is present. The
simplest structures we consider are finitecolored sets.

Main results. We start our study by showing that the
regular languages that can be defined in+-inv-FO are ex-
actly those definable in FO with extra predicates for testing
the length of the string modulo some fixed number. As an
intermediate result of independent interest, we obtain a de-
cidable characterization for definability in this later logic.
See Theorem 3.12, Theorem 3.15, and Theorem 3.16.

We then wonder whether all languages definable in
+-inv-FO are regular. We show that every language de-
finable in+-inv-FO that isboundedor commutativeor de-
terministic context-freeis regular (cf., Theorem 4.1, Theo-
rem 5.1, and Theorem 5.4). Here, a languageL is called
boundedif there exists a numbern and stringsw1, . . . ,wn

such thatL ⊆ w∗
1w

∗
2 ⋅ ⋅ ⋅w∗

n (cf. [8]). A languageL is called
commutativeif for any stringu ∈ L, any permutation of the
letters ofu is also a string inL. A languageL is calledde-
terministic context-freeif it is recognized by a deterministic
pushdown-automaton.

As an immediate consequence of the result on commuta-
tive languages and our characterization of regular languages
definable in+-inv-FO, we obtain a characterization of the
colored setsdefinable in+-inv-FO: Over the class of finite
colored sets, every+-inv-FO-sentence is logically equiva-
lent to an FO-sentence with extra predicates for testing the
cardinality of the underlying structure’s universe modulo
some fixed number (cf. Corollary 5.3).

We conclude with an example of a context-free (and non-
regular) language that is definable in(+, ∗)-inv-FO, but
for which we could not settle whether it is definable in
+-inv-FO or not. We conjecture, however, that it is not
definable in+-inv-FO and, moreover, that all languages de-
finable in+-inv-FO are regular.

Related work. Besides the references already cited
above, we further note that≺-inv-FO(+1) was studied over
words and trees in [3], where it was shown to have the same
expressive power as FO(+1). Note that≺-inv-FO(+1) is
simpler than+-inv-FO(+1); it is immediate from the defi-
nition that≺-inv-FO(+1) defines only regular languages.

Structure of the paper. We start with the nec-
essary notations and definitions in Section 2. In Sec-
tion 3 we characterize the regular languages definable in
+-inv-FO. Section 4 shows that bounded languages defin-
able in+-inv-FO(<) are regular. Section 5 deals with com-

mutative languages, deterministic context-free languages,
and colored sets. Due to space limitations, many technical
details of the proofs are deferred to an appendix.

2 Preliminaries

Basic notation. ℤ denotes the set of integers.ℕ =
{0, 1, 2, ...} andℕ⩾1 = ℕ ∖ {0} denote the set of natural
numbers and of positive natural numbers, respectively. For
n ∈ ℕ⩾1, we write [n] to denote the set{0, ... , n−1}. For
i , j ∈ ℕ andq ∈ ℕ⩾1, we write i ≡ j [q] to indicate thati
is congruent toj moduloq. If S is a finite subset ofℕ⩾1,
we write lcm S to denote the least common multiple of the
elements inS .

Strings and transitive strings. We fix a finite alpha-
bet Σ. We let % be the signature that consists of a unary
relation symbolPa for each lettera ∈ Σ. In this paper,
a string overΣ is a finite relational structure over the sig-
nature� = % ∪ {E}, containing unary predicatesPa for all
a ∈ Σ, partitioning the elements of the universe, and one bi-
nary predicateE that is interpreted as a graph whose edges
form a single directed path. Atransitive stringoverΣ is a fi-
nite relational structure over the signature�′ that extends�
with a binary predicateE+ interpreted as the transitive clo-
sure ofE . Hence, each element ofΣ∗ can be viewed either
as a transitive string or as a string, depending on whether
we can compare any two of its positions or only successive
positions.

Given a string (or a transitive string)w , we denote its
length (i.e., the cardinality of its universe) by∣w ∣.

Logics. We denote by FO(=), FO(+1), and FO(<)
the first-order logics over%, �, and�′ respectively. The
semantics of their formulas are defined in the natural way
(where we assume that equality “=” can be used in atomic
formulas). Each closed formula' defines a languageL'
which is the set of all stringsw ∈ Σ∗ that, when seen as a
logical structure, satisfy'.

We will consider strings with an extra built-in linear
order≺ together with the associated arithmetic, and log-
ics that can make use of this extra arithmetic in anorder-
invariant way. This is formalized as follows.

Let �[+] (resp.�′[+] or %[+]) be the extension of�
(resp.�′ or %) with a binary predicate≺ and a ternary
predicate+. We denote the corresponding first-order log-
ics on these extensions of�, �′, and% by FO(+1,≺, +),
and FO(<,≺, +), and FO(=,≺, +).

A �[+]-expansionof a stringw is a structure over�[+]
which interprets the predicates of� as inw and interprets
≺ as a linear order, and+ as the addition induced by≺.
I.e., a + b = c holds true on a stringw whose universe is
linearly ordered by≺ iff â + b̂ = ĉ , wherex̂ denotes the
index of the elementx in the linear order≺ (here we adopt
the convention that the smallest element w.r.t.≺ has index
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0). It is important to not confuse the linear order≺ with the
transitive closure ofE : they might not be identical!

Example 2.1. For everyq ∈ ℕ⩾1 and everyi ∈ [q] there is
a FO(=,≺, +)-sentence'i ,q such that a�[+]-expansion of
a stringw satisfies'i ,q iff ∣w ∣ ≡ i [q].

For example, the formula'1,2, expressing that the length
of a string is odd, can be chosen as follows:

∃x ∃z
(
x + x = z ∧ ∀y ( y ≺ z ∨ y = z )

)

(recall that we adopt the convention that the smallest ele-
ment w.r.t.≺ has index 0).

A sentence' of FO(+1,≺, +) is said to beaddition-
invariant if for any stringw and any two�[+]-expansions
w1 and w2 of w we havew1 ∣= ' iff w2 ∣= '. We
write +-inv-FO(+1) to denote the class of all addition-
invariant FO(+1,≺, +)-formulas. If ' is a sentence in
+-inv-FO(+1), we writew ∣= ' to indicate that for some
(respectively, every)�[+]-expansionw1 ofw we havew1 ∣=
'. The classes+-inv-FO(<) and+-inv-FO(=) are defined
in the analogous way.

Note that Example 2.1 shows that+-inv-FO(=) can test
the length of a string modulo some constant.

The goal of this paper is to understand the expressive
power of these logics. Note that, as defined, their syntax
is not necessarily recursive, as testing whether a formula of
FO(+1,≺) is order-invariant is undecidable [3]. Whether
they have an equivalent effective syntax is an interesting
open problem. In Section 5 we show that this is the case
for +-inv-FO(=).

We start by investigating the regular languages definable
in +-inv-FO(<), +-inv-FO(+1), and+-inv-FO(=) in Sec-
tion 3. Then we move to bounded languages in Section 4
and to commutative languages and deterministic context-
free languages in Section 5.

In our proofs, we will sometimes also refer to the logic
FO(<, +), consisting of all first-order formulas of signature
�′ ∪ {+}. When evaluating such a formula on a transitive
string, the symbol+ is interpreted with the particular ad-
dition relation that fits to thenatural linear order< on the
positions of the string.

3 Regular languages and addition-invariance

The goal of this section is to characterize the regular
languages definable in+-inv-FO(<), +-inv-FO(+1), and
+-inv-FO(=). We start with the most expressive of the
three,+-inv-FO(<), and we follow the methodology of [3].

Using an Ehrenfeucht-Fraı̈sśe game argument, we
show in Section 3.1 that regular languages definable in
+-inv-FO(<) have particular closure properties. Then, us-
ing an algebraic argument, we show in Section 3.2 that the

regular languages satisfying these closure properties areex-
actly those definable in FO(<, lm), wherelm provides pred-
icates for testing the total length of the string modulo some
fixed number (see Section 3.2 for the precise definition). As
these predicates are expressible in+-inv-FO(<) (cf., Ex-
ample 2.1), we conclude that the languages definable in
FO(<, lm) are exactly the regular languages definable in
+-inv-FO(<) (see Theorem 3.12).

Using similar arguments, we also obtain (in Section 3.3)
characterizations of the regular languages definable in
+-inv-FO(+1) and+-inv-FO(=) by the logics FO(+1, lm)
and FO(=, lm).

3.1 Closure properties of +-inv-FO(<)

Given a languageL, its syntactic congruence=L is de-
fined for stringsx andy by x =L y iff ∀u, v ∈ Σ∗, uxv ∈ L

iff uyv ∈ L. A string x is called idempotent(for L) if
xx =L x . Recall thatL is regular iff its syntactic congruence
has finite index (see e.g. [19]). Hence, for every regular lan-
guageL there is a natural number!, depending only onL,
such that for all stringsx , the stringx! is idempotent.

We say thatL is closed under modulo transfersif for all
x , y , z ∈ Σ∗ we have:

if ∣x ∣ = ∣z ∣, then x!xyz! =L x!yzz!. (1)

The next theorem provides a closure property of regular
languages definable in+-inv-FO(<); the rest of Section 3.1
is devoted to the proof of this theorem.

Theorem 3.1. Let L be a regular language definable in
+-inv-FO(<). ThenL is closed under modulo transfers.

Proof. For the sake of a contradiction, assume thatL is
a regular language that isnot closed under modulo trans-
fers. Then there exist stringsx , y , z such that∣x ∣ = ∣z ∣
but x!xyz! ∕=L x!yzz!. By symmetry, we can assume
that there exist stringsu, v such thatux!xyz!v ∈ L but
ux!yzz!v ∕∈ L. By the definition of! we have for all
�,� ∈ ℕ⩾1 that

ux�!xyz�!v ∈ L and ux�!yzz�!v ∕∈ L. (2)

From Σ we construct the finite alphabet̄Σ := Σ ∪
{(a, x) ∣ a ∈ Σ} ∪ {(a, z) ∣ a ∈ Σ}. Let x̄ and z̄ be the
strings constructed fromx andz by tagging the letters with
the appropriate symbol of̄Σ. I.e., x̄ is obtained fromx by
replacing every lettera of x with the letter(a, x). Analo-
gously,z̄ is obtained fromz .

In the following, forw ∈ Σ̄∗ we write∣w ∣x̄ (and∣w ∣z̄ ) to
denote the number of occurrences of the stringx̄ (andz̄) in
w . We consider the languages
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L1 := { w ∈ uyv x̄ (x̄ z̄ ∣ z̄ z̄)∗ : ∣w ∣x̄ , ∣w ∣z̄ ⩾ !,

∣w ∣x̄ ≡ 1 [!], ∣w ∣z̄ ≡ 0 [!] },

L2 := { w ∈ uyv x̄ (x̄ z̄ ∣ z̄ z̄)∗ : ∣w ∣x̄ , ∣w ∣z̄ ⩾ !,

∣w ∣x̄ ≡ 0 [!], ∣w ∣z̄ ≡ 1 [!] }.

A formula' is said toseparateL1 fromL2, if L' contains
L1 but does not intersect withL2. Using equation (2) and the
assumption thatL is definable in+-inv-FO(<), we obtain:

Claim 3.2. There is a formula ofFO(<, +) that separates
L1 fromL2.

Proof of Claim 3.2.Recall that, by assumption,L is defin-
able in+-inv-FO(<). We will use this formula, along with
a suitable FO(<, +) interpretation, to obtain an FO(<, +)-
formula that separatesL1 from L2.

The FO(<, +) interpretation is constructed in such a way
that, when given a stringw ∈ uyv x̄ (x̄ z̄ ∣ z̄ z̄)∗, it defines a
stringw ′ ∈ ux∗yz∗v such thatw ∈ L1 impliesw ′ ∈ L, and
w ∈ L2 impliesw ′ ∕∈ L.

This FO(<, +) interpretation replaces letters in̄x andz̄
by the corresponding letters inx and z . Furthermore, it
consists of two formulas Succand Ord, each with two free
variables. When evaluated inw , the formulas Succand Ord

define the following successor relation and its associated
transitive closure:

First, there come all the positions inu (in the order in
which they appear inw ). Then, there come all positions
that belong to one of the substringsx̄ , in the order in which
they appear inw (this is doable in FO because we use labels
in Σ̄). Afterwards, there come all positions that belong toy ,
in the order in which they appear inw . Then, there come all
positions that belong to one of the substringsz̄ , in the order
in which they appear inw (again, this is doable in FO since
we use labels in̄Σ). Finally, there come all positions that
belong tov , in the order in which they appear inw .

From a wordw ∈ uyv x̄ (x̄ z̄ ∣ z̄ z̄)∗, this construction
produces a wordw ′ of the form ux iyz jv with i = ∣w ∣x̄
andj = ∣w ∣z̄ . If w ∈ L1, theni , j ⩾ ! and i ≡ 1 [!] and
j ≡ 0 [!]. Similarly, if w ∈ L2, theni , j ⩾ ! andi ≡ 0 [!]
andj ≡ 1 [!]. Thus, by equation (2) we obtain:

If w ∈ L1, thenw ′ ∈ L. If w ∈ L2, thenw ′ ∕∈ L.

Now recall that, by assumption,L is definable by a
+-inv-FO(<)-sentence'L. We modify this sentence ac-
cording to the FO(<, +) interpretation that definesw ′ in
w . I.e., we replace every occurrence of the symbolsE and
E+ (for the successor and the natural linear order on the
positions of the string) with the formulas Succ and Ord.
Thereby, we obtain an FO(<, +)-sentence' that is satisfied
byw iff w ′ ∣= 'L (note that this is the place whereaddition-
invarianceof 'L is essential). In particular,' separatesL1
from L2. Thus, the proof of Claim 3.2 is complete.

The desired contradiction for finishing the proof of The-
orem 3.1 now immediately follows from Claim 3.2 and the
next proposition.

Proposition 3.3. Let x , y , z , u, v be strings with∣x ∣ =
∣z ∣ ⩾ 1, and letx̄ , z̄ be obtained fromx , z as above. Fix an
arbitrary ! ⩾ 2, and letL1, L2 be chosen as above. Then,
no formula ofFO(<, +) can separateL1 fromL2.

Proof. The proof of the proposition is a consequence of the
following technical lemma that is based on an Ehrenfeucht-
Fräısśe game argument. In the statement below,w ≈+

k w ′

indicates that the stringsw andw ′ satisfy the same sen-
tences of FO(<, +) of quantifier rank⩽ k . It has an
Ehrenfeucht-Fräısśe game counterpart requiring the exis-
tence of a winning strategy for the duplicator in the cor-
respondingk-round game [11]. Similarly, we definew ≈<

k

w ′ when only sentences of FO(<) are considered.

Lemma 3.4. Let x̄ , z̄ , y , u, v be chosen as in Proposi-
tion 3.3. For anyk , there existd , d ′ ∈ ℕ⩾1 with d < d ′,
and numbersi0, i1, ... , id ′ ∈ ℕ⩾1, such that:1

1. uyv x̄ (x̄ z̄)i0
(
z̄ z̄(x̄ z̄)ij

)

j∈{1,...,d}
≈+

k

uyv x̄ (x̄ z̄)i0
(
z̄ z̄(x̄ z̄)ij

)

j∈{1,...,d ′}

2.
∑d

j=0 ij ≡ −d ≡ 0 [!]

3.
∑d ′

j=0 ij ≡ −d ′ ≡ −1 [!].

Before proving Lemma 3.4, let’s see why it implies the
proposition. Assume for the sake of a contradiction that
there is a formula' separatingL1 from L2. Let k be
its quantifier rank, and letd , d ′, i0, ⋅ ⋅ ⋅ , id ′ be as stated in
Lemma 3.4. Letw be uyv x̄(x̄ z̄)i0

(
z̄ z̄(x̄ z̄)ij

)

j∈{1,...,d}
and

letw ′ beuyv x̄(x̄ z̄)i0
(
z̄ z̄(x̄ z̄)ij

)

j∈{1,...,d ′}
.

By Item 2, ∣w ∣x̄ = 1 +
∑d

j=0 ij ≡ 1 [!] and ∣w ∣z̄ =

2d +
∑d

j=0 ij ≡ 0 [!]. Furthermore, sincei0, ... , id ∕= 0,
we have∣w ∣x̄ , ∣w ∣z̄ ⩾ !. Therefore,w ∈ L1. Similarly,

by Item 3, we have∣w ′∣x̄ = 1 +
∑d ′

j=0 ij ≡ 0 [!] and

∣w ′∣z̄ = 2d ′ +
∑d ′

j=0 ij ≡ 1 [!]. Therefore,w ′ ∈ L2. But
due to Item 1, eitherw andw ′ both satisfy', or neither of
them satisfies'. Hence,' cannot separateL1 from L2.

Proof of Lemma 3.4.The proof is essentially an
Ehrenfeucht-Fräısśe game argument, the difficulty be-
ing to exhibit a winning strategy in the presence of
addition. In order to do so, we use the following gen-
eralization of a result by Lynch [12], which was proved
in [18] and which allows us to reduce the existence of a
winning strategy in a game with addition to the existence
of a winning strategy in another game, where addition is
not present.

1Here, we use the following notation: For stringsw1, ... ,wd , we write
(wj )j∈{1,...,d} to denote the stringw1w2 ⋅ ⋅ ⋅wd .
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Proposition 3.5(Immediate from [18]). For all m, h, k ′ ∈
ℕ there is a numberr = r(m, h, k ′) ∈ ℕ and an infinite set
P = { p1 < p2 < p3 < ⋅ ⋅ ⋅ } ⊆ ℕ with p1 > h and
pj ≡ h [m], for all j ⩾ 1, such that the following is true for
all ℓ1, ℓ2 ∈ ℕ⩾1:

if 1ℓ1 ≈<
r 1ℓ2

then (ℤ,<, +,P ,P1) ≈
+
k′ (ℤ,<, +,P ,P2),

whereP1 is {p1, ... , pℓ1} whileP2 is {p1, ... , pℓ2}, and1ℓ1

and 1ℓ2 are words of lengthℓ1 and ℓ2 over the singleton
alphabet{1}.

Fix m1 = ∣x̄ z̄ ∣ = ∣z̄ z̄ ∣, m = m1!, h = ∣uyv x̄ ∣. For any
given k ′ let r , andp1, p2, ⋅ ⋅ ⋅ be given by Proposition 3.5
with these values fork ′,m, andh.

Now let i0 = (p1 − h)/m1 and forj ⩾ 1, ij = (pj+1 −

pj − m1)/m1. Then for allℓ we have
∑ℓ

j=0 ij = (pℓ+1 −
h − ℓ⋅m1)/m1 ≡ −ℓ [!].

We then choosed andd ′ in ℕ⩾1 such that1d ≈<
r 1d

′

,
d ≡ 0 [!] andd ′ ≡ 1 [!]. The existence of suchd andd ′

is guaranteed using a standard game argument on transitive
strings (cf., [11]). By Proposition 3.5 we have

(ℤ,<, +,P ,P1) ≈+
k′ (ℤ,<, +,P ,P2) . (3)

A standard first-order interpretation then transforms the
structures of equation (3) into the strings desired for Item1
of the lemma. The interpretation assigns a label to each
numberi with 0 ⩽ i < � (where� is the minimum element
in P that’s not inP1, resp.P2), using the following rules:

1. if i < h, then it uses the label of the(i+1)st position in
uyv x̄

(this is definable in FO, sinceh anduyv x̄ are fixed)

2. if i ⩾ h, i ≡ j [m1], 0 ⩽ j < m1, and positioni − j is
not inP , then it uses the label of the(j+1)st position
of x̄ z̄ ,
(this is definable in FO, sinceh, m1, andx̄ z̄ are fixed
and+ is available in the structures of equation (3))

3. if i ⩾ h, i ≡ j [m1], 0 ⩽ j < m1, and positioni − j

is in P , then it uses the label of the(j+1)st position of
z̄ z̄ .

Let k0 be the quantifier rank of the FO interpretation
that establishes this translation of(ℤ,<, +,P ,P1) and
(ℤ,<, +,P ,P2) into the corresponding stringsw1 andw2.
Note thatw1 and w2 are of the form stated in Item 1
of Lemma 3.4. Furthermore, equation (3) implies that
w1 ≈+

k w2, for k := k ′ − k0. This concludes the proof
of Lemma 3.4, of Proposition 3.3, and of Theorem 3.1.

3.2 Characterization of FO(<, lm)

We show in this section that closure under modulo trans-
fers corresponds to definability in FO(<, lm), where FO(<,

lm) is the logic extending FO(<) with predicateslm(i , q)
(for all i , q ∈ ℕ), that hold true in a structure iff the size of
its universe is equal toi moduloq.

Theorem 3.6. Let L be a regular language. ThenL is de-
finable inFO(<, lm) iff L is closed under modulo transfers.

The “only if” direction of Theorem 3.6 follows for in-
stance from Theorem 3.1, as languages definable in FO(<,
lm) are also definable in+-inv-FO(<) by Example 2.1.
Proving the “if” direction requires more work; the remain-
der of Section 3.2 is devoted to the proof.

We will make use of the following straightforward ob-
servation:

Claim 3.7. A language is definable inFO(<, lm) iff it is a
finite union of languages of the formS ∩ Z

q
i , whereS is

definable inFO(<) (i.e., S is a starfree regularlanguage,
cf. [13]), i andq are natural numbers, andZ q

i is the set of
all strings of lengthi moduloq.

As a further ingredient, we use the following conse-
quence of closure under modulo transfers.

Proposition 3.8. LetL be a regular language that is closed
under modulo transfers. There existsq ∈ ℕ⩾1 such that for
all k ∈ ℕ⩾1, and all stringsv1, ... , vk andx1, ... , xk+1 over
Σ we have: If�1, ⋅ ⋅ ⋅ , �k are natural numbers such that

�1∣v1∣+ ⋅ ⋅ ⋅+ �k ∣vk ∣ ≡ 0 [q] , (4)

then we have

x1v
!
1 v

�1
1 x2v

!
2 v

�2
2 ⋅ ⋅ ⋅ xkv

!
k v

�k
k xk+1

=L x1v
!
1 x2v

!
2 ⋅ ⋅ ⋅ xkv

!
k xk+1. (5)

The proof is by induction onk and makes use of B́ezout’s
identity. Details can be found in Appendix B.1.

Let L be a regular language closed under modulo trans-
fers. Letq be the number given by Proposition 3.8. For
0 ⩽ i < q, letLi be the restriction ofL to strings of lengthi
moduloq. Notice that because of (4), both sides of (5) have
the same length moduloq. Hence, (5) remains true after re-
placing=L with =Li

. We show thatLi is definable in FO(<,
lm). This will conclude the proof, asL =

∪

i Li .
Our goal is to show thatLi = M ∩ Z

q
i for somecounter-

free regular languageM. By Theorem 3.9 below, this im-
plies thatM is definable in FO(<) and thereforeLi is defin-
able in FO(<, lm).

Let A be a minimal deterministic automaton, and let�A
be its transition function. Acounterfor A is a stringu and
a setP = {p0, ... , pk−1}, with k ⩾ 2, of states such that
�A(pi , u) = pi+1 modulok . A stringu is acounterif it forms
a counter with some setP . We will use the following well-
known result.
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Theorem 3.9([13]). A regular languageL is definable in
FO(<) iff its minimal deterministic automaton does not
have any counter.

Note that ifu = v v is a counter, thenv is also a counter.
Similarly, if u = u1u2 is a counter, then itscyclic shiftu2u1
is also a counter. A counteru is primeif u is not of the form
v v for any v . Thesizeof a counteru is the length ofu.
A simple pumping argument shows that ifA has a counter
u, then it has a counter of size bounded by a numberN

that depends only onA. It thus suffices to consider prime
counters of size< N.

LetA be the minimal deterministic automaton forLi .
Let C be the set of prime counters ofA of size< N.

I.e., C is a set of pairs(u,P) whereu ∈ Σ∗, ∣u∣ < N,
andP is a set of states ofA of size⩾ 2, satisfying the
condition of prime counters. We keep inC only one counter
per cyclic shift ofu. Let CS be the set of strings that are
counters occurring inC , and letk be the maximal length
of such strings. Notice that becauseA is deterministic, if
(u,P) ∈ C and(u,P ′) ∈ C , thenP ∩ P ′ = ∅.

We construct an automatonB such that the minimal de-
terministic finite automaton equivalent toB has no counter,
andLi = ℒ(B)∩Z

q
i , whereℒ(B) denotes the language ac-

cepted byB . This will conclude the proof of Theorem 3.6.
The automatonB essentially simulatesA. On top of that,

it remembers in its states the lastk previous letters read. It
also has one counter per element ofCS that counts up to
!⋅q. The transition table ofB is given by the following
rules, wherecu is the current value of the counter foru,
andv is the string of the lastk letters read, including the
currently read lettera:

1. For allu in CS such thatv does not end with a cyclic
shift of u, B sets the countercu to 0.

2. If v = v ′u, u ∈ CS , andcu < !⋅q, thenB simulatesA
and increases the countercu by 1.

3. If v = v ′u, u ∈ CS , cu = !⋅q, and the simulation
of A on the current letter gives a statep ∈ P such
that(u,P) ∈ C , thenB non-deterministically selects a
state ofP . Note that this is the only case whereB does
not simply simulateA.

4. In all other cases,B simply simulatesA.

From the construction ofB we immediately obtain:

Lemma 3.10. A stringw is accepted byB iff it can be de-
composed asw = w1 ⋅ ⋅ ⋅wn, for somen ⩾ 1, such that

∙ w1u
�1
1 w2u

�2
2 ⋅ ⋅ ⋅wn is accepted by A for some

�1, ⋅ ⋅ ⋅ , �n−1 ∈ ℕ,

∙ u
!q
i is a suffix ofwi , for eachi < n, and

∙ ui ∈ CS for all i < n.

Note that the casen = 1 implies that every word ac-
cepted byA is accepted byB , i.e.,Li ⊆ ℒ(B).

It turns out thatB has the desired properties:

Proposition 3.11. (a) Li = ℒ(B) ∩ Z
q
i .

(b) The minimal deterministic automaton recognizing
ℒ(B) does not have any counter.

Proof. We begin by proving part (a).
By Lemma 3.10,Li ⊆ ℒ(B), and hence it suffices to

show thatℒ(B) ∩ Z
q
i ⊆ Li . Let w be a string of length

i moduloq, accepted byB . By Lemma 3.10 we can de-
composew asw1w2 ⋅ ⋅ ⋅wn, such thatw1u

�1
1 w2u

�2
2 ⋅ ⋅ ⋅wn is

accepted byA. By definition ofA, this word has length
i moduloq. Hence we have

∑

i ∣ui ∣�i ≡ 0 [q]. We can
therefore apply Proposition 3.8 and obtain thatw1w2 ⋅ ⋅ ⋅wn

is accepted byA, as desired.
The proof of part (b) makes use of Proposition 3.8 and

Lemma 3.10, along with a careful analysis of the (poten-
tial) counters ofA and the minimal deterministic automaton
equivalent toB . Details can be found in Appendix B.1.

This completes the proof of Theorem 3.6. Classical tech-
niques now imply that, given an automaton forL, it is decid-
able whetherL is closed under modulo transfers: Using the
pumping lemma, one shows that all quantified strings can
be assumed to be short. Then, a brute force analysis yields
the decision algorithm.

Hence, Theorem 3.6 provides an effective test for defin-
ability in FO(<, lm), a result of independent interest. As an
immediate consequence of Theorem 3.1 and Theorem 3.6,
we obtain an effective syntax and a complete characteriza-
tion of the regular languages definable in+-inv-FO(<):

Theorem 3.12. A regular language is definable in
+-inv-FO(<) iff it is definable inFO(<, lm).
Furthermore, given an automaton for a regular languageL,
it is decidable whetherL is definable inFO(<, lm).

3.3 +-inv-FO(+1) and +-inv-FO(=)

A characterization of the regular languages definable in
+-inv-FO(+1) can be obtained in the same way, using an
additional closure property taken from [19]. A regular lan-
guageL is closed under swapsif ∀e, f , x , y , z ∈ Σ∗ such
thate, f are idempotent we have:

e x f y e z f =L e z f y e x f . (6)

The proof of the following theorem is done as for Theo-
rem 3.1, using an Ehrenfeucht-Fraı̈sśe game argument that
can be found in Appendix B.2.

Theorem 3.13. Let L be a regular language definable in
+-inv-FO(+1). ThenL is closed under swaps.
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As for Theorem 3.6, we can show the following (see Ap-
pendix B.3 for a proof):

Theorem 3.14. LetL be a regular language. ThenL is de-
finable inFO(+1, lm) iff L is closed under modulo transfers
and under swaps.

In summary, we have:

Theorem 3.15. A regular language is definable in
+-inv-FO(+1) iff it is definable inFO(+1, lm).
Furthermore, given an automaton for a regular languageL,
it is decidable whetherL is definable inFO(+1, lm).

By further requiring commutativity of the language, we
obtain similar results for+-inv-FO(=) (the proof can be
found in Appendix B.4).

Theorem 3.16. A regular language is definable in
+-inv-FO(=) iff it is definable inFO(=, lm) iff it is com-
mutative and closed under modulo transfers.
Furthermore, given an automaton for a regular languageL,
it is decidable whetherL is definable inFO(=, lm).

4 Bounded languages

A languageL ⊆ Σ∗ is calledboundedif there exists
an n ∈ ℕ⩾1 and n stringsw1, ... ,wn ∈ Σ∗ such that
L ⊆ w∗

1w
∗
2 ⋅ ⋅ ⋅w∗

n . Bounded languages received quite some
attention in the literature, cf. e.g. [5, 8, 7, 16, 4]. This
section’s main result is:

Theorem 4.1. Every bounded language definable in
+-inv-FO(<) is regular.

Due to space limitations, we prove Theorem 4.1 only for
the special case where∣w1∣ = ⋅ ⋅ ⋅ = ∣wn∣; the proof of
the general version will be given in the full paper. More
precisely, we here give the proof of the following Proposi-
tion 4.2. The proof of this proposition contains already all
the ingredients necessary for proving Theorem 4.1.

Proposition 4.2. Letn ∈ ℕ⩾1, letw1, ... ,wn ∈ Σ∗ be such
that ∣w1∣ = ⋅ ⋅ ⋅ = ∣wn∣ ⩾ 1, and let�1, ... ,�n+1 ∈ Σ∗.
Every languageL ⊆ �1 w

∗
1 �2 w

∗
2 ⋅ ⋅ ⋅ �n w

∗
n �n+1 that is

definable in+-inv-FO(<) is regular.

The remainder of Section 4 is devoted to the proof of
Proposition 4.2.

For n ∈ ℕ⩾1 and �1, ... ,�n+1,w1, ... ,wn ∈ Σ∗

we write � and w to denote the tuples(�1, ... ,�n+1)
and (w1, ... ,wn). By Mw

� we denote the language
�1 w

∗
1 �2 w

∗
2 ⋅ ⋅ ⋅ �n w

∗
n �n+1. For proving Proposition 4.2,

it is convenient to identify a vectorx = (x1, ... , xn) ∈ ℕ
n

with the string�1 w
x1
1 �2 w

x2
2 ⋅ ⋅ ⋅ �n w

xn
n �n+1 ∈ Mw

� . For
eachL ⊆ Mw

� , let S w
� (L) ⊆ ℕ

n be theset of vectors asso-
ciated with the words ofL.

It turns out that for languagesL ⊆ Mw
� definable in

+-inv-FO(<), S w
� (L) is semi-linearin the following sense:

A setS ⊆ ℕ
n is calledlinear if there exist a numbert ∈ ℕ

and vectorsv0, ... , vt ∈ ℕ
n such that

S = v0 + ℕv1 + ⋅ ⋅ ⋅+ ℕvt .

A setS ⊆ ℕ
n is calledsemi-linearif S is empty orS is

a finite union of linear sets.
A set S ⊆ ℕ

n is called first-order definable in(ℕ,<,
+) if there is a FO(<, +)-formula'(y1, ... , yn) such that
S = {(x1, ... , xn) ∈ ℕ

n : (ℕ,<, +) ∣= '(x1, ... , xn)}.

Theorem 4.3([6]). A setS ⊆ ℕ
n is first-order definable in

(ℕ,<, +) if and only if it is semi-linear.

Using Theorem 4.3 along with a standard FO interpre-
tation, it is easy to prove the following (in fact, the lemma
is true not only for+-inv-FO(<), but even for FO(<, +))
(see Appendix C.1):

Lemma 4.4. Let L ⊆ Mw
� be a language that is definable

in +-inv-FO(<). ThenS w
� (L) is semi-linear.

It is easy to see that there are non-regular languages such
that the associated set of vectors is semi-linear. Hence,
in order to derive regularity, we need to show that the
set of vectors associated with a language definable in
+-inv-FO(<) has a special property.

For this, we use Ginsburg and Spanier’s characteriza-
tion [8] of regular bounded languages by subsets ofℕ

n that
we call semi-dicedhere2: A setS ⊆ ℕ

n is calleddiced if
there exist a numbert ∈ ℕ, an arbitrary vectorv0 ∈ ℕ

n,
and vectorsv1, ... , vt ∈ ℕ

n each of which has exactly one
non-zero component, such thatS = v0+ℕv1+ ⋅ ⋅ ⋅+ℕvt .
S is calledsemi-dicedif S is empty orS is a finite union of
diced sets. In [8] it was shown that a bounded language is
regular iff its associated set of vectors is semi-diced. From
this, we obtain:

Theorem 4.5(Immediate from [8]). LetL ⊆ Mw
� . Then,L

is regular iffS w
� (L) is semi-diced.

For proving Proposition 4.2, it therefore suffices to show
that for a language definable in+-inv-FO(<), the asso-
ciated set is semi-diced. This is our goal throughout the
remainder of Section 4. For achieving this goal, we give
in Section 4.1 characterizations for semi-linear sets and
semi-diced sets. Based on these characterizations, in Sec-
tion 4.2 we use a game argument to show that for ev-
ery+-inv-FO(<)-definable bounded languageL, the semi-
linear setS w

� (L) is actually semi-diced.

2Ginsburg and Spanier did not assign a particular name to thesesets
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4.1 Semi-linear sets and semi-diced sets

For x ∈ ℤ
n let ∣∣x ∣∣ :=

∑n
i=1 ∣xi ∣. ForK ⩾ 0, we write

NK (x) to denote theK -neighborhood ofx , i.e.,

NK (x) := {y ∈ ℤ
n : ∣∣x − y ∣∣ ⩽ K}.

For S ⊆ ℕ
n, x , y ∈ ℕ

n, andK ∈ ℕ we say thatNK (x)
andNK (y) are identical with respect toS if for all z ∈ ℤ

n

with ∣∣z ∣∣ ⩽ K we havex + z ∈ S ⇐⇒ y + z ∈ S .
We believe that the next lemma, which essentially says

that any semi-linear set is ultimately periodic, is known to
researchers in the area of algebra and number theory. Note,
however, that Muchnik [15] gave a characterization of semi-
linear sets based on a similar closure property that differs
with the one stated in the lemma in the fact that it does not
include the universal quantification overj (it is assuming
j = 1). As this extra quantification will be important for
us, and since we are not aware of a reference that contains
a proof of the closure property as stated below, we included
a proof in Appendix C.3.

Lemma 4.6. For every semi-linear setS ⊆ ℕ
n there exists

a finite setU ⊆ ℕ
n ∖ {0} such that∀K ∈ ℕ, ∃ℓ ∈ ℕ such

that the following is true:∀x ∈ ℕ
n with ∣∣x ∣∣ ⩾ ℓ, ∃u ∈ U

such that∀j ∈ ℕ,NK (x) andNK (x+ j ⋅u) are identical with
respect toS .

Lemma 4.6 will be our starting point for showing that
the set of vectors associated with a language definable in
+-inv-FO(<) is semi-diced. The second ingredient is a
characterization of semi-diced sets analogous to the one
given in [15] for semi-linear sets. Asectionof a setS ⊆ ℕ

n

is any set of the formSi ,ℓ := {x = (x1, ... , xn) ∈ S : xi =
ℓ}, wherei ∈ {1, ... , n} andℓ ∈ ℕ.

Theorem 4.7. A setS ⊆ ℕ
n is semi-diced iff the following

is true: (a) every section ofS is semi-diced, and (b) there
exists a finite setV ⊆ ℕ

n ∖ {0} such thatevery element in
V has exactly one non-zero coordinateand∀K ∈ ℕ, ∃ℓ ∈
ℕ such that the following is true:∀x ∈ ℕ

n with ∣∣x ∣∣ ⩾ ℓ,
∃v ∈ V such thatNK (x) andNK (x + v) are identical with
respect toS .

The proof of the “only if” direction is straightforward.
The proof of the “if” direction is more elaborate. It proceeds
by induction on∣V ∣; details can be found in Appendix C.4.

4.2 Proof of Proposition 4.2

Fix a languageL ⊆ Mw
� that is definable in

+-inv-FO(<). Let S ⊆ ℕ
n be S w

� (L). By Theorem 4.5
it suffices to show thatS is semi-diced. By Theorem 4.7 it
suffices to show thatS has the properties (a) and (b) stated
in Theorem 4.7. The most difficult part is to show property

(b). Property (a) then follows essentially by induction onn.
The induction argument can be found in Appendix C.5. We
sketch here the proof for property (b).

By Lemma 4.4,S is semi-linear. LetU be the finite set
given by Lemma 4.6 forS .

For any vectoru = (u1, ... , un), we letsupp(u) := {i ∈
{1, ... , n} : ui ∕= 0} be thesupportof u. We choose

V := { ∣∣u∣∣ ⋅ ei : u ∈ U andi ∈ supp(u) }, (7)

whereei is the unit vector ofℕn which has a 1 in itsi-th
component and 0s in all other components. Clearly,V is
a finite subset ofℕn, and every element inV has exactly
one non-zero coordinate. We need to show thatV has the
desired property formulated in Theorem 4.7.

Let K0 := max{∣∣v ∣∣ : v ∈ V }. Now letK ∈ ℕ be an
arbitrary number. Let̂K := K + K0. Chooseℓ to be the
number obtained from Lemma 4.6 for the numberK̂ .

Now let x ∈ ℕ
n be an arbitrary vector with∣∣x ∣∣ ⩾ ℓ.

By Lemma 4.6 we obtain anu ∈ U such that for allj ∈ ℕ,
NK̂ (x) andNK̂ (x + ju) are identical with respect toS .

If ∣supp(u)∣ = 1, thenu ∈ V , and by choosingv := u

andj := 1 we obtain thatNK (x) andNK (x+v) are identical
with respect toS , and we are done.

For the remainder of this proof we consider the case that
∣supp(u)∣ ⩾ 2. In order to simplify the presentation, we
assume thatsupp(u) = {1, 2} (the general case is based
on the same ideas and is presented in Appendix C.5). We
choosev := ∣∣u∣∣ ⋅ e1. By (7) we havev ∈ V . Our goal is to
prove thatNK (x) andNK (x+v) are identical with respect to
S . To this end, let us fix an arbitraryz ∈ ℤ

n with ∣∣z ∣∣ ⩽ K .
We need to show thatx + z ∈ S ⇐⇒ x + v + z ∈ S .
This is a consequence of the following claim.

Claim 4.8. There exists aJ ∈ ℕ such thatx+Ju+u+z ∈
S ⇐⇒ x + Ju + v + z ∈ S .

Before proving this claim, let us point out how to use the
claim for showing thatx + z ∈ S ⇐⇒ x + v + z ∈ S .

Let J be chosen according to Claim 4.8. We know that
NK̂ (x),NK̂ (x+Ju), andNK̂ (x+(J+1)u) are identical with
respect toS . Furthermore,∣∣z ∣∣ ⩽ K and∣∣v ∣∣ ⩽ K0, thus
∣∣z + v ∣∣ ⩽ K + K0 = K̂ . Therefore,

x + z ∈ S ⇐⇒ x + (J+1)u + z ∈ S since∣∣z ∣∣ ⩽ K̂

⇐⇒ x + Ju + v + z ∈ S by Claim 4.8

⇐⇒ x + v + z ∈ S since∣∣v + z ∣∣ ⩽ K̂ .

In summary, we obtain thatNK (x) andNK (x + v) are
identical with respect toS . Therefore, in order to finish the
proof of Proposition 4.2, it suffices to prove Claim 4.8. This
is, where the game argument comes in.

Proof of Claim 4.8.We make use of a result similar to
Proposition 3.5, in order to reduce the existence of a win-
ning strategy in a game with addition to the existence of
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a winning strategy in another game, where addition is not
present.

Proposition 4.9(Immediate from [18]). For all m, h, k ′ ∈
ℕ there is a numberr = r(m, h, k ′) ∈ ℕ and an infinite set
P = { p1 < p2 < p3 < ⋅ ⋅ ⋅ } ⊆ ℕ with p1 > h and
pj ≡ h [m], for all j ⩾ 1, such that the following is true for
all d , d ′ ∈ ℕ⩾1:

if 0d0d
′

1d2d ≈<
r 0d1d

′

1d2d

then (ℤ,<, +,P,P0,P1,P2) ≈
+
k′

(ℤ,<, +,P,P ′
0,P

′
1,P

′
2),

where, for dj = d ′ + jd , P0 = {p1, ... , pd1}, P1 =
{pd1+1, ... , pd2}, P2 = {pd2 , ... , pd3}, while P ′

0 =
{p1, ... , pd}, P ′

1 = {pd+1, ... , pd2}, P ′
2 = P2.

From Proposition 4.9, the result essentially follows by
an FO interpretation. We here present the main ideas un-
derlying this interpretation; the details are given in Ap-
pendix C.5.

For any� := (�1, ... ,�n) ∈ ℕ
n, let W(�) be the word

w
�1

1 ⋅ ⋅ ⋅w�n
n . We letH := �1 �2 ⋅ ⋅ ⋅ �n+1 W(x+z), U0 :=

W(u), U1 := W(u + e1 − e2) andU2 := W(u − e1 + e2).
We then seth := ∣H∣ andm := ∣U0∣. Notice that by our
assumption on∣w1∣ = ⋅ ⋅ ⋅ = ∣wn∣, we have∣U0∣ = ∣U1∣ =
∣U2∣ = m. For any givenk ′ ∈ ℕ let r andp1, p2, ... be
the numbers given by Proposition 4.9 with these values of
m, h andk ′. Let d ′ be the second component ofu, and let
d be such that0d0d

′

1d2d ≈<
r 0d1d

′

1d2d (the existence
of d is guaranteed by standard Ehrenfeucht-Fraı̈sśe game
results [11]). By Proposition 4.9 we then have:

(ℤ,<, +,P,P0,P1,P2) ≈+
k′

`

ℤ,<, +,P,P ′
0,P

′
1,P

′
2

´

(8)

In order to transfer identity (8) into an identity over
strings, we use an FO interpretation similar to the one given
in the proof of Lemma 3.4 for assigning labels to numbers.
This interpretation usesH for labeling the positions0 up to
h−1. For everyi ∈ {0,1,2}, it usesUi for labelingm con-
secutive positions, the first of which is marked byPi . Fur-
thermore, it usesU0 (and counting modulom) for labeling
all remaining positions. Thus, the interpretation transforms
the structures of (8) into the strings

H (U0)
i0

“

U0 U
ij
0

”d1

j=1

“

U1 U
ij
0

”d2

j=d1+1

“

U2 U
ij
0

”d3

j=d2+1

and

H (U0)
i0

“

U0 U
ij
0

”d

j=1

“

U1 U
ij
0

”d2

j=d+1

“

U2 U
ij
0

”d3

j=d2+1

wherei0 = (p1 − h)/m, and forj ⩾ 1, ij = (pj+1 − pj −
m)/m. Denoting these strings byV andW , and lettingk1
be the quantifier rank of the FO interpretation, we obtain
from (8) that

V ≈+
k′−k1

W . (9)

Now let us consider the vectoryV (resp.yW ) in ℕ
n that

counts the number of occurrences of each of thewi in the

stringV (resp.W ), i.e.,

yV = x + z +
“

d3
X

j=0

ij

”

⋅u + 3d ⋅u + d
′⋅u

yW = x + z +
“

d3
X

j=0

ij

”

⋅u + 3d ⋅u + d
′⋅(u + e1 − e2).

(10)

Recall thatsupp(u) = {1, 2}, andd ′ is the second com-
ponent ofu. Thus,v = ∣∣u∣∣ ⋅ e1 = u + d ′ ⋅ (e1 − e2).

By setting J :=
(
∑d3

j=0 ij

)

+ 3d + d ′ − 1, we therefore

have thatyV = x + z + Ju + u andyW = x + z + Ju + v .
In view of (10) and (9), in order to conclude the proof

of Claim 4.8, it would suffice to have an FO interpretation
similar to the one in the proof of Claim 3.2 transforming the
stringsV andW into strings inMw

� .
However, depending on the shape of� andw , it might

be the case that such an FO interpretation does not exist,
because once in the middle of the stringV or W , there is
no way of distinguishing a letter in a copy ofwi from the
same letter in a copy ofwj , for i ∕= j . This problem is
overcome in the same way as in Section 3.1, by using an
expanded alphabet when performing the first interpretation
after applying Proposition 4.9. The alphabet would be of the
formΔ := Σ×{w ,�}×{1, ... , n+1} and, in the argument
above, instead of working with the stringswi (resp.,�i ), we
use strings̃wi (resp.,�̃i ) in Δ∗, obtained by expanding the
label of each letter in the obvious way.

Once this is done, we can conclude in the same way
as in the proof of Claim 3.2. I.e., we construct an
FO(<, +)-formula  Ord defining a linear order such that
reading the letters ofV and W according to this lin-
ear order, one obtains the strings�1w

y1
1 �2 ⋅ ⋅ ⋅�nw

yn
n �n+1

and �1w
y ′

1
1 �2 ⋅ ⋅ ⋅�nw

y ′

n
n �n+1, for (y1, ... , yn) = yV and

(y ′
1, ... , y

′
n) = yW . Letting k2 be the quantifier rank of

the formula Ord and choosingk ′ large enough such that
k ′ − k1 − k2 is bigger than the quantifier rank of the
+-inv-FO(<)-formula that definesL, we obtain thatyV ∈ S

iff yW ∈ S . This concludes the proof of Claim 4.8. The
missing details can be found in Appendix C.5.

5 Commutative languages, colored sets, and
deterministic context-free languages

Commutative languages. Recall that we call a language
L commutativeif for any stringu ∈ L, any permutation of
the letters ofu is in L. As an easy consequence of Theo-
rem 4.1, we obtain:

Theorem 5.1. Every commutative language definable in
+-inv-FO(<) is regular.
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Proof. For a stringw = w1w2 ⋅ ⋅ ⋅wℓ of lengthℓ ∈ ℕ and a
permutation� of {1, ... , ℓ}, be writew� to denote the string
w�(1)w�(2) ⋅ ⋅ ⋅w�(ℓ). The commutative closurec(L) of a
languageL ⊆ Σ∗ consists of the stringsw� for all w ∈ L

and all permutations� of {1, ... , ∣w ∣}. We use the follow-
ing result by Ginsburg and Spanier [8], wheren ∈ ℕ⩾1 and
�1, ... ,�n are pairwise distinct letters:

Theorem 5.2([8]). A languageL ⊆ �∗
1�

∗
2 ⋅ ⋅ ⋅�

∗
n is regular

if and only if the commutative closurec(L) is regular.

The proof of Theorem 5.1 now follows by a simple com-
bination of Theorem 5.2 and Theorem 4.1 (details can be
found in Appendix D.1).

Colored sets. A colored setoverΣ is a finite relational
structure over the signature% = {Pa : a ∈ Σ}, such that
the predicatesPa form a partition of the structure’s universe.
By combining Theorem 5.1 and Theorem 3.16, we immedi-
ately obtain the following.

Corollary 5.3. Over the class of colored sets,+-inv-FO(=)
andFO(=, lm) have the same expressive power.

DCFL. By using similar Ehrenfeucht-Fraı̈sśe game argu-
ments as in Section 3.1 and 4.2, along with particular pump-
ing properties of deterministic context-free languages ex-
posed by Valiant in [20], we obtain the following (see the
full paper Appendix D.2).

Theorem 5.4. Every deterministic context-free language
definable in+-inv-FO(<) is regular.

6 Discussion

The first main result of this paper is a characterization
of the regular languages definable in+-inv-FO(<) (resp.
+-inv-FO(+1)) by the logic FO(<, lm) (resp. FO(+1, lm)).
We also show that a language is definable in+-inv-FO(=)
iff it is definable in FO(=, lm).

We conjecture that+-inv-FO(<) can only define regular
languages. If this conjecture were true, our first main result
would completely characterize the languages definable in
+-inv-FO(<) and+-inv-FO(+1).

As a step towards proving this conjecture, our sec-
ond main result shows that any language definable in
+-inv-FO(<) that is also bounded, commutative, or de-
terministic context-free, is actually regular, and therefore
definable in FO(<, lm).

Note that if we also have access to multiplication and
define (+, ∗)-inv-FO in the obvious way, this formalism
can express non-regular languages (e.g., the language of
all strings whose length is a prime number).

As a challenge towards proving or disproving our con-
jecture, we conclude with the following example of a
non-regular, context-free language, that is definable in
(+, ∗)-inv-FO(<) as well as in FO(<, +), but for which we
do not know whether or not it is definable in+-inv-FO(<).

For n, i ∈ ℕ we denote by binn(i) (resp., binn(i))
the {0, 1}-string w of length n representing the bi-
nary encoding of i , starting with the least signif-
icant bit (resp., starting with the most significant
bit). Let L be the language of strings of the form
binn(0)#binn(1)#binn(2)#binn(3)# ⋅ ⋅ ⋅#binn(2n−1),
for n ∈ ℕ. For instance, L contains the string
000#001#010#011#001#101#011#111. Let L̄ be the
complement ofL. We then have (details in Appendix E):

Proposition 6.1. L̄ is context-free and definable in
(+, ∗)-inv-FO(<) and inFO(<, +).

Acknowledgements. We thank Howard Straubing for
pointing to us that our earliest characterization given in The-
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also thank Jean-Eric Pin for drawing our attention to the ar-
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APPENDIX

This appendix gives detailed proofs of the article’s
claims. Parts B, C, D, and E contain detailed proofs of the
results in sections 3, 4, 5, and 6, respectively. Part A con-
tains notations and technical material convenient for pre-
senting these proofs.

A A technical lemma summarizing our
Ehrenfeucht-Fraı̈sśe game arguments

Basic notation. We write " to denote the empty string.
For an alphabetΣ, we let%Σ := {Pa : a ∈ Σ} be the sig-
nature that consists of a unary relation symbolPa for each
a ∈ Σ.

The standard representationof a string w =
w1 ⋅ ⋅ ⋅wN ∈ Σ∗ of lengthN ⩾ 1 by a %Σ-structure is the
structure

w = ( [N], (Pw
a )a∈Σ )

with domain[N] = {0, ... ,N−1}, where, for eacha ∈ Σ,
Pw
a = {i ∈ [N] : wi+1 = a}.

The standard interpretationsof < and+ on ℤ are the
relations

<ℤ := {(i , j) : i , j ∈ ℤ andi < j},

+ℤ := {(i , j , k) : i , j , k ∈ ℤ andi + j = k}

For anyN ∈ ℕ⩾1 and any relationRℤ ⊆ ℤ
r (for r ⩾ 1) we

let RN := {(i1, ... , ir ) ∈ Rℤ : i1, ... , ir ∈ [N]}. For each
N ∈ ℕ⩾1, thestandard interpretationof< and+ on [N] are
the relations<N and+N .

From now on, when the context is clear, we will omit su-
perscripts⋅ℤ (resp.⋅N ) and simply write< and+ to denote
the standard interpretationsof < and+ on ℤ (or [N], for
N ∈ ℕ⩾1).

If A is a structure whose domaindom(A) is a subset of
ℤ, we write(A,<) to denote the expansion ofA by the re-
lation<ℤ ∩ dom(A)2. Accordingly,(A,<, +) denotes the
expansion of(A,<) by the relation+ℤ ∩ dom(A)3. Fur-
thermore, ifP is a subset ofℤ, we write (A,<, +,P) to
denote the expansion of(A,<, +) by an additional unary
predicate that is interpreted by the setP ∩ dom(A).

If ' is a first-order formula, we writeqr (') to denote
the quantifier rank of'.

EF-games. We use the standard notation concerning
Ehrenfeucht-Fräısśe games (EF-games, for short); see e.g.
the textbook [11]. In particular, we writeA ≈r ℬ to indi-
cate that the duplicator has a winning strategy in ther -round
EF-game (for FO) played on two relational structuresA and
ℬ of the same signature.
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Furthermore, we will usedom(A) anddom(ℬ) to denote
the domain (i.e., the universe) of the structuresA andℬ, re-
spectively. If� is the signature ofA, we write�A to denote
the collection of relations and constants ofA. I.e., for ev-
ery relation symbolR and every constant symbolc in � , �A

contains the relationRA and the constantcA with which
the symbolsR andc are interpreted inA.

If � is a mapping whose domain isdom(A), then�(RA)
denotes the set of all tuples(�(x1), ... ,�(xr )) for which
(x1, ... , xr ) ∈ RA. By �(�A) we denote the collection of
relations�(RA) and elements�(cA) for all relation sym-
bolsR and constant symbolsc in � .

The following is a generalization of a result by Lynch
[12] which was proved in [18] and which establishes a win-
ning strategy for the duplicator in an EF-game on particular
structures which have a built-in addition relation.

Proposition A.1 ([18]). For all m, h, g , k ∈ ℕ there is a
numberr = r(m, h, g , k) ∈ ℕ and an infinite set

P = { p1 < p2 < p3 < ⋅ ⋅ ⋅ } ⊆ ℕ

with p1 > h and pj ≡ h (modm), for all j ⩾ 1, such
that the following is true for every signature� , all linearly
ordered finite� ∪ {<}-structuresA andℬ, and the map-
pings� : dom(A) → P and� : dom(ℬ) → P which, for
eachj , map thej-th smallest element of dom(A) w.r.t. the
linear order<A (respectively, of dom(ℬ) w.r.t.<ℬ) to the
j-th smallest element inP : If A ≈r ℬ, then the duplicator
has a winning strategy in thek-round EF-game on

A :=
(
ℤ,<, +,P ,�(�A)

)
and B :=

(
ℤ,<, +,P ,�(�ℬ)

)

such that after thek-th round the following holds true: Let,
for everyi ∈ {1, . . , k}, ai andbi be the elements chosen in
the i-th round onA andB. Then we have

(I) ai ≡ bi [m], for all i ∈ {1, . . , k}, and

(II)
(
ai − aj = bi − bj

)
or

(
∣ai − aj ∣ > 2g and ∣bi − bj ∣ > 2g

)
,

for all i , j ∈ {1, . . , k}.

This proposition is an immediate consequence of [18,
Proposition 6.11 and 6.12].

Using this proposition, we can prove the following
lemma that will serve as one of the main technical tools for
proving our results on+-inv-FO(+1) and+-inv-FO(<).

Lemma A.2. LetΣ,Δ, Γ be finite alphabets. Letk ′ ∈ ℕ⩾1,
let H,G ,U ∈ Δ∗ with ∣U∣ ⩾ 1 and, for each
 ∈ Γ, let
U
 ∈ Δ∗ with ∣U
 ∣ = ∣U∣. Letm ⩾ ∣U∣ be a multiple of
∣U∣. For

h := ∣H∣, g := max{h,m, ∣G ∣}, k ′′ := 2k ′ + 3

let r := r(m, h, g , k ′′) ∈ ℕ andP := { p1, p2, p3, ...} ⊆ ℕ

be chosen according to Proposition A.1. Leti0 := p1−h
∣U∣

and, for eachj ⩾ 1, let ij :=
pj+1−(pj+∣U∣)

∣U∣ . In particular,
i0 ≡ 0 (mod m

∣U∣ ) and, for eachj ⩾ 1, ij ≡ −1 (mod m
∣U∣ ).

Let v ,w ∈ Γ∗ be strings such that(v ,<) ≈r (w ,<),
and letdv = ∣v ∣ and dw = ∣w ∣. Let V ,W ∈ Δ∗ be the
following strings:

V := H U i0
(
Qj U

ij
)

j=1,...,dv
G ,

W := H U i0
(
Rj U

ij
)

j=1,...,dw
G ,

where, for eachj ⩾ 1 and each
 ∈ Γ the following is true:
If 
 is the j-th letter in v (respectively,w ), thenQj = U


(respectively,Rj = U
). Then, the following holds:

(a) (V ,<, +,P) ≈k′ (W ,<, +,P).

(b) Let
(
 a(x)

)

a∈Σ
be a collection ofFO(%Δ∪{<, +,P})-

formulas which, on each of the structures(V ,<,+,P)
and (W ,<, +,P), defines a partition of the domain
into ∣Σ∣ disjoint sets, and letV ′,W ′ ∈ Σ∗ be the strings
obtained fromV andW by replacing, for eachx , the
letter at positionx with the particular lettera ∈ Σ for
which the formula a(x) is satisfied.

Let  Succ(x , y) be a FO(%Δ ∪ {<, +,P})-formula
which, when interpreted in (V ,<, +,P) and
(W ,<,+,P), defines a successor relation on the
domain. LetV ′′,W ′′ ∈ Σ∗ be the strings obtained
from reading the letters ofV ′ andW ′ according to this
particular successor relation.

Let q be an upper bound on the quantifier rank of the
formulas a(x), for all a ∈ Σ. Then the following is
true:

(i) V ′′ and W ′′ satisfy the same+-inv-FO(+1)-
sentences of quantifier rank at mostk := k ′ −
max{q,qr ( Succ)}.

(ii) If  Ord(x , y) is a FO(%Δ ∪ {<, +,P})-formula
which, when interpreted in(V ,<, +,P) and
(W ,<, +,P), defines the linear order that fits
to the successor relation defined by Succ(x , y),
thenV ′′ andW ′′ satisfy the same+-inv-FO(<)-
sentences of quantifier rank at mostk := k ′ −
max{q,qr ( Succ),qr ( Ord)}.

Proof. Ad (a): We apply Proposition A.1 for� := %Γ and
A := (v ,<) andℬ := (w ,<). By assumption we know
thatA ≈r ℬ. Letting� and� be the mappings defined in
Proposition A.1, we obtain that the duplicator has a winning
strategy in thek ′′-round EF-game on

A :=
(
ℤ,<, +,P ,�(�A)

)
andB :=

(
ℤ,<, +,P ,�(�ℬ)

)

12



such that after thek ′′-th round the following holds true: Let,
for everyi ∈ {1, . . , k ′′}, ai andbi be the elements chosen
in the i-th round onA andB. Then we have

(I) ai ≡ bi [m], for all i ∈ {1, . . , k ′′}, and

(II)
(
ai − aj = bi − bj

)
or

(
∣ai − aj ∣ > 2g and ∣bi − bj ∣ > 2g

)
,

for all i , j ∈ {1, . . , k ′′}.

We let A′ := (V ,<, +,P) andB′ := (W ,<, +,P).
Recall thatP = {p1 < p2 < p3 < ⋅ ⋅ ⋅ } and note that
the stringV (resp.W ) is defined in such a way that (when
making the convention that the first letter ofH is at position
0), the first letter ofQj (resp.Rj ) is at positionpj (for each
j ⩾ 1).

For showing thatA′ ≈k′ B′, we use the duplicator’s
winning strategy in thek ′′ = 2k ′ + 3-round EF-game onA
andB.

For finding a strategy for the duplicator in the game onA′

andB′, we let a “virtual duplicator” and a “virtual spoiler”
play a game onA and B as follows: In the first three
rounds, the “virtual spoiler” chooses positionsa1 := 0,
a2 := pdv+1 ∈ P (i.e., the smallest element inP that does
not carry any of the letters inΓ), anda3 := a2 + ∣G ∣ in the
structureA. It is easy to see that — in order to win this
“virtual” game onA andB in such a way that condition (II)
is satisfied — the “virtual duplicator” has to answer with
b1 = 0, b2 = pdw+1 (i.e., the smallest element inP that does
not carry any of the letters inΓ in B), andb3 = b2 + ∣G ∣.
Note thata3 (resp.b3) is the smallest element that does not
belong to the domain ofA′ (resp.B′).

Now, for eachi ∈ {1, . . , k ′}, thei-th round of the “real”
game onA′ andB′ is played as follows: Let us assume that
the spoiler chooses ana′i in A′ (the case where he chooses
b′i in B′ is symmetric). To find a suitable answerb′i in B′,
the duplicator plays two rounds (namely, rounds2i+2 and
2i+3) of the “virtual” game as follows: first, she assumes
that the “virtual spoiler” chooses in round2i+2 the partic-
ular elementa2i+2 which is the largest integer⩽ a′i that is
congruenth modulo∣U∣. Let b2i+2 be the “virtual duplica-
tor’s” answer inB′.
Next, in round2i+3, the “virtual spoiler” choosesa2i+3 :=
a′i . As ∣a2i+3 − a2i+2∣ < ∣U∣ ⩽ m ⩽ g , we obtain that ac-
cording to condition (II), which is enforced by the “virtual
duplicator’s” winning strategy onA andB, the “virtual du-
plicator” then answers with the particular elementb2i+3 that
has the same distance fromb2i+2 asa2i+3 has froma2i+2,
i.e.,b2i+3 = b2i+2 + (a′i − a2i+2).
Note that sincea2i+3 = a′i is a position inA′, we know
that0 = a1 ⩽ a2i+3 < a3. Thus, since the “virtual dupli-
cator” wins the “virtual” game onA andB, we also have
0 = b1 ⩽ b2i+3 < b3. Hence,b2i+3 belongs to the domain
of B′, and thus the duplicator in the “real” game onA′ and

B′ can choose the elementb′i := b2i+3 in B′ as her answer
in the i-th round of the “real” game onA′ andB′.

It is straightforward (but tedious) to check that afterk ′

rounds of the “real” game onA′ andB′ (i.e., afterk ′′ =
2k ′ + 3 rounds of the “virtual” game onA andB), the du-
plicator has won the game onA′ andB′. — To see this, use
the fact that the “virtual duplicator” wins the “virtual” game
onA andB in such a way that the conditions (I) and (II) are
satisfied, and note the following:

∙ If a′i = a2i+3 is one of the positions inH, then, in
particular,a′i < h ⩽ g , and due to (II) we haveb′i =
b2i+3 = a2i+3 = a′i . In particular, positiona′i in A′

carries the same letter as positionb′i in B′.

∙ Similarly, if a′i = a2i+3 is one of the positions inG ,
thenb′i = b2i+3 has the same distance fromb3 asa′i
has froma3. In particular, positionb′i in B′ carries the
same letter as positiona′i in A′.

∙ With the same reasoning one obtains that ifa′i is a po-
sition that neither belongs toH nor toG , then alsob′i is
a position that neither belongs toH nor toG . Further-
more, we know from (I) thata′i ≡ b′i [m] and, sincem
is a multiple of∣U∣, alsoa′i ≡ b′i [∣U∣].

Along the particular choice of the duplicator’s strategy,
it is not difficult to see that there exists ap ∈ P such
that0 ⩽ a′i − p < ∣U∣ if, and only if, there exists aq ∈
P such thatb′i − q = a′i − p, and, moreover, position
p in A carries the same letter fromΓ as positionq in
B (to see this note that, if suchp and q exist, then
p = a2i+2 andq = b2i+2).
Recall that∣U∣ = ∣Qj ∣ = ∣Rj ∣ (for any j ⩾ 1).

– If, for p, q ∈ P , a′i − p = b′i − q =: � ∈
{0, . . , ∣U∣−1}, then we know from the particu-
lar choice ofV andW that both,a′i in A′ andb′i
in B′ carry the same letter (namely, the(�+1)-st
letter ofU
 , where
 is the particular letter that
positionsp andq carry inA andB.

– On the other hand, if there do not existp, q ∈
P such that0 ⩽ a′i − p < ∣U∣ and0 ⩽ b′i −
q < ∣U∣, then we immediately obtain from the
definition ofV andW and from the fact thata′i ≡
b′i [∣U∣], thata′i in A′ andb′i in B′ both carry the
(�+1)-st letter ofU, for the particular number
� ∈ {0, . . , ∣U∣−1} with a′i ≡ h+� [∣U∣].

Altogether, this completes the proof of part (a) of
Lemma A.2.

Ad (b): Let ' a+-inv-FO(+1)-sentence of vocabulary
%Σ ∪ {+1,+} and of quantifier rank at mostk . Our aim is
to show thatV ′′ ∣= ' ⇐⇒ W ′′ ∣= '.
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To this end let'̃ be the FO(%Δ ∪ {<, +,P})-sentence
obtained from' by replacing every atom of the formPa(x)
(for a ∈ Σ) by the formula a(x), and replacing every atom
of the formE (x , y) by the formula Succ(x , y). It is not
difficult to see that

(V ,<, +,P) ∣= '̃ ⇐⇒ V ′′ ∣= ' , and

(W ,<, +,P) ∣= '̃ ⇐⇒ W ′′ ∣= '.

Furthermore,'̃ has quantifier rank at mostk ′ = k +
max{q,qr ( Succ)}. From part (a) of the lemma we know
that(V ,<, +,P) ≈k′ (W ,<, +,P).
Thus, (V ,<, +,P) ∣= '̃ ⇐⇒ (W ,<, +,P) ∣= '̃.
In summary, we obtain thatV ′′ ∣= ' ⇐⇒ W ′′ ∣= '.
I.e.,V ′′ andW ′′ satisfy the same+-inv-FO(+1)-sentences
of quantifier rank at mostk , and the proof of part (b) (i) of
Lemma A.2 is complete. The proof of part (b) (ii) follows
along the same lines.

Let us give an easy example of how to use Lemma A.2.

Example A.3. In this example we show that the language
L := {anbn : n ∈ ℕ} is FO(<, +)-definable, but not
+-inv-FO(<)-definable.

It is easy to see thatL is FO(<, +)-definable via a sen-
tence which expresses that there exists a positionx such that
all positions⩽ x carry the lettera, all positions> x carry
the letterb, andx + x + 1 is the maximum position in the
domain.

A simple application of Lemma A.2 shows thatL is not
+-inv-FO(<)-definable: For contradiction, assume thatL is
definable by a+-inv-FO(<)-sentence'. Aiming at apply-
ing Lemma A.2, chooseΣ = Δ = {a, b} andΓ = {0,1}.
Letk ′ := 1+qr ('). LetH = G = " andU = ab,U0 = aa,
andU1 = bb. Choosem := ∣U∣ = 2 and leth, g , k ′′ and
r := r(m, h, g , k ′′) andP ⊆ ℕ andij (for j ∈ ℕ) be chosen
as in Lemma A.2.

We letd ∈ ℕ⩾1 be large enough such that

(v ,<) ≈r (w ,<)

for the strings v := 0d 1d and w := 0d 1d+1 (an easy
EF-game argument shows that anyd > 2r will do, see e.g.
[11]).
LetV andW be chosen as in Lemma A.2, i.e.,

V = (ab)i0
(

aa (ab)ij
)

j=1,...,d

(

bb (ab)ij
)

j=d+1,...,2d

W = V
(

bb (ab)i2d+1

)

Note that forℓV :=
∑2d

j=0 ij and ℓW := ℓV + i2d+1, the
following is true: The stringV consists ofnV := ℓV + 2d
occurrences of the lettera andnV occurrences of the letter
b. The stringW consists ofnW := ℓW +2d occurrences of
the lettera andnW + 2 occurrences of the letterb.

Aiming at applying part (b) of Lemma A.2, let a(x) :=
Pa(x) and b(x) := Pb(x). Furthermore, let Ord(x , y) be
a quantifier-free formula which, when interpreted in(V ,<)
and(W ,<), defines a linear order on the domain ofV and
W , in which the positions that carry the lettera precede all
positions that carry the letterb. For example, we can choose

 Ord(x , y) :=
(
Pa(x) ∧ Pb(y)

)
∨

⋁

c∈{a,b}

(
x < y ∧ Pc(x) ∧ Pc(y)

)
.

Finally, let  Succ(x , y) be a formula (of quantifier rank
1) that defines the successor relation that corresponds to the
linear order defined by Ord(x , y). Then, the stringsV ′′ and
W ′′ chosen in Lemma A.2 (b) are exactly the stringsV ′′ =
anV bnV and W ′′ = anW bnW+2. In particular,V ′′ ∈ L and
W ′′ ∕∈ L.

From Lemma A.2 (b) (ii) we obtain thatV ′′ andW ′′ sat-
isfy the same+-inv-FO(<)-sentences of quantifier rank at
mostk = k ′ − 1. Since, by our assumption,L is definable
by a+-inv-FO(<)-sentence' of quantifier rankk , this is a
contradiction to the fact thatV ′′ ∈ L andW ′′ ∕∈ L.

B Proofs omitted in Section 3

B.1 Missing elements in the proof of
Theorem 3.6

Proof of Proposition 3.8:
We start by definingq and then prove the proposition by
induction onk .

Let L be a regular language. Recall that=L denotes the
syntactic congruence ofL. Let �L be the syntactic mor-
phism ofL, i.e. the morphism sending a wordu ∈ Σ∗ to
its syntactic equivalence class:�L(u) = �L(v) iff u =L v .
Recall that=L has only finitely many equivalence classes.

Fix a numberp and letΣp be the strings of lengthp.
Let Mp be the syntactic classes of the strings of lengthp:
Mp = �L(Σ

p). As we have only finitely many equivalence
classes there must bep < p′ such thatMp = Mp′ . Note that
this implies that for anyi > p and j ∈ ℕ, we haveMi =
Mi+j(p′−p). Let p1, j ∈ ℕ be such thatp = p1 + j(p′ − p)
andp1 < (p′ − p). Let q = p′ − p1. Notice that we have
2q = q + p′ − p1 = q + p1 + j(p′ − p) + (p′ − p)− p1 =
q + (j + 1)(p′ − p). Hence we haveMq = M2q. A simple
induction shows that ifu has length0 moduloq we have
�L(u) ∈ Mq. When combined with closure under modulo
transfer this yield the following interesting property (known
as quasi aperiodicity [19]):

∀x ∈ Σ∗, ∣x ∣ ≡ 0[q] implies x! =L x!+1 (11)

Indeed, considerx such that∣x ∣ ≡ 0[q]. By the remark
above we have�L(x

!) ∈ Mq. Hence there existz of length
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q such thatz =L x!. By closure under modulo transfer
we havex!xz! =L x!z!z . By definition of! we have
x!xz! =L x!+1 andx!z!z =L x! and (11) is proved.

Hence for any stringu and anyj ∈ ℕ, we have

j ∣u∣ ≡ 0 [q] implies u! =L u!+j (12)

becauseu! =L (uj)! and by (11)(uj)! =L (uj)!+1 =L

u!+j .
In particular, by takingj = q in (12), in the proof be-

low, we can assume we have enough copies ofv
q
i available,

so that any negative integer that may occur is treated as its
positive counterpart moduloq.

We now show thatq has the desired property by induc-
tion onk .

If k = 1, hypothesis (4) yields�1∣v1∣ ≡ 0 [q]. Therefore,
from (12), we obtain

X1v
!
1 X2 ∈ L iff X1v

!+�1
1 X2 ∈ L,

as required.
Assume now thatk > 1. Set�i = ∣vi ∣ for 1 ⩽ i ⩽ k . Let

d be the greatest common divisor (gcd), ofq,�2, ⋅ ⋅ ⋅ ,�k .
Then we have by equation (4) thatd also divides�1�1.
Let q′ = q/d and, for j > 1, �′

j = �j/d . Because of
�1⋅q

′⋅�1 = �1⋅�
′
1⋅q ≡ 0 [q], by the observation above we

have
v!
1 =L v!

1 v
�1q

′

1 . (13)

By the closure ofL under modulo transfers, applied with

x = v
�1⋅�

′

j

1 , z = v
�1⋅�

′

1

j (notice that∣x ∣ = ∣z ∣), we also have
for all x ′ ∈ Σ∗:

v!
1 v

�1�
′

j

1 x ′v!
j =L v!

1 x
′v!

j v
�1�

′

1

j . (14)

By Bézout’s identity3 there exist�1, ... ,�k ∈ ℤ such that
1 = �1q

′ + �2�
′
2 + ⋅ ⋅ ⋅+ �k�

′
k . Thus, we have

�1 = �1�1q
′ + �2�1�

′
2 + ⋅ ⋅ ⋅+ �k�1�

′
k . (15)

By replacing inx1v!
1 v

�1
1 x2v

!
2 v

�2
2 ⋅ ⋅ ⋅ xkv

!
k v

�k
k xk+1, �1 by the

value provided by (15) and applying equations (13) and (14)

to each of the termsv�1�1q
′

1 , v�2�1�
′

2
1 , . . . ,v�k�1�

′

k

1 , we obtain:

x1v
!
1 v

�1
1 x2v

!
2 v

�2
2 ⋅ ⋅ ⋅ xkv

!
k v

�k
k xk+1

=L x1v
!
1 x2v

!
2 v

�′2
2 ⋅ ⋅ ⋅ xkv

!
k v

�′k
k xk+1 (16)

where, forj > 1, �′j = �j + �1�
′
1�j .

Consider nowΔ = �′2�2 + ⋅ ⋅ ⋅ + �′k�k = �2�2 + ⋅ ⋅ ⋅ +
�k�k +�1�

′
1(�2�2+ ⋅ ⋅ ⋅+�k�k). Notice that(�2�2+ ⋅ ⋅ ⋅+

�k�k) = d(1 − �1q
′) ≡ d [q] and recall that�1�′

1d =

3Recall that B́ezout’s identity states that the greatest common divisor
of non-zero integersz1, ... , zn can be written as a linear combination of
z1, ... , zn with integer coefficients.

�1�1. ThusΔ ≡ �1�1 + ⋅ ⋅ ⋅ + �k�k ≡ 0 [q], and we can
conclude by induction that

x2v
!
2 v

�′2
2 ⋅ ⋅ ⋅ xkv

!
k v

�′k
k xk+1

=L x2v
!
2 ⋅ ⋅ ⋅ xkv

!
k xk+1. (17)

Combining (16) and (17) yields the desired result.

Proof of part (b) of Proposition 3.11:
Let N0 = q2. The following claim will be useful in the
proof.

Claim B.1. If w is accepted byB , in the decomposition
w1 ⋅ ⋅ ⋅wn given by Lemma 3.10 such thatw1u

�1
1 w2u

�2
2 ⋅ ⋅ ⋅wn

is accepted byA, we can assume without loss of generality
thatn ⩽ N0.

Proof. Assume thatn > N0, and let�i < q such that
�i ≡ �i ⋅∣ui ∣ [q]. From the choice ofn we can findj1, ... , jq
such that�jm = �j1 for all m ⩽ q. Hence, we have
∑

m �jm ∣ujm ∣ ≡ q⋅�j1 ≡ 0 [q]. We can therefore apply

Proposition 3.8 and remove thoseu�jmjm
without affecting

membership inℒ(A). By Lemma 3.10 this yields a new
decompositionw = w ′

1 ⋅ ⋅ ⋅w
′
n′ with n′ = n − q.

For the proof of part (b) of Proposition 3.11, let us as-
sumev andP form a counter for the minimal deterministic
automatonB ′ equivalent toB . Recall that this means that
∣P ∣ > 1. Assume for the sake of a contradiction thatv is
not a counter forA. Hence there exists somem such that
vm =ℒ(A) v

m+1.
Let X be a string such that the run ofB ′ on that string

gives a state ofP , and consider a stringY such thatXY
is accepted byB ′. Because(v ,P) is a counter forB ′, the
stringXv�Y is accepted byB ′ for any� that is a multiple of
∣P ∣. By applying Lemma 3.10 withw := Xv�Y , we obtain
appropriateextensions(in the sense of the lemma)X ′,Y ′

of X ,Y , and numbersnj ,�j and stringsv1j , v2j such that
v = v1jv2j , for all j ∈ J, whereJ is a suitable finite set,
such that the string

X ′
(

vnj v1j u
�j v2j

)

j∈J
Y ′

is accepted byA.
By Claim B.1 we can assume that∣J∣ ⩽ N0. By tak-

ing for � any multiple of ∣P ∣ larger thanmN0, we can
make sure that one of thenj is bigger thanm. Because
vm =ℒ(A) vm+1, we can insert there one extra copy ofv

while still being accepted byA. By Lemma 3.10 this im-
plies thatXv�+1Y is accepted byB ′. Because� is a multi-
ple of ∣P ∣, this implies thatXvY is accepted byB ′.

As all implications above can be reversed, we also have
that if XvY is accepted byB ′, then alsoXV is accepted
by B ′. Therefore, we have shown that for allY , XY is
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accepted byB ′ iff XvY is accepted byB ′. Hence, sinceB ′

is minimal, the state reached byB ′ after evaluatingXv is
the same as the state reached byB ′ after evaluatingX . This
contradicts the fact that∣P ∣ > 1.

Altogether, we have shown that if(v ,P) is a counter of
B ′, thenv is a counter ofA. It remains to show that ifv was
a counter forA, thenv is no longer a counter forB ′. This is
essentially a consequence of the construction ofB , which is
designed for removing the counters ofA.

Let v be a counter ofA and assume that for someP ,
(v ,P) is a counter forB ′. Consider again a stringX such
that the run ofB ′ on that string gives a state ofP , and con-
sider a stringY such thatXY is accepted byB . Because
(v ,P) is a counter forB ′, we also have thatXv�Y is ac-
cepted byB ′, for any� that is a multiple of∣P ∣. Consider
now an accepting run ofB onXv!q∣P∣Y , and consider the
states reached byB at the end of each of the lastlq copies
of v in the sequence betweenX andY . Some statep must
repeat. There are two cases.

In the first one, a different stateq occurs between the
two occurrences ofp. Then we have a non-trivial loop and
p is part of a counter forv . In this case,B could therefore
make a non-deterministic move and accept also the string
Xv!q∣P∣+1Y and thereforeXvY .

In the second case, fromp, after readingv , B returns to
statep, and thereforeB could read one more copy ofv and
acceptXv!q∣P∣+1Y .

In both cases,B ′ acceptsXvY . Similarly, one can show
that if XvY is accepted byB ′ thenXY is also accepted by
B ′. As this is true for allY , the state reached byB ′ after
evaluatingXv is the same as the state reached byB ′ after
evaluatingX . This contradicts the fact that∣P ∣ > 1 and
concludes the proof of part (b) of Proposition 3.11.

B.2 Proof of Theorem 3.13

Proof of Theorem 3.13:
Let L ⊆ Σ∗ be a regular language definable in
+-inv-FO(+1). Let SL be the syntactic monoid ofL, i.e.,
SL is the set of equivalence classes of the syntactic congru-
ence=L.

For showing thatL is closed under swaps, we let
e, f , x , y , z be elements ofSL such thate and f are idem-
potent. Furthermore, we letE ,F ,X ,Y ,Z ∈ Σ∗ be shortest
strings ine, f , x , y , z , respectively.

Our goal is to prove thate x f y e z f = e z f y e x f .
For showing this, letA andB be arbitrary stings inΣ∗. It
should be clear that, in order to prove the theorem, it suffices
to find natural numbersnV , n′V , nW , andn′W for which we

can show that

A E nV X F nV Y E n′V Z F n′V B
︸ ︷︷ ︸

=: V ′′

∈ L

⇐⇒ A E nW Z F nW Y E n′W X F n′W B
︸ ︷︷ ︸

=: W ′′

∈ L

(18)

Aiming at applying Lemma A.2 we letΔ be the alphabet

Σ× {A,B ,E ,F ,X ,Y ,Z} × {start,−} × {end,−}.

With each of the wordsA, B , E , F , X , Y , Z , we associate
wordsÃ, B̃, Ẽ , F̃ , X̃ , Ỹ , Z̃ in Δ∗ as follows:

∙ If A = A1A2 ⋅ ⋅ ⋅Aℓ with Aj ∈ Σ, then
Ã := Ã1Ã2 ⋅ ⋅ ⋅ Ãℓ with Ãj := (Aj ,A,�, �), where
(� = start ⇐⇒ j = 1) and (� = end ⇐⇒ j = ℓ).

∙ The wordsB̃ , Ẽ , F̃ , X̃ , Ỹ , Z̃ are defined analogously.

Furthermore, letΓ := {1}, and let k ′ := k + 7, wherek
is the quantifier rank of the+-inv-FO(+1)-sentence' that,
by assumption, definesL. Furthermore, we let

H := Ã X̃ Ỹ Z̃ B̃ , U := Ẽ F̃ Ẽ F̃ ,

G := Ẽ F̃ Ẽ F̃ Ẽ F̃ Ẽ F̃ , U1 := U.

We choosem := ∣U∣ and let h, g , k ′′ and r :=
r(m, h, g , k ′′) andP = {p1, p2, ...} ⊆ ℕ andij (for j ∈ ℕ)
be chosen as in Lemma A.2. We letd ∈ ℕ be a large enough
evennumber such that(v ,<) ≈r (w ,<) for v = 1d−1

andw = 1d (an easy EF-game argument shows that any
d > 2r + 1 will do, see e.g. [11]).

LetV andW be chosen as in Lemma A.2. I.e.,V is

ÃX̃ Ỹ Z̃ B̃
`

Ẽ F̃ Ẽ F̃
´i0

“

`

Ẽ F̃ Ẽ F̃
´1+ij

”d−1

j=1
Ẽ F̃ Ẽ F̃ Ẽ F̃ Ẽ F̃

andW is

ÃX̃ Ỹ Z̃ B̃
`

Ẽ F̃ Ẽ F̃
´i0

“

`

Ẽ F̃ Ẽ F̃
´1+ij

”d

j=1
Ẽ F̃ Ẽ F̃ Ẽ F̃ Ẽ F̃ .

Aiming at applying part (b) of Lemma A.2 we let, for
each a ∈ Σ,  a(x) be a (quantifier-free) formula that
states that there exist(j1, j2, j3) ∈ {A,B ,E ,F ,X ,Y ,Z} ×
{start,−} × {end,−} such that the letter at positionx is
(a, j1, j2, j3) ∈ Δ: the formula a(x) is simply the dis-
junction of the formulasP(a,j1,j2,j3)(x) for all (j1, j2, j3) ∈
{A,B ,E ,F ,X ,Y ,Z} × {start,−} × {end,−}. Then, the
wordsV ′ andW ′ defined in Lemma A.2 are identical to the
wordsV andW , where each letter inΔ is restricted to its
first component.

We let

ℓV := i0 +
( d−1∑

j=1

(1 + ij)
)

+ 2,

ℓW := i0 +
( d−1∑

j=1

(1 + ij)
)

+ (1 + id ) + 2.
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Note that

V ′ = AXYZB
(
EFEF

)ℓV ,

W ′ = AXYZB
(
EFEF

)ℓW .

We choose

nV := n′V := ℓV ,
nW := ℓW + 1 ,

n′W := ℓW − 1 ,
(19)

and let

V ′′ := AE nV X F nV Y E n′V Z F n′V B ,

W ′′ := AE nW Z F nW Y E n′W X F n′W B .

Claim B.2. There is a FO(�Δ ∪ {<, +,P})-formula
 Succ(x , y) of quantifier rank at most 74 which, when in-
terpreted in(V ,<, +,P) and(W ,<, +,P), defines a suc-
cessor relation on the domain such that, when reading the
letters ofV ′ andW ′ according to this particular successor
relation, one obtains the wordsV ′′ andW ′′.

Before proving this claim, let us first note that part (b) (i)
of Lemma A.2 then tells us thatV ′′ andW ′′ satisfy the same
+-inv-FO(+1)-sentences of quantifier rank at mostk =
k ′ − 7. Sincek is the quantifier rank of the+-inv-FO(+1)-
sentence' which, by assumption, definesL, we conclude
thatV ′′ ∈ L ⇐⇒ W ′′ ∈ L. Recalling equation (18), the
proof of Theorem 3.13 therefore is complete after having
proved Claim B.2.

Proof of Claim B.2:Note thatV ′ and W ′ are “permuta-
tions” of V ′′ andW ′′ in the following sense:V ′ — as well
asV ′′ — contains one occurrence of each of the substrings
A,X ,Y ,Z ,B , andnV + n′V = 2ℓV occurrences of each of
the substringsE andF (and the analogous statement holds
for W ′ andW ′′).

Furthermore, when making the convention that the left-
most position of̃A is the position 0, we have the following
situation: thẽE directly right to the prefix

ÃX̃ Ỹ Z̃ B̃
(
Ẽ F̃ Ẽ F̃

)i0

starts at positionp1. Similarly, for everyj ′ ∈ {1, . . , d}, we
have that thẽE directly right to the prefix

ÃX̃ Ỹ Z̃ B̃
(
Ẽ F̃ Ẽ F̃

)i0
((

Ẽ F̃ Ẽ F̃
)1+ij

)j′

j=1

starts at positionpj′+1.
The formula Succ(x , y) defines the following succes-

sor relationSucc(where “leftmost”, “rightmost”, “first”,
and “last” always corresponds to the natural linear order<
available in the schema):

47 is just an upper bound here; when writing down the formulas inde-
tail, one will most probably end up with formulas of quantifier rank smaller
than 7.

1. The first position ofSuccis the first position of the natu-
ral linear order<.

2. Within each substring of the form̃A, X̃ , Ỹ , Z̃ , B̃ , Ẽ ,
F̃ , Succcorresponds to the successor associated with
the natural linear order<. Note that because we use
Ã, X̃ , Ỹ , ... instead ofA,X ,Y , ... , it is definable in FO
whether we are in this case.

3. The Succ-successor of the last position iñA (i.e.,
the unique position that carries a letter of the form
(a,A, j ,end) with a ∈ Σ andj ∈ {start,−}) is the first
position of the first occurrence, relative to<, of Ẽ .

4. TheSucc-successor of the last position of the last-but-
one occurrence, relative to<, of Ẽ is the first position of
X̃ .

5. TheSucc-successor of the last position iñX is the first
position of the last-but-one occurrence, relative to<, of
F̃ .

6. TheSucc-successor of the last position of the first occur-
rence, relative to<, of F̃ is the first position of̃Y .

7. TheSucc-successor of the last position ofỸ is the first
position of the second occurrence, relative to<, of Ẽ .

8. TheSucc-successor of the last position of the last occur-
rence, relative to<, of Ẽ is the first position of̃Z .

9. TheSucc-successor of the last position ofZ̃ is the first
position, relative to<, of the last occurrence of̃F .

10. TheSucc-successor of the last position of the second oc-
currence, relative to<, of F̃ is the first position of̃B.

11. The last position iñB is the last position ofSucc.

12. TheSucc-successor of the last position (denotedx in the
following) of an occurrence, relative to<, of Ẽ that is
neither the last nor the last-but-one occurrence, relative
to<, of Ẽ , is chosen as follows:

∙ If this particularẼ starts at a position that belongs
to P , then theSucc-successor ofx is the first posi-
tion of the next (relative to<) occurrence of̃E .

∙ If the next (relative to<) occurrence of̃E starts at a
position that belongs toP , then theSucc-successor
of x is the first position (denotedy in the following)
of the next-but-next-but-one occurrence ofẼ . (I.e.,
betweenx andy there are 2 occurrences ofẼ .)

∙ In all other cases, theSucc-successor ofx is the
first position of the next-but-one (relative to<) oc-
currence of̃E .
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13. TheSucc-successor of the last position (denotedx in the
following) of an occurrence of̃F that is neither the first
nor the second occurrence, relative to<, of F̃ , is chosen
as follows: Letx ′ be the starting position of the particu-
lar occurrence of̃E that ends directly to the left ofx , and
let y ′ be such thatx ′ is theSucc-successor ofy ′ (note
that thisy ′ is uniquely defined in item 12, andy ′ is the
last position of a particular occurrence ofẼ ). Then, the
Succ-successor ofx is the first position of the first occur-
rence ofF̃ to the right ofy ′. (Thus, in some sense, the
Succ-successors corresponding toF̃s are the “reversed”-
versions of theSucc-successors corresponding toẼs.)

Note that in(V ,<, +,P), the predicateP is interpreted
by the setPV = {p1, . . , pd}. In (W ,<, +,P), the pred-
icateP is interpreted by the setPW = {p1, . . , pd , pd+1}.
Recall thatd is even. Note that theSuccrelation that is
defined through 1–13 forms a path that connects the first
position of the first occurrence of̃E with the first position
of the occurrence of̃E that starts at positionp1, from there
on, the path leads to the first positions of the occurrences
of Ẽ that start at positionsp3, p5, p7, etc. Sinced is even,
the uniqueSucc-path inV that only visitsẼs and starts at
the first position of the leftmost̃E in V , ends at the last po-
sition of the last-but-onẽE in V . Continuing this kind of
reasoning, it is not difficult to see that the string obtainedby
reading the letters ofV in the order specified by the relation
Succ, is exactly the word

Ã Ẽ nV X̃ F̃ nV Ỹ Ẽ n′V Z̃ F̃ n′V B̃ .

Similarly, sinced+1 is odd, the uniqueSucc-path inW
that only visitsẼs and starts at the first position of the left-
mostẼ in W , ends at the last position of the lastẼ in W .
Continuing this kind of reasoning, it again is not difficult
to see that the string obtained by reading the letters ofW in
the order specified by the relationSucc, is exactly the string

Ã Ẽ nW Z̃ F̃ nW Ỹ Ẽ n′W X̃ F̃ n′W B̃.

Finally, it is straightforward to formalize items 1–13
by a first-order formula Succ(x , y) over the signature of
(V ,<, +,P) and(W ,<, +,P) (which even does not need
to make use of the addition predicate+).
This completes the proof of Claim B.2 and thus also the
proof of Theorem 3.13.

B.3 Proof of Theorem 3.14

Proof of Theorem 3.14:
Let L be a regular language definable in FO(+1, lm). Then,
L is also definable in+-inv-FO(<) and therefore is closed
under modulo transfers. By Theorem 3.13, it is also closed
under swaps. This proves one direction of the theorem.

For the opposite direction, we follow the lines of the
proof of Theorem 3.6. LetL be a regular language closed
under modulo transfers and under swaps.

Let q be the number given by Proposition 3.8. For0 ⩽

i < q, let Li be the restriction ofL to strings of lengthi
moduloq. We show thatLi is definable in FO(+1, lm). This
will conclude the proof, asL =

∪

i Li . Our goal is to show
thatLi = M ∩Z

q
i for some regular languageM definable in

FO(+1). This implies thatM is definable in FO(+1), and
thereforeLi is definable in FO(+1, lm).

LetA be the minimal deterministic automaton forLi . Let
B be the automaton constructed fromA as in the proof of
Theorem 3.6. By Proposition 3.11,B defines an aperiodic
language (i.e., the minimal deterministic automaton equiv-
alent toB has no counters). We now use the fact thatLi is
closed under swaps to show that alsoℒ(B) is closed under
swaps.

Consider a stringXE nUF nVE nWF nY in ℒ(B), where
E and F are idempotents forℒ(B). We want to
show thatXE nWF nVE nUF nY also belongs toℒ(B). By
Lemma 3.10 we have thatX ′E ′U ′F ′V ′E ′′W ′F ′′Y ′ is ac-
cepted byA, whereE ′ is of the form

(

E nj E1j u
�j
j E2j

)

j∈J

and similarly forE ′′,F ′ andF ′′. By Claim B.1, we can
further assume that∣J∣ ⩽ N0. Hence, by takingn > !qN0,
we are sure that one of thenj > !q. This also holds for
E ′′,F ′ andF ′′, hence each of them contains a segmentE q!

or F q!, which are idempotent forℒ(A). We can therefore
use that fact thatℒ(A) is closed under swaps for swapping
the corresponding segments, one containingU, the other
containingW . Applying Lemma 3.10 again on the resulting
string yields the desired result thatℒ(B) is closed under
swaps.

We can now conclude thatℒ(B) is definable in FO(+1)
by using the following well-known theorem.

Theorem B.3 ([2]). A regular language is definable in
FO(+1) iff it is aperiodic and closed under swaps.

Applying this theorem, we obtain thatℒ(B) is defin-
able in FO(+1). From Proposition 3.11 we know that
Li = ℒ(B) ∩ Z

q
i . Thus,Li (and therefore also

∪

i Li ) is
definable in FO(+1, lm).

B.4 Proof of Theorem 3.16

Proof of Theorem 3.16:
Obviously, every language definable in+-inv-FO(=) has to
be commutative. All that remains to show is that a com-
mutative regular language closed under modulo transfers is
definable in FO(=, lm). This follows from a simple count-
ing argument:

18



Fix such a languageL, and letq be the number derived
from Proposition 3.8. AssumeΣ = {a1, ... , ak}. Let f
be the function that associates to a stringw ∈ Σ∗ a tuple
f (w) = (�1, ⋅ ⋅ ⋅ ,�k ,�), where�i is the number of oc-
currences ofai in w up to thresholdq⋅!, while � is the
length ofw moduloq⋅!. Let S be the image off . Notice
thatS is a finite set and that for each� ∈ S , the language
L� = {w ∣ f (w) = �} is definable in FO(=, lm).

The result then follows from the next lemma, showing
thatL is of the form

∪

�∈SL
L� , for a suitableSL ⊆ S .

Lemma B.4. For all w ,w ′ ∈ Σ∗ with f (w) = f (w ′) we
have:w ∈ L iff w ′ ∈ L.

Proof. For any stringu, let ū be the stringai11 ⋅ ⋅ ⋅ aikk , where,
for any j , ij is the number of occurrences ofaj in u. Obvi-
ously, f (u) = f (ū). Furthermore, by commutativity ofL,
we haveu ∈ L iff ū ∈ L.

Now letw ,w ′ be strings withf (w) = f (w ′). Our aim is
to show thatw ∈ L iff w ′ ∈ L.

To this end, let� := f (w) = f (w ′). For eachj ∈
{1, ... , k+1}, by � [j ] we refer to thej th element of� . If
all the components in� are strictly smaller thanq⋅!, then
w̄ = w̄ ′ and the lemma is proved.

From now on we assume without loss of generality that
� [1] = q⋅!.

Assume that� [2] = q⋅! and that the number of occur-
rences ofa2 in w is q⋅!+�. Then, by modulo transfers, we
can, inw̄ , transfer� occurrences ofa2 into � occurrences
of a1. By repeating this argument for all letters ofΣ, we end
up in a stringŵ such thatf (ŵ) = � , ŵ ∈ L iff w̄ ∈ L, and
a1 is the only letter occurring strictly more thanq⋅! times
in ŵ .

Analogously, we construct̂w ′ from w ′. Notice thatŵ
andŵ ′ are identical, except maybe for their number of oc-
currences ofa1. It remains to show that̂w ∈ L iff ŵ ′ ∈ L.

Let � be the number of occurrences ofa1 in ŵ , and let
�′ be the corresponding number forŵ ′. By construction,
� > q⋅! and, asf (ŵ) = f (ŵ ′), we have� ≡ �′ [q⋅!].
From (11) we have, for anyk > 0, that aq!1 =L a

kq!
1 .

Therefore,ŵ ∈ L iff ŵ ′ ∈ L, andw ∈ L iff w ′ ∈ L.
This completes the proof of Lemma B.4 and the proof of

Theorem 3.16.

C Proofs omitted in Section 4

C.1 Proof of Lemma 4.4

Proof of Lemma 4.4:
According to Theorem 4.3, it suffices to show that the set
S := S w

� (L) is first-order definable in(ℕ,<, +).
For showing this, it will be convenient to use the follow-

ing notation. For any (transitive) stringu overΣ we write

û to denote the�′[+]-expansion ofu in which the predicate
≺ is interpreted by the natural linear order ofu (i.e., byE+,
cf. Section 2), and+ is interpreted by the addition induced
by ≺.

For proving Lemma 4.4, we do not really need the as-
sumption thatL is +-inv-FO(<)-definable. In fact, the fol-
lowing assumption will suffice (note that this assumption is
met, in particular, by languages definable in+-inv-FO(<)):

There is aFO(<,≺, +)-sentence' such that for
every stringu ∈ Mw

� we have: u ∈ L iff û ∣= '.

Let S := S w
� (L). Our aim is to find a FO(<, +)-formula

'′ with n free variables such that

S = {(x1, ... , xn) ∈ ℕ
n : (ℕ,<, +) ∣= '′(x1, ... , xn)}.

The straightforward idea is to construct'′ in such a way
that, when interpreted in(ℕ,<, +) for a tuple(x1, ... , xn) ∈
ℕ

n, it simulates' when evaluated on̂u, for

u := �1 w
x1
1 �2 w

x2
2 ⋅ ⋅ ⋅ �n w

xn
n �n+1. (20)

To this end, note that the strings�1, ... ,�n+1 and
w1, ... ,wn are fixed and thus can be “hard-coded” in the
formula'′. In particular, e.g., there is a formula i (v , xi )
ensuring thatv = ∣wi ∣ ⋅ xi by stating that

v = xi + ⋅ ⋅ ⋅+ xi
︸ ︷︷ ︸

∣wi ∣

.

Similarly, for everyj with 0 ⩽ j < ∣wi ∣ there is a formula
�i ,j(v) ensuring thatv is congruentj modulo∣wi ∣ by stating
that there exists av ′ such that

v = j + v ′ + ⋅ ⋅ ⋅+ v ′

︸ ︷︷ ︸

∣wi ∣

.

We choose the formula'′ definingS in (ℕ,<, +) as

'′ = ∃y1 ⋅ ⋅ ⋅ ∃yn+1 ∃z1 ⋅ ⋅ ⋅ ∃zn+1 ('
′
1 ∧ '′

2),

where'′
1 and'′

2 are defined as follows:
The formula'′

1 ensures that the variablesy1, ... , yn+1

and z1, ... , zn+1 are interpreted by the following natural
numbers:

∙ y1 = 0,

∙ for eachi ∈ {1, ... , n}, zi = yi + ∣�i ∣,

yi+1 = zi + ∣wi ∣ ⋅ xi , and

∙ zn+1 = yn+1 + ∣�n+1∣.

19



Thus, when identifying the positions of the stringu from
(20) with the numbers0, 1, ... , ∣u∣−1, thenyi denotes the
first position of�i in u, zi denotes the first position ofw xi

i

in u (for i ⩽ n), andzn+1 denotes the first position to the
right of u.

The formula '′
2 is obtained from the FO(<,≺, +)-

sentence' that, by assumption, defines the languageL, by

(1) relativizing all quantifications to numbers< zn+1,

(2) replacing every atomic subformula of' of the form
E+(v1, v2) or v1 ≺ v2 by the formulav1 < v2,

(3) replacing every atomic subformula of' of the form
E (v1, v2) by the formula
(
v1 < v2 ∧ ¬∃v3(v1 < v3 ∧ v3 < v2)

)
, and

(4) replacing every atomic subformula of' of the form
Pa(v) (for a ∈ Σ) by a formula stating that

∙ either, there is ani ∈ {1, ... , n+1} such thatyi ⩽
v < zi , and there is aj with 0 ⩽ j < ∣�i ∣ such
that the(j+1)st position of�i carries the lettera,
andv = yi + j ,

∙ or, there is a numberi ∈ {1, ... , n} such thatzi ⩽
v < yi+1, and there is a numberj with 0 ⩽ j <
∣wi ∣ such that the(j+1)st position ofwi carries the
lettera, andv − zi is congruentj modulo∣wi ∣.

It is straightforward to formalize this in FO(<, +). Further-
more, it can easily be seen that for any(x1, ... , xn) ∈ ℕ

n

and the associated string

u := �1 w
x1
1 �2 w

x2
2 ⋅ ⋅ ⋅ �n w

xn
n �n+1

we have:

(ℕ,<, +) ∣= '′(x1, ... , xn) ⇐⇒ û ∣= '

⇐⇒ u ∈ L

⇐⇒ (x1, ... , xn) ∈ S .

Thus,S is first-order definable in(ℕ,<, +) and hence, by
Theorem 4.3,S is semi-linear. This completes the proof of
Lemma 4.4.

C.2 Proof of Theorem 4.5

Proof of Theorem 4.5:
The proof makes use of the following result of Ginsburg and
Spanier [8].

Theorem C.1 ([8]). Let Σ be a finite alphabet,n ∈ ℕ⩾1,
v1, ... , vn ∈ Σ∗, andL ⊆ v∗

1 v
∗
2 ⋅ ⋅ ⋅ v∗

n . Then,L is regular
iff the set {(x1, ... , xn) ∈ ℕ

n : v x1
1 v x2

2 ⋅ ⋅ ⋅ v xn
n ∈ L} is

semi-diced.

Now, let T := {y = (y1, ... , y2n+1) ∈ ℕ
2n+1 :

�y1
1 w

y2
1 �y3

2 ⋅ ⋅ ⋅ �2n−1
n w y2n

n �y2n+1

n+1 ∈ L}, and let S :=
S w

� (L) ⊆ ℕ
n. By Theorem C.1 we know thatL is regular

if and only if T is semi-diced. Clearly,S = �2,4,6,...,2n(T ),
where�2,4,6,...,2n : ℕ2n+1 → ℕ

n denotes the projection onto
the “even” components. Our aim is to show thatL is regular
if and only if S is semi-diced.

For the “only if” direction, assume thatL is regular.
Then, by Theorem C.1,T is semi-diced. It is straightfor-
ward to see that the class of semi-diced sets is closed under
projections. Thus,S = �2,4,6,...,2n(T ) is semi-diced.

For the “if” direction, assume thatS is semi-diced. Let
�1, ... ,�n ben pairwise distinct letters that do not belong to
Σ. SinceS is semi-diced, we obtain from Theorem C.1 that
the languageL1 := {�x1

1 �
x2
2 ⋅ ⋅ ⋅�xn

n : (x1, ... , xn) ∈ S} is
regular. It is then straightforward to see that also the lan-
guage L2 := {�1 �

x1
1 �2 ⋅ ⋅ ⋅ �n �

xn
n �n+1 : (x1, ... , xn) ∈

S} is regular. Leth : {�1, ... ,�n} → Σ∗ be the mapping
that substitutes, for everyi ∈ {1, ... , n}, the letter�i by
the wordh(�i ) := wi . SinceL2 is regular, we obtain that
also the languageh(L2) = {�1 w

x1
1 �2 ⋅ ⋅ ⋅ �n w

xn
n �n+1 :

(x1, ... , xn) ∈ S} is regular. Note thath(L2) = L. Thus,L
is regular, and the proof of Theorem 4.5 is complete.

C.3 Proof of Lemma 4.6

Proof of Lemma 4.6:
For the proof, we use the following lemma that is implicit
in [7] (see the proof of Theorem 6.1 in [7]).

Lemma C.2 ([7]). LetT be a finite set of linear setsL ⊆
ℕ

n. For eachL ∈ T , let tL ∈ ℕ andvL
0 , ... , v

L
tL
∈ ℕ

n such
that L = vL

0 + ℕvL
1 + ⋅ ⋅ ⋅+ ℕvL

tL
. For the set

MT :=
∩

L∈T

(

ℕvL
1 + ⋅ ⋅ ⋅+ ℕvL

tL

)

,

the following is true:

(a) EitherMT = {0}, or there exists a numbertT ∈ ℕ⩾1

and vectorsvT
1 , ... , vT

tT
∈ ℕ

n ∖ {0} such that MT =

ℕvT
1 + ⋅ ⋅ ⋅+ ℕvT

tT
.

(b) There exists a finite setCT ⊆ ℕ
n such that

∩

L∈T

L =
∪

c∈CT

c +MT .

We will use this lemma for proving Lemma 4.6. Obvi-
ously, Lemma 4.6 holds ifS = ∅ or S = ℕ

n. Let us thus
assume that∅ ∕= S ∕= ℕ

n. SinceS is semi-linear, there
exists anr ∈ ℕ⩾1 and linear setsL1, ... , Lr such that

S = L1 ∪ ⋅ ⋅ ⋅ ∪ Lr .
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The class of semi-linear sets is closed under complementa-
tion (cf., Theorem 4.3). Therefore, for eachi ∈ {1, ... , r},
the setLi := ℕ

n ∖ Li is semi-linear, and there exists an
ri ∈ ℕ⩾1 and linear setsLi ,1, ... , Li ,ri such that

Li = Li ,1 ∪ ⋅ ⋅ ⋅ ∪ Li ,ri .

We letLi ,0 := Li and consider the collection

ℒ := {Li ,j : i ∈ {1, ... , r} andj ∈ {0, ... , ri}}

of the linear sets that all theLi andLi are composed of.
EveryL ∈ ℒ is linear, thus there exists a numbertL ∈ ℕ

and vectorsvL
0 , ... , v

L
tL
∈ ℕ

n such that

L = vL
0 + ℕvL

1 + ⋅ ⋅ ⋅+ ℕvL
tL
.

For everyT ⊆ ℒ we let

MT :=
∩

L∈T

(

ℕvL
1 + ⋅ ⋅ ⋅+ ℕvL

tL

)

.

From Lemma C.2 (a) we know that eitherMT = {0}, or
there exists a numbertT ∈ ℕ⩾1 and vectorsvT

1 , ... , vT
tT

∈
ℕ

n ∖ {0} such that

MT = ℕvT
1 + ⋅ ⋅ ⋅+ ℕvT

tT
.

We choose

U := {vT
1 , ... , vT

tT
: T ⊆ ℒ such thatMT ∕= {0}}.

Clearly,U is a finite subset ofℕn ∖ {0}.
For eachx ∈ ℤ

n let

type(x) := {L ∈ ℒ : x ∈ L}.

Let
T := {type(x) : x ∈ ℤ

n}

be the set of types that are realizable inℤ
n. Note that for

every� ∈ T and everyi ∈ {1, ... , r}, the following is true:

Li ,0 ∈ � ⇐⇒ for all j ∈ {1, ... , ri}, Li ,j ∕∈ � .

Therefore, for any� ∈ T and the set

L� :=
∩

L∈�

L,

the following is true:

(1) for all x , y ∈ L� we havex ∈ S ⇐⇒ y ∈ S , and

(2) for all x ∈ ℤ
n with type(x) = � we havex ∈ L� .

Now letK be an arbitrary number withK ∈ ℕ. We let the
K -typeof x be the mapping

typeK (x) : NK (0) → T

which associates with every vectorw ∈ NK (0) the set
type(x + w), i.e.,

typeK (x)(w) := type(x + w), for eachw ∈ NK (0).

Let
TK := {typeK (x) : x ∈ ℤ

n}

be the set of all realizableK -types. For each� ∈ TK let

R� := { x ∈ ℤ
n :

for eachw ∈ NK (0) we havex + w ∈ L�(w)}.

Note that the following is true for every� ∈ TK :

(I) for all vectorsx , y ∈ R� and allw ∈ NK (0) we have
x + w ∈ S ⇐⇒ y + w ∈ S , and

(II) for all vectorsx ∈ ℤ
n with typeK (x) = � we have

x ∈ R� .

Furthermore,R� =
∩

w∈NK (0),

L∈�(w)

(−w) + L =
∩

w∈NK (0),

L∈�(w)

(vL
0 −w) +ℕvL

1 + ⋅ ⋅ ⋅+ℕvL
tL
.

For each� ∈ TK let T� :=

{L ∈ ℒ : there is aw ∈ NK (0) such thatL ∈ �(w)} .

Recall that for the set

MT�
=

∩

L∈T�

ℕvL
1 + ⋅ ⋅ ⋅+ ℕvL

tL

we know that eitherMT�
= {0} or MT�

= ℕvT�

1 + ⋅ ⋅ ⋅+

ℕvT�

tT�
. Furthermore, from Lemma C.2 (b) we obtain that

there is a finite setC� ⊆ ℕ
n such that

R� =
∪

c∈C�

c +MT�
.

We chooseℓ ∈ ℕ to be bigger than the norm∣∣ ⋅ ∣∣ of any
element inC� for any realizableK -type� , i.e.,

ℓ := 1 + max{∣∣c ∣∣ : c ∈
∪

�∈TK

C�}.

Now let x ∈ ℕ
n be an arbitrary vector with∣∣x ∣∣ ⩾ ℓ. Let

� := typeK (x). Clearly, x ∈ R� . Furthermore, since
∣∣x ∣∣ ⩾ ℓ we know thatMT�

∕= {0} and thusMT�
=

ℕvT�

1 + ⋅ ⋅ ⋅ + ℕvT�

tT�
. In particular,u := vT�

1 ∈ U, and

x (j) ∈ R� for every j ∈ ℕ andx (j) := x + ju. From ob-
servation (I) we thus obtain that for anyj ∈ ℕ and any
w ∈ NK (0) we havex + w ∈ S ⇐⇒ x (j) + w ∈ S . I.e.,
NK (x) andNK (x

(j)) are identical with respect toS . This
completes the proof of Lemma 4.6.
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C.4 Proof of Theorem 4.7

This section is devoted to the proof of Theorem 4.7. We
start with some basic observations on the structure of semi-
diced sets.

By using Theorem C.1 (cf., Section C.2), one easily ob-
tains the following closure properties of the class of semi-
diced subsets ofℕn.

Lemma C.3 (closure properties of semi-diced sets).
The class of all semi-diced sets contains the empty set and
every finite subset ofℕn and is closed under union, inter-
section, complement, taking sections, projection, and carte-
sian product. In other words:∅ is semi-diced, every finite
setF ⊆ ℕ

n is semi-diced, and ifS ,T ⊆ ℕ
n are semi-diced,

then alsoS∪T , S∩T andS := ℕ
n∖S are semi-diced. Fur-

thermore, ifS ⊆ ℕ
n is semi-diced,i ∈ {1, ... , n}, ℓ ∈ ℕ,

thenSi ,ℓ is semi-diced. IfS ⊆ ℕ
n andT ⊆ ℕ

m are semi-
diced, thenS × T ⊆ ℕ

n+m is semi-diced. IfS ⊆ ℕ
n is

semi-diced,r ⩽ n and j1, ... , jr are pairwise distinct ele-
ments in{1, ... , n}, then and�j1,...,jr (S) := {(xj1 , ... , xjr ) :
(x1, ... , xn) ∈ S} is semi-diced.

Proof. From the definition of semi-diced sets, one immedi-
ately obtains the following:

∙ The empty set∅ is semi-diced

∙ every finite setF ⊆ ℕ
n is semi-diced,

∙ the union of two semi-diced sets is semi-diced, and

∙ if S ⊆ ℕ
n is semi-diced andj1, ... , jr are pairwise dis-

tinct elements in{1, ... , n}, then�j1,...,jr (S) is semi-
diced.

For proving the remaining closure properties, we apply
Theorem C.1 for the special case where the alphabetΣ con-
sists ofn pairwise distinct letters�1, ... ,�n, with vi := �i
for everyi ∈ {1, ... , n}.

We use the following notation: For a stringw and a
letter �i we write ∣w ∣�i

to denote the number of occur-
rences of the letter�i in w . For a setS ⊆ ℕ

n we let
L (S) := {�x1

1 �
x2
2 ⋅ ⋅ ⋅�xn

n : x = (x1, ... , xn) ∈ S}.
For a languageL ⊆ �∗

1�
∗
2 ⋅ ⋅ ⋅�

∗
n we let S (L) := {x =

(x1, ... , xn) ∈ ℕ
n : �x1

1 �
x2
2 ⋅ ⋅ ⋅�xn

n ∈ L}. Note that for
eachS ⊆ ℕ

n we haveS (L (S)) = S . Similarly, for each
L ⊆ �∗

1�
∗
2 ⋅ ⋅ ⋅�

∗
n we haveL (S (L)) = L. Theorem C.1

states thatL ⊆ �∗
1�

∗
2 ⋅ ⋅ ⋅�

∗
n is regular if and only ifS (L) is

semi-diced.
For showing closure under intersection, complement,

and taking sections letS ,T ⊆ ℕ
n be semi-diced sets. The-

orem C.1 tells us that in order to show thatS∩T , S , andSi ,ℓ
are semi-diced, it suffices to show thatL (S ∩ T ), L (S),
andL (Si ,ℓ) are regular. Note thatL (S ∩ T ) = L (S) ∩

L (T ), L (S) = �∗
1�

∗
2 ⋅ ⋅ ⋅�

∗
n ∖ L (S), and L (Si ,ℓ) =

L (S) ∩ {w ∈ �∗
1�

∗
2 ⋅ ⋅ ⋅�

∗
n : ∣w ∣�i

= ℓ}.
SinceS andT are semi-diced, we obtain from Theo-

rem C.1 thatL (S) andL (T ) are regular. Furthermore, the
languages�∗

1�
∗
2 ⋅ ⋅ ⋅�

∗
n and{w ∈ �∗

1�
∗
2 ⋅ ⋅ ⋅�

∗
n : ∣w ∣�i

=
ℓ} are regular. Since the class of regular languages is
closed under intersection and complement, the languages
L (S) ∩ L (T ), �∗

1�
∗
2 ⋅ ⋅ ⋅�

∗
n ∖ L (S), andL (S) ∩ {w ∈

�∗
1�

∗
2 ⋅ ⋅ ⋅�

∗
n : ∣w ∣�i

= ℓ} are regular. Therefore,S ∩ T , S ,
andSi ,ℓ are semi-diced.

For showing closure under cartesian product, letS ⊆ ℕ
n

andT ⊆ ℕ
m be semi-diced. We viewL (S) as a regular

subset of�∗
1�

∗
2 ⋅ ⋅ ⋅�

∗
n , and we viewL (T ) as a regular sub-

set of�∗
n+1 ⋅ ⋅ ⋅�

∗
n+m. Clearly, the concatenationL of L (S)

andL (T ) is regular, andL = L (S × T ). Due to Theo-
rem C.1, thusS × T is semi-diced.

For reasoning about semi-diced sets, it is convenient to
note that every semi-diced set is a finite union ofuniformly
dicedsets, defined as follows.

Definition C.4 (uniformly diced). A set S is calleduni-
formly diced iff there are a vectorv0 ∈ ℕ

n, a number
q ∈ ℕ⩾1, and a setI ⊆ {1, ... , n}, such that

S = v0 +
∑

i∈I

ℕqei .

The numberq is called theperiodof S .

Lemma C.5. Every nonempty semi-diced set is a union of
a finite number of uniformly diced sets, each with the same
period.

Proof. Let us start with a straightforward observation: For
all a, b ∈ ℕ⩾1,

ℕa + ℕb =
∪

0⩽a′<b,

0⩽b′<a

aa′ + bb′ + ℕab ,

and in general, for arbitraryk ∈ ℕ⩾1, a1, ... , ak ∈ ℕ⩾1,
ℓ := lcm{a1, ... , ak}, andq any multiple ofℓ,

k∑

j=1

ℕaj =
∪

(0⩽a′
j
<q/aj )j=1,...,k

(
k∑

j=1

aja
′
j

)
+ ℕq. (21)

Now, letS = v0 + ℕv1 + ⋅ ⋅ ⋅ + ℕvt be an arbitrary diced
subset ofℕn. For each coordinatei ∈ {1, ... , n} let Ji be
the set of all thosej ∈ {1, ... , t} such thatvj is a multiple of
the i-th unit vectorei , and letaj ∈ ℕ⩾1 such thatvj = ajei .
Let I be the set of all thosei ∈ {1, ... , n} such thatJi ∕= ∅.
Let q ∈ ℕ⩾1 be any mulitple oflcm{aj : j ∈ {1, ... , t}}.
For eachi ∈ I we apply equation (21) to obtain a finite set
Ki and numbersbi ,k ∈ ℕ for all k ∈ Ki such that

∑

j∈Ji

ℕaj =
∪

k∈Ki

bi ,k + ℕq.
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Now it is easy to see that

S = v0 +
∑

i∈I

(∑

j∈Ji

ℕvj

)

= v0 +
∑

i∈I

(∑

j∈Ji

ℕajei

)

= v0 +
∑

i∈I

( ∪

k∈Ki

bi ,kei + ℕqei

)

= v0 +
∑

i∈I

{

bi ,kei : k ∈ Ki

}

+
∑

i∈I

ℕqei .

Thus, every diced setS is a finite union of uniformly diced
sets, each with the same periodq. From this, one easily
obtains that every semi-diced set is the finite union of uni-
formly diced sets, each with the same periodq.

For proving Theorem 4.7, it will be convenient to use the
following notation.

Definition C.6. Let S ,N ⊆ ℕ
n, and letv ∈ ℤ

n. We say
thatv is a period ofS in N if the equivalence

y ∈ S ⇐⇒ y + v ∈ S

is true for ally ∈ ℕ
n such thaty ∈ N andy + v ∈ N.

Definition C.7. Let S ,V ⊆ ℕ
n.

(a) We say thatS has property(∗) with respect toV if the
following is true:

∀K ∈ ℕ, ∃ℓ ∈ ℕ such that the following is true:
∀x ∈ ℕ

n with ∣∣x ∣∣ ⩾ ℓ, ∃v ∈ V such that
v is a period ofS in NK (x).

(b) We say thatS has property(∗∗) with respect toV if the
following is true:

∀K ∈ ℕ, ∃ℓ ∈ ℕ such that the following is true:
∀x ∈ ℕ

n with ∣∣x ∣∣ ⩾ ℓ, ∃v ∈ V such that
NK (x) andNK (x + v) are identical w.r.t.S .

Note that property(∗∗) is used in the formulation of The-
orem 4.7. The next lemma is an easy observation showing
that, for finiteV , property(∗) is equivalent to property(∗∗).

Lemma C.8. LetS ,V ⊆ ℕ
n such thatV is finite. Then,S

has property(∗) w.r.t.V iff S has property(∗∗) w.r.t.V .

Proof. For the “if” direction it suffices to show the follow-
ing: If NK (x) andNK (x + v) are identical w.r.t.S , thenv
is a period ofS in NK (x).

Let us therefore assume thatNK (x) andNK (x + v) are
identical w.r.t.S . In order to show thatv is a period ofS
in NK (x), consider an arbitraryy ∈ ℕ

n with y ∈ NK (x)

andy + v ∈ NK (x). Our goal is to show thaty ∈ S iff
y + v ∈ S .

Sincey ∈ NK (x), we have forz := y − x , ∣∣z ∣∣ ⩽

K . SinceNK (x) andNK (x + v) are identical w.r.t.S , we
therefore know thatx+ z ∈ S iff x+v + z ∈ S . I.e.,y ∈ S

iff y + v ∈ S . Thus,v is a period ofS in NK (x).

For the “only if” direction letK0 := max{∣∣v ∣∣ : v ∈
V }, and note that it suffices to show the following: Ifv is
a period ofS in NK+K0

(x), thenNK (x) andNK (x + v) are
identical w.r.t.S .

Let us now assume thatv is a period ofS in NK+K0
(x).

In order to show thatNK (x) andNK (x + v) are identical
w.r.t. S , consider an arbitraryz ∈ ℤ

n with ∣∣z ∣∣ ⩽ K . Our
goal is to show thatx + z ∈ S iff x + v + z ∈ S .

Since∣∣z ∣∣ ⩽ K ⩽ K + K0 and ∣∣v + z ∣∣ ⩽ K + K0,
we havex + z ∈ NK+K0

(x) andx + v + z ∈ NK+K0
(x).

Thus, fory := x + z we havey ∈ NK+K0
(x) and y +

v ∈ NK+K0
(x). Sincev is a period ofS in NK+K0

(x), we
therefore know thaty ∈ S iff y+v ∈ S . Thus,x+z ∈ S iff
x + v + z ∈ S . Hence,NK (x) andNK (x + v) are identical
w.r.t.S .

Our proof of Theorem 4.7 will proceed by induction on
the size of the setV . The induction base is established by
the following lemma.

Lemma C.9. Let S ⊆ ℕ
n be a set for which the following

is true: (1) There exists a vectorv of the formk ⋅ ei (with
k ∈ ℕ⩾1 and i ∈ {1, ... , n}) such thatS has property(∗)
with respect to the setV := {v}, and (2) every sectionSi ,ℓ
(for everyℓ ∈ ℕ) of S is semi-diced. Then,S is semi-diced.

Proof. For simplicity in notation we assume thati = 1, i.e.,
v = k ⋅ e1 = (k , 0, ... , 0). By assumption,S has property
(∗) with respect to{v}. Thus, there exists anℓ ⩾ 0 such
that for everyx ∈ ℕ

n with ∣∣x ∣∣ ⩾ ℓ, v is a period ofS in
Nk(x). Sincex andx + v belong toNk(x), we therefore
know for all x ∈ ℕ

n with ∣∣x ∣∣ ⩾ ℓ that x ∈ S ⇐⇒
x + v ∈ S . Thus,v = (k , 0, ... , 0) is a period ofS in the
setℕn

⩾ℓ := {x ∈ ℕ
n : ∣∣x ∣∣ ⩾ ℓ}.

Therefore, for an arbitraryx = (x1, x2, ... , xn) ∈ ℕ
n

with x1 ⩾ ℓ the following is true: Ifr ∈ {0, ... , k − 1} and
q ∈ ℕ such thatx1 = ℓ+ r + qk , then

(x1, x2, ... , xn) ∈ S ⇐⇒ (ℓ+ r , x2, ... , xn) ∈ S .

By assumption, the sectionS1,ℓ+r is semi-diced, i.e., a finite
union of diced sets of the formv0 +ℕv1 + ⋅ ⋅ ⋅+ℕvt . Now
let S̃1,ℓ+r be the union of the according setsv0+ℕv1+ ⋅ ⋅ ⋅+
ℕvt + ℕv . Clearly,S̃1,ℓ+r is semi-diced, and̃S1,ℓ+r =

{x = (x1, x2, ... , xn) ∈ S : x1 ⩾ ℓ andx1 ≡ ℓ+ r [k]}.

Therefore,

S1,⩾ℓ := {x = (x1, x2, ... , xn) ∈ S : x1 ⩾ ℓ}
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is equal to
∪k−1

r=0 S̃1,ℓ+r , and thusS1,⩾ℓ is semi-diced. Fur-
thermore, by assumption we know that each of the sections
S1,0, S1,1, . . . ,S1,ℓ−1 is semi-diced. Since

S = S1,0 ∪ S1,1 ∪ ⋅ ⋅ ⋅ ∪ S1,ℓ−1 ∪ S1,⩾ℓ ,

we therefore obtain thatS is semi-diced. This concludes the
proof of Lemma C.9.

For the induction step in our proof of Theorem 4.7, the
following notion is convenient.

Definition C.10. Let S ⊆ ℕ
n andv ∈ ℤ

n. Theboundary
Bd(S , v) of S in the directionv is the set

Bd(S , v) := {x ∈ S : x + v ∕∈ S}.

The next two lemmas are analogues of lemmas given in
[15]; they will be used for the induction step in our proof of
Theorem 4.7.

Lemma C.11. Let S ⊆ ℕ
n and let v ∈ ℕ

n such thatv
has exactly one non-zero coordinate. If all sections ofS are
semi-diced, then all sections ofBd(S , v) and all sections of
Bd(S ,−v) are semi-diced.

Proof. For simplicity in notation we assume w.l.o.g. that
v = k ⋅ e1 for somek ∈ ℕ⩾1. Consider the(i , ℓ)-section
of Bd(S , v) andBd(S ,−v), i.e., the setsBd(S , v)i ,ℓ and
Bd(S ,−v)i ,ℓ. Let v ′ ∈ {v ,−v} and letk ′ be the first com-
ponent ofv ′ (i.e.,k ′ is eitherk or−k).

Case 1:i = 1. Then, Bd(S , v ′)1,ℓ =

{ x = (ℓ, x2, ... , xn) ∈ S1,ℓ :

(ℓ+ k ′, x2, ... , xn) ∕∈ S1,ℓ+k′ }.

By assumption,S1,ℓ and S1,ℓ+k′ are semi-diced. Due to
Lemma C.3, also the projections ofS1,ℓ andS1,ℓ+k′ to the
coordinates2, ... , n are semi-diced. From Lemma C.3 we
know that the class of semi-diced sets is closed under inter-
section and complement. Therefore, also the set

T := { (x2, ... , xn) : (ℓ, x2, ... , xn) ∈ S1,ℓ

and (ℓ+ k ′, x2, ... , xn) ∕∈ S1,ℓ+k′ }

is semi-diced.
Due to the closure under cartesian product and since the

finite set {(ℓ)} ⊆ ℕ
1 is semi-diced, we obtain that also the

set {(ℓ)} × T =

{(ℓ, x2, ... , xn) : (x2, ... , xn) ∈ T} = Bd(S , v ′)1,ℓ

is semi-diced.
Case 2:i ⩾ 2. Then, Bd(S , v ′)i ,ℓ =

{ x = (x1, x2, ... , xn) ∈ Si ,ℓ :

(x1 + k ′, x2, ... , xn) ∕∈ Si ,ℓ }.

By assumption we know thatSi ,ℓ is semi-diced. From the
definition of semi-diced sets it is straightforward to see that
also the set

S ′
i ,ℓ := {(x1, x2, ... , xn) : (x1 + k ′, x2, ... , xn) ∈ Si ,ℓ}

is semi-diced. From Lemma C.3 we know that the class of
semi-diced subsets is closed under intersection and comple-
ment. Therefore, also the set

Bd(S , v ′)i ,ℓ = Si ,ℓ ∩ S ′
i ,ℓ

is semi-diced. This completes the proof of Lemma C.11.

Lemma C.12. Let S ,V ⊆ ℕ
n such thatS has property

(∗) with respect toV , V is finite with ∣V ∣ ⩾ 2, and every
v ∈ V has exactly one non-zero coordinate. Then for every
v ∈ V the following is true:Bd(S , v) andBd(S ,−v) have
property(∗) with respect toV ∖ {v}.

Proof. For simplicity in notation we assume w.l.o.g. that
v = k ⋅ e1 for somek ∈ ℕ⩾1. Let v ′ ∈ {v ,−v}. We
have to show thatBd(S , v ′) has property(∗) with respect
to V ∖ {v}. To this end, letk ′ ⩾ 0 be an arbitrary size of a
neighborhood.

By assumption,S has property(∗) with respect toV . In
particular, fork ′ + k there exists anℓ ⩾ 0 such that for
everyx ∈ ℕ

n with ∣∣x ∣∣ ⩾ ℓ there is ãv ∈ V such that̃v is
a period ofS in Nk′+k(x).

If ṽ = v , thenv is a period ofS in Nk′+k(x). Note that
for eachy ∈ Nk′(x), Nk′+k(x) contains each of the vectors
y andy + v ′. Therefore,Bd(S , v ′) ∩ Nk′(x) = ∅, and thus
any element inV ∖ {v} is a period ofBd(S , v ′) in Nk′(x).

If ṽ ∕= v , thenṽ is a period ofBd(S , v ′) in Nk′(x): To
see this, lety ∈ Nk′(x) such thaty + ṽ ∈ Nk′(x) and note
that y ∈ Bd(S , v ′) ⇐⇒ y ∈ S andy + v ′ ∕∈ S ⇐⇒
y + ṽ ∈ S andy + v ′ + ṽ ∕∈ S ⇐⇒ y + ṽ ∈ Bd(S , v ′).

In summary, we have shown thatBd(S , v ′) has property
(∗) with respect toV ∖ {v}. This completes the proof of
Lemma C.12.

We are now ready for the proof of Theorem 4.7.

Proof of Theorem 4.7:
Due to Lemma C.8, it suffices to show the following:

A setS ⊆ ℕ
n is semi-diced iff the following is true:

(a) every section ofS is semi-diced, and

(b) there exists a finite setV ⊆ ℕ
n ∖ {0} such that

every element inV has exactly one non-zero
coordinate andS has property(∗) w.r.t.V .

The “only if” direction follows easily from Lemma C.5
along with the definition of semi-diced sets. The proof of
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the “if” direction proceeds by induction on∣V ∣. Theinduc-
tion basefor ∣V ∣ = 1 is established by Lemma C.9.

For theinduction step, assume that∣V ∣ ⩾ 2, and letv
be an arbitrary element inV . By assumption we know that
V ⊆ ℕ

n is finite, that every element inV has exactly one
non-zero coordinate, that all sections ofS are semi-diced,
and thatS has property(∗) with respect toV .

Lemma C.11 tells us that all sections ofBd(S , v) and all
sections ofBd(S ,−v) are semi-diced. From Lemma C.12
we obtain thatBd(S , v) andBd(S ,−v) have property(∗)
with respect toV ∖ {v}. The induction hypothesis thus tells
us thatBd(S , v) andBd(S ,−v) are semi-diced.

Our aim is to show thatS is semi-diced. For simplicity
in notation we assume w.l.o.g. that

v = k ⋅ e1 = (k , 0, ... , 0)

for somek ∈ ℕ⩾1. Furthermore, we write

B+ := Bd(S , v) and B− := Bd(S ,−v).

We already know thatB+ andB− are semi-diced. Using
the construction from the proof of Lemma C.5, we obtain
that there exists a periodq ∈ ℕ⩾1 such that the following is
true: q is a multiple ofk , and for each♢ ∈ {+,−} there
exists a finite setJ♢ such that for eachj ∈ J♢ there is a
vectorv♢

j ∈ ℕ
n and a setI♢j ⊆ {1, ... , n} such that

B♢ =
∪

j∈J♢

(

v♢
j +

∑

i∈I♢
j

ℕqei

)

.

Let d be the smallest integer that is bigger than any compo-
nent in any vector in

{v♢
j : ♢ ∈ {+,−}, j ∈ J♢}.

From the particular choice ofd andq we immediately ob-
tain the following:

Claim C.13. For every♢ ∈ {+,−} and for everyx ∈ ℕ
n

such that each component ofx is⩾ d , the following is true:
If x ∈ B♢, then x +

∑n
i=1 ℕqei ⊆ B♢. If x ∕∈ B♢, then

x +
∑n

i=1 ℕqei ⊆ ℕ
n ∖ B♢.

Let c := d + q. Furthermore, let

ℕ
n
⩾c := {x ∈ ℕ

n : each component ofx is ⩾ c}

and S⩾c := S ∩ ℕ
n
⩾c . Note that

S = S⩾c ∪
n∪

i=1

c−1∪

ℓ=0

Si ,ℓ.

Since, by assumption, all sectionsSi ,ℓ of S are semi-diced,
in order to show thatS is semi-diced it suffices to show that

S⩾c is semi-diced. The remainder of the proof is devoted to
showing thatS⩾c is semi-diced.

Recall thatv = k ⋅ e1. Forx = (x1, ... , xn) ∈ ℕ
n let

⟨x⟩v
⩾d

:= {x + j ⋅ v : j ∈ ℤ such thatx1 + j ⋅ k ⩾ d}

Let

S (1) := {x ∈ S⩾c : ⟨x⟩v
⩾d

⊆ S} and

S (2) := S⩾c ∖ S
(1).

Note thatS⩾c = S (1) ∪ S (2). In order to show thatS⩾c is
semi-diced, it therefore suffices to show thatS (1) is semi-
diced and to find a semi-diced setS ′ such thatS (2) ⊆ S ′ ⊆
S⩾c . To this end let us consider the set

T := {x ∈ ℕ
n
⩾c : ⟨x⟩v

⩾d
⊆ S or ⟨x⟩v

⩾d
⊆ ℕ

n ∖ S}

and the cube

C := { x = (x1, ... , xn) ∈ ℕ
n :

c ⩽ xi < c + q, for eachi ∈ {1, ... , n} }.

Note thatT ⊇ S (1).

Claim C.14. For all x ∈ C ∖ T , the following is true:
If x ∈ S , then x +

∑n
i=1 ℕqei ⊆ S .

If x ∕∈ S , then x +
∑n

i=1 ℕqei ⊆ ℕ
n ∖ S .

Proof. Let x ∈ C ∖ T . Sincex ∕∈ T , there existx ′, x ′′ ∈
⟨x⟩v

⩾d
with x ′ ∈ S andx ′′ ∕∈ S . By choice ofC andq we

obtain that there must exist integersj+ andj− that have the
following three properties:

∙ 0 ⩽ j+ < q
k

and 0 ⩾ j− > q
k
,

∙ x ∈ S ⇐⇒ x + j+ ⋅ v ∈ S

⇐⇒ x + (j+ + 1) ⋅ v ∕∈ S ,

∙ x ∈ S ⇐⇒ x + j− ⋅ v ∈ S

⇐⇒ x + (j− − 1) ⋅ v ∕∈ S .

Let j+ andj− be chosen such that these conditions are met
and∣j+∣ and∣j−∣ is as small as possible. Clearly, for anyj
with j− ⩽ j ⩽ j+ we have thatx + j ⋅ v ∈ S ⇐⇒ x ∈ S .

Now let y be an arbitrary element inx +

n∑

i=1

ℕqei . It

suffices to show thatx ∈ S ⇐⇒ y ∈ S .
The proof of “=⇒” proceeds as follows. Ifx ∈ S , then
the following is true:x + j+ ⋅ v ∈ B+, x + j− ⋅ v ∈ B−,
andx + jv ∕∈ B+ ∪ B− for any j with j− < j < j+. By
Claim C.13 we obtain thaty+ j+ ⋅v ∈ B+, y+ j− ⋅v ∈ B−,
andy + jv ∕∈ B+ ∪ B− for any j with j− < j < j+. Thus,
Definition C.10 tells us thaty + j ⋅ v ∈ S for all j with
j− ⩽ j ⩽ j+. In particular,y ∈ S .
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The proof of “⇐=” proceeds as follows. Ifx ∕∈ S , then
the following is true:x+(j++1)⋅v ∈ B−, x+(j−−1)⋅v ∈
B+, andx + j ⋅ v ∕∈ B+ ∪ B− for any j with j− ⩽ j ⩽ j+.
By Claim C.13 we obtain thaty + (j+ + 1) ⋅ v ∈ B−,
y + (j− − 1) ⋅ v ∈ B+, andy + j ⋅ v ∕∈ B+ ∪ B− for any
j with j− ⩽ j ⩽ j+. Thus, Definition C.10 tells us that
y + j ⋅ v ∕∈ S for any j with j− ⩽ j ⩽ j+. In particular,
y ∕∈ S . This completes the proof of Claim C.14.

Claim C.15. T =
∪

x∈C∩T

x +

n∑

i=1

ℕqei . In particular,T

is semi-diced.

Proof. Let y = (y1, ... , yn) ∈ ℕ
n
⩾c . Consider the particular

elementx = (x1, ... , xn) ∈ C wherexi ≡ yi [q], for every
i ∈ {1, ... , n}. Obviously,

y ∈ x +

n∑

i=1

ℕqei .

It suffices to show thatx ∈ T ⇐⇒ y ∈ T .
The proof of “=⇒” proceeds as follows: Ifx ∈ T , then

(by definition ofT ), we have⟨x⟩v
⩾d

⊆ S or ⟨x⟩v
⩾d

⊆ ℕ
n ∖S .

In particular, this implies that⟨x⟩v
⩾d

⊆ ℕ
n ∖B♢, for any♢ ∈

{+,−}. By Claim C.13 we obtain that⟨y⟩v
⩾d

⊆ ℕ
n∖B♢, for

any♢ ∈ {+,−}. Thus, either⟨y⟩v
⩾d

⊆ S or ⟨y⟩v
⩾d

⊆ ℕ
n∖S .

I.e.,y ∈ T .
The proof of “⇐=” follows analogously.

Claim C.16. S (1) is semi-diced.

Proof. It is straighforward to verify thatS (1) has prop-
erty (∗) with respect to the set{v}. Lemma C.9 thus tells
us that in order to show thatS (1) is semi-diced, it suffices to
show that every sectionS (1)

1,ℓ (for anyℓ ∈ ℕ) is semi-diced.

Note thatS (1)
1,ℓ = S1,ℓ ∩ T . By assumption we know that

every sectionS1,ℓ of S is semi-diced, and by Claim C.15
we know thatT is semi-diced. Since the class of semi-
diced sets is closed under intersection (cf., Lemma C.3), we
therefore obtain thatS (1)

1,ℓ is semi-diced.

Claim C.17. The set

S ′ :=
∪

x∈S∩(C∖T )

x +

n∑

i=1

ℕqei

is semi-diced, andS (2) ⊆ S ′ ⊆ S .

Proof. S ′ is semi-diced by definition. Due to Claim C.14,
S ′ ⊆ S . It remains to show thatS (2) ⊆ S ′. To this end,
consider an arbitraryy ∈ S (2) = S⩾c ∖ S

(1). In particular,
y ∕∈ T .

Consider the particular elementx = (x1, ... , xn) ∈ C

wherexi ≡ yi [q], for every i ∈ {1, ... , n}. Obviously,
y ∈ x +

∑n
i=1 ℕqei .

Sincey ∕∈ T , Claim C.15 tells us thatx ∕∈ T . Thus,
Claim C.14 (together with the fact thaty ∈ S) tells us
that x ∈ S . By definition of S ′, we then have that
x +

∑n
i=1 ℕqei ⊆ S ′, and hencey ∈ S ′.

In summary, we know thatS⩾c = S (1)∪S ′, andS (1) and
S ′ are semi-diced. Thus,S⩾c is semi-diced, and the proof
of Theorem 4.7 is complete.

C.5 Proof of Proposition 4.2

We actually prove a result slightly stronger than Propo-
sition 4.2. For formulating this result in the next lemma, we
need the following notation.

Definition C.18. A languageL is called +-inv-FO(<)-
definable in a languageM iff if there exists a sentence'
of FO(<,≺, +) such that for any stringu ∈ M and any two
�[+]-expansionsu1 andu2 of u we haveu1 ∣= ' iff u2 ∣= '.

Note that Proposition 4.2 is an immediate consequence
of the following lemma.

Lemma C.19. Let n ∈ ℕ⩾1, let w1, ... ,wn ∈ Σ∗ such that
∣w1∣ = ⋅ ⋅ ⋅ = ∣wn∣ ⩾ 1, let �1, ... ,�n+1 ∈ Σ∗, and let
M := �1 w

∗
1 �2 w

∗
2 ⋅ ⋅ ⋅ �n w

∗
n �n+1. Every languageL ⊆

M that is+-inv-FO(<)-definable inM is regular.

The proof of Lemma C.19 follows the line sketched in
Section 4.2. We recall here the main steps and provide the
missing details.

Recall that for � := (�1, ... ,�n+1) and w :=
(w1, ... ,wn) we use the following notation:

∙ Mw
� = �1 w

∗
1 �2 w

∗
2 ⋅ ⋅ ⋅ �n w

∗
n �n+1.

∙ For L ⊆ Mw
� , the setS w

� (L) ⊆ ℕ
n consists of

all vectors x = (x1, ... , xn) ∈ ℕ
n such that the

string �1 w
x1
1 �2 w

x2
2 ⋅ ⋅ ⋅ �n w

xn
n �n+1 associated tox

belongs toL.

Proof of Lemma C.19:
LetM := Mw

� . Fix a languageL ⊆ M that is+-inv-FO(<)-
definable inM. LetS ⊆ ℕ

n beS w
� (L).

Our goal is to show thatL is regular. By Theorem 4.5,
it suffices to show thatS is semi-diced. By Theorem 4.7 it
suffices to show thatS has the properties (a) and (b) stated
in Theorem 4.7. I.e., it suffices to show that

(a) every section ofS is semi-diced, and

(b) there is a finite setV ⊆ ℕ
n∖{0} such that every element

in V has exactly one non-zero coordinate and∀K ∈
ℕ, ∃ℓ ∈ ℕ such that the following is true:∀x ∈ ℕ

n

with ∣∣x ∣∣ ⩾ ℓ, ∃v ∈ V such thatNK (x) andNK (x + v)
are identical with respect toS .
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The most difficult part is to show property (b). Property
(a) then follows essentially by induction onn. We split the
proof of (b) and (a) into two claims.

Claim C.20. S has property (b).

Proof. By Lemma 4.4,S is semi-linear. LetU ⊆ ℕ
n ∖ {0}

be the finite set given by Lemma 4.6 forS .
LetV be defined as in (7), i.e.,

V := { ∣∣u∣∣ ⋅ ei : u ∈ U andi ∈ supp(u) },

whereei is the unit vector ofℕn which has a 1 in itsi-th
component and 0s in all other components. Clearly,V is a
finite subset ofℕn, and every element inV has exactly one
non-zero coordinate.

All we need to show is thatV has the following property:

∀K ∈ ℕ, ∃ℓ ∈ ℕ such that the following is true:
∀x ∈ ℕ

n with ∣∣x ∣∣ ⩾ ℓ, ∃v ∈ V such thatNK (x)
andNK (x + v) are identical with respect toS .

Let K0 := max{∣∣v ∣∣ : v ∈ V }. Now letK ∈ ℕ be an
arbitrary number. Let̂K := K + K0. Chooseℓ := ℓ̂ to be
the number obtained from Lemma 4.6 for the numberK̂ .

Now letx ∈ ℕ
n be an arbitrary vector with∣∣x ∣∣ ⩾ ℓ. By

Lemma 4.6 we obtain anu ∈ U such that for allj ∈ ℕ and
for x (j) := x + ju, NK̂ (x) andNK̂ (x

(j)) are identical with
respect toS .

If ∣supp(u)∣ = 1, thenu ∈ V , and by choosingv := u

we obtain thatx+v = x (1), and thusNK (x) andNK (x+v)
are identical with respect toS .

For the remainder of this proof we consider the case
that ∣supp(u)∣ ⩾ 2. For simplicity in notation we assume
w.l.o.g. thatsupp(u) = {1, ... , t} for somet ∈ ℕ with
2 ⩽ t ⩽ n.

We choosev := ∣∣u∣∣ ⋅ e1. By (7) we havev ∈ V . Our
goal is to prove thatNK (x) andNK (x + v) are identical
with respect toS . To this end, let us fix an arbitraryz ∈ ℤ

n

with ∣∣z ∣∣ ⩽ K . We need to show thatx + z ∈ S ⇐⇒
x + v + z ∈ S . We will see that this is a consequence of:

Claim 4.8. There exists aJ ∈ ℕ such that
x + Ju + u + z ∈ S ⇐⇒ x + Ju + v + z ∈ S .

Before proving this claim, let us point out how to use the
claim in order to show thatx+z ∈ S ⇐⇒ x+v+z ∈ S .

Let J be chosen according to Claim 4.8. We know that
NK̂ (x),NK̂ (x

(J)), andNK̂ (x
(J+1)) are identical with respect

toS . Furthermore,∣∣z ∣∣ ⩽ K and∣∣v ∣∣ ⩽ K0, thus∣∣z+v ∣∣ ⩽
K + K0 = K̂ . Therefore,

x + z ∈ S ⇐⇒ x (J+1) + z ∈ S (1)
⇐⇒ x (J) + u + z ∈ S (2)
⇐⇒ x (J) + v + z ∈ S (3)
⇐⇒ x + v + z ∈ S (4).

Here, equivalence (1) holds sinceNK̂ (x) andNK̂ (x
(J+1))

are identical w.r.t.S . Equivalence (2) holds sincex (J+1) =
x (J) + u. Equivalence (3) holds due to Claim 4.8. Equiva-
lence (4) holds sinceNK̂ (x

(J)) andNK̂ (x) are identical w.r.t.
S .

In summary, we obtain thatNK (x) andNK (x + v) are
identical with respect toS . Therefore, in order to finish the
proof of Claim C.20, it suffices to prove Claim 4.8.

Proof of Claim 4.8:
By the assumption of Lemma C.19 we are given strings
�1, ... ,�n+1 ∈ Σ∗ and stringsw1, ... ,wn ∈ Σ∗ such that
∣w1∣ = ⋅ ⋅ ⋅ = ∣wn∣ ⩾ 1.

Let ℓ := max{∣w1∣, ∣�1∣, ... , ∣�n+1∣}. We consider the
alphabet

Δ := Σ× {w ,�} × {1, ... , n+1} × {1, ... , ℓ}. (22)

With each of the stringswi (resp.,�i ) we associate a string
w̃i (resp.,�̃i ) in Δ∗ as follows:

∙ If wi = wi ,1wi ,2 ⋅ ⋅ ⋅wi ,ℓi with wi ,j ∈ Σ, then w̃i :=
w̃i ,1w̃i ,2 ⋅ ⋅ ⋅ w̃i ,ℓi with w̃i ,j := (wi ,j ,w , i , j).

∙ If �i = �i ,1�i ,2 ⋅ ⋅ ⋅�i ,si with �i ,j ∈ Σ, then �̃i :=
�̃i ,1�̃i ,2 ⋅ ⋅ ⋅ �̃i ,si with �̃i ,j := (�i ,j ,�, i , j).

For eachx = (x1, ... , xn) ∈ ℕ
n let

W̃(x) := w̃ x1
1 w̃ x2

2 ⋅ ⋅ ⋅ w̃ xn
n ∈ Δ∗.

Aiming at applying Lemma A.2 we chooseΔ as in equa-
tion (22), andΓ := {0i , 1i , 2i : i ∈ {2, ... , t}}. We let
k ′ := 1 + qr ('), where' is the+-inv-FO(<)-sentence
that, by assumption, defines languageL in M. Furthermore,
we let

H := �̃1 �̃2 ⋅ ⋅ ⋅ �̃n+1 W̃(x + z),

G := ",

U := W̃(u).

Note that∣U∣ ⩾ 1. For each
 ∈ Γ, the stringU
 is defined
as follows: For everyi ∈ {2, ... , t},

U0i := U,

U1i := W̃(u + e1 − ei ),

U2i := W̃(u − e1 + ei ).

Note that∣U
 ∣ = ∣U∣ for every
 ∈ Γ (since∣w̃1∣ = ⋅ ⋅ ⋅ =
∣w̃n∣).

We choosem := ∣U∣. Let h, g , k ′′ and r :=
r(m, h, g , k ′′) andP ⊆ ℕ and ij (for j ∈ ℕ) be chosen
as in Lemma A.2.
We letd ∈ ℕ be large enough such that(v ,<) ≈r (w ,<)
for the strings

v := 0d2 0u22 1d2 2d2 0d2 0u33 1d3 2d3 ⋅ ⋅ ⋅ 0dt 0utt 1dt 2dt
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and

w := 0d2 1u22 1d2 2d2 0d2 1u33 1d3 2d3 ⋅ ⋅ ⋅ 0dt 1utt 1dt 2dt

(an easy EF-game argument shows that anyd > 2r will do,
see e.g. [11]). LetD = dv = dw be the length of each of
these strings, i.e.,D = 3d ⋅ (t−1) +

∑t
i=2 ui .

Let V andW be chosen as in Lemma A.2, i.e., (recall
thatG = ")

V = H U i0
(

Qj U
ij
)

j=1,...,D
and

W = H U i0
(

Rj U
ij
)

j=1,...,D

where, for eachj ⩾ 1 and each
 ∈ Γ the following is true:
If 
 is the j-th letter inv (respectively,w ), thenQj = U


(respectively,Rj = U
).
Aiming at applying part (b) of Lemma A.2, we let, for

eacha ∈ Σ,  a(x) be a (quantifier-free) formula that states
that there exists(j1, j2, j3) ∈ {w ,�} × {1, ... , n+1} ×
{1, ... , ℓ} such that the letter at positionx is (a, j1, j2, j3) ∈
Δ: The formula a(x) is simply the disjunction of the
formulas P(a,j1,j2,j3)(x) for all (j1, j2, j3) ∈ {w ,�} ×
{1, ... , n+1} × {1, ... , ℓ}.

Then, the stringsV ′ andW ′ defined in Lemma A.2 are
identical to the stringsV andW , where each letter inΔ is
restricted to its first component.

We let Ord(x , y) be a formula which, when interpreted
in (V ,<, +,P) and(W ,<, +,P), defines a linear order on
the domain ofV andW such that when reading the letters
of V andW according to this particular linear order, one
obtains strings that belong to

�̃1 w̃
∗
1 �̃2 w̃

∗
2 ⋅ ⋅ ⋅ �̃n w̃

∗
n �̃n+1.

By our particular choice of the alphabetΔ, it is straightfor-
ward to see that this can be formalized by aquantifier-free
formula Ord(x , y).

Furthermore, we let Succ(x , y) be a first-order formula
(of quantifier rank 1) that defines the successor relation that
corresponds to the linear order defined by Ord(x , y).

LetV ′′ andW ′′ be chosen as in Lemma A.2 (b). I.e.,V ′′

andW ′′ are the strings obtained from reading the letters of
V ′ andW ′ according to the successor relation defined by
 Succ. It is straightforward to see thatV ′′ andW ′′ both
belong toM = Mw

� = �1 w
∗
1 �2 w

∗
2 ⋅ ⋅ ⋅ �n w

∗
n �n+1.

From Lemma A.2 (b) (ii) we obtain thatV ′′ and W ′′

satisfy the same+-inv-FO(<)-sentences of quantifier rank
at most k := k ′ − 1. Since, by assumption,' is a
+-inv-FO(<)-sentence of quantifier rankk that defines the
languageL in M, we obtain thatV ′′ ∈ L ⇐⇒ W ′′ ∈ L.
Thus, ifyV andyW are elements inℕn such that

V ′′ = �1 w
yV ,1

1 �2 w
yV ,2

2 ⋅ ⋅ ⋅ �n w
yV ,n
n �n+1,

W ′′ = �1 w
yW ,1

1 �2 w
yW ,2

2 ⋅ ⋅ ⋅ �n w
yW ,n
n �n+1,

then we have

yV ∈ S ⇐⇒ yW ∈ S . (23)

Now let ỹV andỹW be the vectors inℕn which, for each
i ∈ {1, ... , n}, indicate in theiri-th component the number
of copies ofw̃i that occur inV andW , respectively. Note
that

V ′′ = �1 w
ỹV ,1

1 �2 w
ỹV ,2

2 ⋅ ⋅ ⋅ �n w
ỹV ,n
n �n+1,

W ′′ = �1 w
ỹW ,1

1 �2 w
ỹW ,2

2 ⋅ ⋅ ⋅ �n w
ỹW ,n
n �n+1.

Therefore, from equation (23) we obtain thatỹV ∈ S ⇐⇒
ỹW ∈ S . To finish the proof of Claim 4.8, it thus suffices to
show that there exists aJ ∈ ℕ such that

ỹV = x (J) + u + z and ỹV = x (J) + v + z .

To this end, note that

ỹV =

x + z +
“

D
X

j=0

ij

”

⋅ u + 3d(t − 1) ⋅ u

| {z }

=: y ′

+
`

t
X

i=2

ui
´

⋅ u

and

ỹW = y
′ +

t
X

i=2

`

ui ⋅ (u + e1 − ei )
´

.

Note that v = ∣∣u∣∣ ⋅ e1 = u +
∑t

i=2

(
ui ⋅ (e1 − ei )

)
.

Therefore,

t∑

i=2

(
ui ⋅ (u + e1 − ei )

)
=

((
t∑

i=2

ui
)
− 1

)

⋅ u + v .

For

J :=
( D∑

j=0

ij

)

+ 3d(t − 1) +
((

t∑

i=2

ui
)
− 1

)

we thus obtain that̃yV = x + z + J ⋅ u + u and ỹW =
x + z + J ⋅ u + v . I.e.,

ỹV = x (J) + u + z and ỹW = x (J) + v + z .

Thus, the proof of Claim 4.8 — and hence also the proof of
Claim C.20 — is complete.

We are now ready to finish the proof of Lemma C.19,
i.e., to show the following:

Claim C.21. S has property (a) and (b), i.e.,S is semi-
diced.
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Proof. We proceed by induction onn. From Lemma 4.4,
we know that the setS = S w

� (L) ⊆ ℕ
n is semi-linear.

For theinduction basen=1 note that every semi-linear
set is a finite union of sets of the formm+ℕp, wherem, p ∈
ℕ. Note that sincen = 1, each of these sets isdiced, and
thusS is semi-diced. Theorem 4.7 therefore tells us thatS

has property (a) and (b).
For the induction steplet n ⩾ 2. Let w1, ... ,wn,

�1, ... ,�n+1, and M be chosen as in the assumption of
Lemma C.19, and let� := (�1, ... ,�n+1) and w :=
(w1, ... ,wn). Let L ⊆ M be a language that is+-inv-FO(<
)-definable inM. Our aim is to show that the setS =
S w

� (L) ⊆ ℕ
n has property (a) and (b) (i.e., by Theorem 4.7,

S is semi-diced).
From Claim C.20 we already know thatS has property

(b). For showing thatS also has property (a), we choose
i ∈ {1, ... , n} andℓ ∈ ℕ, and show that the setSi ,ℓ is semi-
diced. For simplicity in notation, we only consider the case
wherei = n (the proof fori < n is analogous).
Let w ′ := (w1, ... ,wn−1) and �′ := (�1, ... ,�n−1,�

′
n)

where�′
n := �n w

ℓ
n �n+1.

Clearly, for everyx = (x1, ... , xn−1) ∈ ℕ
n−1 we have

Ww ′

�′ (x) = Ww
� (x , ℓ), where

Ww ′

�′ (x) := �1 w
x1
1 �2 w

x2
2 ⋅ ⋅ ⋅ �n−1 w

xn−1

n−1 �
′
n,

Ww
� (x , ℓ) := �1 w

x1
1 �2 w

x2
2 ⋅ ⋅ ⋅ �n−1w

n−1
n−1 �n w

ℓ

n �n+1.

Let us consider the setSn,ℓ = {y = (y1, ... , yn−1, ℓ) : y ∈
S} and the languageL′ :=

{Ww
� (y) : y ∈ Sn,ℓ} = {Ww ′

�′ (x) : (x , ℓ) ∈ Sn,ℓ}. (24)

Clearly,L′ ⊆ M ′ := Mw ′

�′ , andL′ is+-inv-FO(<)-definable
in M ′ (by the same+-inv-FO(<)-sentence that, by assump-
tion, definesL in M).

From the induction hypothesis we obtain that the set
S ′ := S w ′

�′ (L′) ⊆ ℕ
n−1 has property (a) and (b), i.e.,S ′

is semi-diced. Note that

S ′ = {x ∈ ℕ
n−1 : Ww ′

�′ (x) ∈ L′}

eq. (24)
= {x ∈ ℕ

n−1 : (x , ℓ) ∈ S}.

Thus, Sn,ℓ = S ′ × {(ℓ)}. We already know thatS ′ is
semi-diced. Consequently, alsoSn,ℓ is semi-diced. This
completes the proof Claim C.21 and thus also the proof of
Lemma C.19.

C.6 Proof of Theorem 4.1

In fact, we even get a result slightly stronger than The-
orem 4.1. The following formulation of this result uses the
notation introduced in Definition C.18.

Theorem C.22. Let n ∈ ℕ⩾1, and letw1, ... ,wn ∈ Σ∗.
Every languageL ⊆ w∗

1w
∗
2 ⋅ ⋅ ⋅w∗

n that is +-inv-FO(<)-
definable inw∗

1w
∗
2 ⋅ ⋅ ⋅w∗

n is regular.

Note that Theorem 4.1 is an immediate consequence of
Theorem C.22. The proof of Theorem C.22 can be obtained
as an easy consequence of Lemma C.19 from Section C.5:

Proof of Theorem C.22:
Let L ⊆ w∗

1w
∗
2 ⋅ ⋅ ⋅w∗

n be +-inv-FO(<)-definable in
w∗
1w

∗
2 ⋅ ⋅ ⋅w∗

n by a +-inv-FO(<)-sentence'. W.l.o.g. we
can assume that eachwi is nonempty, i.e,∣wi ∣ ⩾ 1.

Let ℓ := lcm{∣w1∣, ... , ∣wn∣}. For eachi ∈ {1, ... , n}
let ℓi := ℓ

∣wi ∣
, let ŵi := w ℓi

i , and for eachj ∈ [ℓi ] =

{0, ... , ℓi−1} let �i ,j := w
j
i .

Clearly, forJ := [ℓ1]×⋅ ⋅ ⋅× [ℓn] we have w∗
1w

∗
2 ⋅ ⋅ ⋅w∗

n =

∪

(j1,...,jn)∈J

�1,j1 ŵ
∗
1 �2,j2 ŵ

∗
2 ⋅ ⋅ ⋅ �n,jn ŵ

∗
n

︸ ︷︷ ︸

=: Mj for j := (j1, ... , jn)

. (25)

For eachj ∈ J let Lj := L ∩ Mj . Note that for ev-
ery wordw ∈ Mj we have w ∈ Lj ⇐⇒ w ∣= '.
Thus, Lj is +-inv-FO(<)-definable inMj . Furthermore,
∣ŵ1∣ = ⋅ ⋅ ⋅ = ∣ŵn∣ ⩾ 1. Thus, we obtain from Lemma C.19
(with �n+1 being the empty word) thatLj is regular. Since
L =

∪

j∈J Lj and since the class of regular languages is
closed under union, we obtain thatL is regular. Thus, the
proof of Theorem C.22 is complete.

D Proofs omitted in Section 5

D.1 Proof of Theorem 5.1

Proof of Theorem 5.1 (continued):
Let L be a commutative language that is definable in
+-inv-FO(<). Let Σ be the alphabet ofL, let n := ∣Σ∣,
and let�1, ...�n be an enumeration of all letters inΣ.

Let L′ := L ∩ �∗
1�

∗
2 ⋅ ⋅ ⋅�

∗
n . Clearly,L′ is +-inv-FO(<)-

definable (since, by assumption,L is definable in
+-inv-FO(<) and, obviously,�∗

1�
∗
2 ⋅ ⋅ ⋅�

∗
n is definable in

FO(<)). By Theorem 4.1 we obtain thatL′ is regular. Since
L is commutative, we know thatL = c(L′). From Theo-
rem 5.2 we obtain thatL is regular.

D.2 Proof of Theorem 5.4

We will make use of the following pumping lemma for
languages definable in+-inv-FO(<).

Lemma D.1. Let L be a language definable in
+-inv-FO(<). Let u, v ,w1,w2,w3 be five words of
Σ∗. Let

�u = ∣v ∣⋅(∣u∣+ ∣v ∣) and �v = ∣u∣⋅(∣u∣+ ∣v ∣).
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Then we have:∀l ∈ ℕ, ∃� ∈ ℕ such that

w1u
�+l�uw2v

�−l�vw3 ∈ L iff w1u
�w2v

�w3 ∈ L. (26)

Proof. We assume w.l.o.g. that∣u∣ ⩾ 1 and ∣v ∣ ⩾ 1 (note
that the lemma’s statement is trivial if∣u∣ = 0 or ∣v ∣ = 0).

Let � = ∣u∣, � = ∣v ∣, and z = ��. Let k be the
quantifier rank of the+-inv-FO(<) formula definingL, and
choosek ′ := k + 1.

Aiming at applying Lemma A.2, we letΓ := {0,1} and

Δ := Σ ∪ {(a, u) ∣ a ∈ Σ}
∪ {(a, v) ∣ a ∈ Σ}
∪ {(a,w1) ∣ a ∈ Σ}
∪ {(a,w2) ∣ a ∈ Σ}
∪ {(a,w3) ∣ a ∈ Σ}.

With each of the stringsu, v ,w1,w2,w3 we associate a
string ũ, ṽ , w̃1, w̃2, w̃3 of Δ∗ by using the letters marking
the string it belongs to.

We further let

H := w̃1w̃2w̃3, G := ",

U := (ũṽ)z , U0 := ũ�u , U1 = ṽ�v .
(27)

We choosem := ∣U∣ and note thatm ⩾ 1 and ∣U∣ =
∣U0∣ = ∣U1∣. We leth, g , k ′′ and r := r(m, h, g , k ′′) and
P = {p1, p2, ...} ⊆ ℕ andij (for j ∈ ℕ) be chosen accord-
ing to Lemma A.2.

Now fix an arbitraryl ∈ ℕ, and letd ∈ ℕ be a large
enough number such that for alld0, d1 > d ,

0d0 1d1 ≈r 0d0+l 1d1−l . (28)

An easy EF-game argument shows that anyd > 2r+l will
do, see e.g. [11].

We choose

d0 := d ⋅�, d1 := d ⋅�, d ′ := d0 + d1. (29)

Notice that�u⋅d0 = �v ⋅d1 = d ⋅�⋅�⋅(� + �), and that
bothd0 andd1 are greater thand (since� ∕= 0 and� ∕= 0).

Recall that according to Lemma A.2,i0, i1, ... , id ′ are the
following numbers: i0 = p1−h

m
, and ij =

pj+1−pj
m

− 1 for
all 1 ⩽ j ⩽ d ′. We set

� = z ⋅(i0 + i1 + ⋅ ⋅ ⋅+ id ′) + �u⋅d0. (30)

Now let V andW be chosen according to Lemma A.2
i.e.,

V = w̃1w̃2w̃3(ũṽ)
zi0

“

ũ
�u (ũṽ)zij

”d0

j=1

“

ṽ
�v (ũṽ)zij

”d′

j=d0+1

W = w̃1w̃2w̃3(ũṽ)
zi0

“

ũ
�u (ũṽ)zij

”d0+l

j=1

“

ṽ
�v (ũṽ)zij

”d′

j=d0+l+1

Note that the number of occurences ofũ in V is �, and
the number of occurrences ofṽ in V is �, while the number
of occurrences of̃u andṽ in W is, respectively,�+ �u l and
� − �v l .

Aiming at applying part (b) of Lemma A.2 we let, for
eacha ∈ Σ,  a(x) be the quantifier-free formula satisfied
by all positionsx whose label is eithera or (a, u) or (a, v)
or (a,wi ) for i ∈ {1, 2, 3}.

We let Ord(x , y) be a formula which, when interpreted
in (V ,<, +,P) and(W ,<, +,P), defines a linear order on
the domain ofV andW such that, when reading the letters
of V andW according to this particular linear order, one
obtains strings that belong to

w̃1 ũ
∗ w̃2 ṽ

∗ w̃3.

By our particular choice of the alphabetΔ, it is straightfor-
ward to see that this can be formalized by aquantifier-free
formula Ord(x , y).

Furthermore, we let Succ(x , y) be a first-order formula
(of quantifier-rank 1) that defines the successor relation that
corresponds to the linear order defined by Ord(x , y).

Then, the stringsV ′′ andW ′′ defined in Lemma A.2 are:

V ′′ = w1 u
� w2 v

� w3,

W ′′ = w1 u
�+�u l w2 v

�−�v l w3.
(31)

Now, by Lemma A.2 we know thatV ′′ andW ′′ satisfy
the same+-inv-FO(<)-sentences of quantifier-rank at most
k ′ − 1. Thus, by our choice ofk ′ we obtain thatV ′′ ∈ L iff
W ′′ ∈ L. This completes the proof of Lemma D.1.

The following notation will be useful for our proof of
Theorem 5.4.

Let A be a deterministic pushdown-automaton (DPDA,
for short) whose set of states isQ, and whose stack alpha-
bet isΓ. A configurationof A is a pair(q, 
) whereq ∈ Q

and
 ∈ Γ∗ is the content of the stack. Thetypeof a config-
uration(q, 
) is the pair(q, S) whereS is the top symbol
of the stack
. BecauseA is deterministic, for eachw ∈ Σ∗

there is a unique type reached byA after readingw , denoted
by �A(w). Given a stringw ∈ Σ∗ we say thatw is a loop for
the type(q, S) if, when starting in the configuration(q, S)
(where the stack contains only the symbolS), A ends in the
same configuration(q, S) after readingw .

Definition D.2. LetA be a DPDA, and letL be the language
accepted byA. A tuple (u, v ,w1,w2) is apumping pairfor
L if

1. w2 is a loop for�A(w1u),

2. uw2v is a loop for�A(w1),

3. �A(w1) = �A(w1u), and
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4. �A(w1uw2) = �A(w1uw2v).

Note that if(u, v ,w1,w2) is a pumping pair forL, then
also(u, v ,w1u,w2) is a pumping pair forL.

We will make use of the following pumping lemma for
deterministic context-free languages:

Lemma D.3. LetL be a deterministic context-free language
recognized by a DPDAA. Let (u, v ,w1,w2) be apumping
pair for L. Then, for allw3 ∈ Σ∗ and allk , l ∈ ℕ we have:

w1u
kulw2v

lw3 ∈ L iff w1u
kw2w3 ∈ L. (32)

Proof. By induction onl , using Definition D.2, one easily
sees thatulw2v

l is a loop for�A(w1). By induction onk , us-
ing Definition D.2 we also obtain that�A(w1) = �A(w1u

k).
The lemma then follows easily.

We are now ready to prove a pumping lemma for deter-
ministic context-free languages definable in+-inv-FO(<).

Lemma D.4. LetL be a deterministic context-free language
definable in+-inv-FO(<). Let (u, v ,w1,w2) be a pumping
pair for L, and let� = (∣u∣+ ∣v ∣)2.
Then, for allw3 ∈ Σ∗ and for all l ∈ ℕ we have:

w1uw2vw3 ∈ L iff w1uu
l�w2vw3 ∈ L. (33)

Proof. Fix w3 andl .
Since L is definable in+-inv-FO(<), we can apply

Lemma D.1 withl , and we get a number� ∈ ℕ such that

w1u
�+l�uw2v

�−l�vw3 ∈ L iff w1u
�w2v

�w3 ∈ L. (34)

Notice that� = �u+�v . SinceL is deterministic context-
free, applying Lemma D.3 to the left hand side of (34)
yields:

w1u
�+l�uw2v

�−l�vw3 ∈ L iff w1u
�+l�w2v

�w3 ∈ L

iff w1uu
l�w2vw3 ∈ L.

(35)

Applying Lemma D.3 to the right hand side of (34) yields:

w1u
�w2v

�w3 ∈ L iff w1uw2vw3 ∈ L. (36)

Now, combining (34), (35), and (36) concludes the proof
of Lemma D.4.

For the proof of Theorem 5.4 we use the following nota-
tion:

If L is a language, then two wordsw andw ′ are said to
be L-equivalentif ∀
,w
 ∈ L iff w ′
 ∈ L. We are now
ready to conclude the proof of Theorem 5.4.

The next notation is taken from [20]. A wordu is said to
benull-transparent forL if it satisfies the following:

∀x , y ∈ Σ∗, ∀m, n ∈ ℕ,

if ∣y ∣ < min{m, n}

then xumy ∈ L iff xuny ∈ L.

(37)

We will use the next lemma, proved by Valiant in [20]
(there, the lemma was used in order to show the decidability
of the problem whether a given deterministic context-free
language is regular).

Lemma D.5 (Implicit in [20]). If L is a deterministic
context-free language that is not regular, then there exist
stringsw1, u,w2, v such that:

1. (u, v ,w1,w2) is a pumping pair forL,

2. w1u
2w2v is notL-equivalent tow1uw2v , and

3. u is null-transparent forL.

We are finally ready for the proof of Theorem 5.4.

Proof of Theorem 5.4:
Let L be a deterministic context-free language definable in
+-inv-FO(<).

Aiming at a contradiction, let us assume thatL is not
regular. Then, letw1, u, w2, v be the strings given by
Lemma D.5.

Since (u, v ,w1,w2) is a pumping pair forL, by
Lemma D.4 we have for allw3 and alll ∈ ℕ:

w1uw2vw3 ∈ L iff w1uu
l�w2vw3 ∈ L. (38)

For a givenw3, fix l such thatl� > ∣w2vw3∣. Sinceu is
null-transparent forL, using (37) we obtain:

w1uu
l�w2vw3 ∈ L iff w1uu

l�+1w2vw3 ∈ L. (39)

Applying, again, Lemma D.4, gives:

w1uu
l�+1w2vw3 ∈ L iff w1u

2w2vw3 ∈ L. (40)

By combining equations (38), (39), and (40) we obtain
that for all stringsw3:

w1uw2vw3 ∈ L iff w1u
2w2vw3 ∈ L. (41)

Therefore,w1uw2v is L-equivalent tow1u
2w2v , contra-

diction Item 2 of Lemma D.5. Thus,L is regular, and the
proof of Theorem 5.4 is complete.

E Proof omitted in Section 6

Proof of Proposition 6.1:
Let us first show that̄L is context-free: A non-deterministic
pushdown automaton (PDA) recognizinḡL first guesses
why the input stringw is not in L, and then verifies that
its guess is correct.

In the following, byblockwe mean a factor ofw between
two consecutive# symbols.
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A string w is not in L because either (i) two consecu-
tive blocks do not have the same length or (ii) they corre-
spond to non-consecutive numbers. In the case of (i) the
PDA guesses the corresponding blocks and compares their
respective length using the stack. In the case of (ii), the
PDA guesses the corresponding block while maintaining in
its state whether the corresponding number is coded with
least or most significant bit first. It is then not too hard to
use the stack for performing an increment.

It is not difficult to see that̄L is in FO(<, +): The po-
sition of the leftmost# provides the lengthn of the blocks
and can then be used with addition to test whether all blocks
have the same length. Testing that two consecutive blocks
represent consecutive numbers is done bit by bit using the
fact that thei th bit of a number represented by some block
is at distance exactlyn− i+2 from thei th bit of the number
represented by the following block.

That L̄ is expressible in(+, ∗)-inv-FO(<) follows along
the same lines as Lemma 5.4 in [1].
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