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Abstract binary symbol <" for accessing an extra linear order, is
said to be order-invariant if, over any structure, its otitpu
is independent on the actual extra linear order. Two typ-
ical, celebrated examples areinv-LFP, which captures
all properties computable in PTime, ardinv-PFP, which
captures all properties computable in PSpace [10, 21],
whereas the least fixed-point logic LFP and the partial fixed-
point logic PFP themselves are known to be too weak for
capturing all of PTime and PSpace.

This shows that access to an arbitrary linear order in-
creases expressiveness when one deals with powerful log-
ics that can express recursive operators. What about weaker
logics, such as first-order logic (FO)? A famous exam-
C_pIe due to Gurevich (see Theorem 5.3 in [11]) shows that
=<-inv-FO is more expressive than FO. But still;inv-FO
is actually not very expressive. It can express dolsal
queries [9]. Furthermore, it lacks arithmetic: while LFP is
able to define addition and multiplication from the order,
this is no longer the case for FO.

We consider formulas which, in addition to the symbols
in the vocabulary, may use two designated symbasd-+
that must be interpreted as a linear order and its associated
addition. Such a formula is called addition-invariant iy f
each fixed interpretation of the initial vocabulary, its uéts
is independent of the particular interpretation-efand +.

This paper studies the expressive power of addition-
invariant first-order logic,+-inv-FO, on the class of finite
strings. Our first main result gives a characterization of
the regular languages definable #rinv-FO: we show that
these are exactly the languages definabld= with ex-
tra predicates, denoted by “Im” for short, for testing the
length of the string modulo some fixed number. Our se
ond main result shows that every language definable in
—+-inv-FO, that is bounded or commutative or determinis-
tic context-free, is regular. As an immediate consequefice o
these two main results, we obtain thatinv-FO is equiva-
lent toFO(Im) on the class of finite colored sets.

Our proof methods involve Ehrenfeucht-FBs games, This paper deals with a setting, where the FO-formulas
tools from algebraic automata theory, and reasoning about Not only have access to an arbitrary extra linear order, but
semi-linear sets. also to the addition and multiplication induced by this arde

As for order-invariance, the result should be independent o

the extra linear order. When only addition is used, we write
1 Introduction “+-inv-" while, when both addition and multiplication are

used, we write (+, x)-inv-". Note that the least fixed-point

The model checking problem consists in testing whetherfom_1allsm of_<-|nv-LF_P IS s_trong enough FO define arith-
a relational structure satisfies a property expressed ig-alo MetC: thus=-inv-LFP is equivalent t¢+, *)-inv-LFP.
ical formalism. It is a central problem in many areas of ~ For weaker logics such as monadic least-fixed point
computer science such as databases or automated verificd29ic MLFP or monadic second-order logic MSO, how-
tion. In order to perform model checking in an automated €ver, the presence of extra arithmetic enables the logics
way, the structure must be stored on the disk, and this in-t0 express interesting properties that they could not do
duces a linear order on it. The logical formalism could then With just the extra linear order. For instance, on strings,
make use of this linear order, typically for looping through <-inv-MSO and=-inv-MLFP both capture the regular lan-
all the elements of the structure. A desirable property,-how guages and are no more expressive than MSO and MLFP.
ever, is that the result should only depend on the structureBut +-inv-MLFP can define all properties in DLIN (i.e.,
itself and not on the linear order that is specific to its cur- computable by a deterministic linear time random access
rent representation on the disk. This is known asdtaa ~ Machine), while+-inv-MSO captures the linear time hier-
independence principle the database context or@ssure  archy LinH [14, 17].
under isomorphismsf the logical formalism. What about the first-order case? Notice that, unlike
In this paper, we call this propertyrder-invariance de- for MLFP and MSO, multiplication is no longer definable
noted “<-inv-". A logical formalism £, with a designated  from addition, and hence we need to distinguish between



+-inv-FO and(+, *)-inv-FO. Apart from the fact that all mutative languages, deterministic context-free langsiage
properties expressible in-inv-FO or(+, x)-inv-FO belong and colored sets. Due to space limitations, many technical
to uniform AC’, not much is known about these two for- details of the proofs are deferred to an appendix.

malisms. As a step towards understanding their expres-

sive power, we propose to investigate simple structures.2  Preliminaries

We mainly considestrings as structures of finite labeled

graphs whose edges form a single directed path,tiand Basic notation. Z denotes the set of integer§ =
sitive strings as the corresponding structures in which also {0,1,2,...} andN., = N\ {0} denote the set of natural
the transitive closure of the edge relation is present. Thenumbers and of positive natural numbers, respectively. For

simplest structures we consider are firitdored sets n € N.,, we write [n] to denote the sef0, ..., n—1}. For
Main results. We start our study by showing that the i,j € Nandq € N.,, we writei = j [g] to indicate that
regular languages that can be definedriinv-FO are ex-  is congruent tg modulog. If S is a finite subset oN.,,

actly those definable in FO with extra predicates for testing we writelcm S to denote the least common multiple of the
the length of the string modulo some fixed number. As an elements irS.
intermediate result of independent interest, we obtain-a de Strings and transitive strings. We fix a finite alpha-
cidable characterization for definability in this lateriog  pety. We let o be the signature that consists of a unary
See Theorem 3.12, Theorem 3.15, and Theorem 3.16. relation symbolP, for each lettera € ¥. In this paper,
We then wonder whether all languages definable in 3 string over ¥ is a finite relational structure over the sig-
+-inv-FO are regular. We show that every language de- natures = o U {E}, containing unary predicate?, for all
finable in+-inv-FO that isboundedor commutativeor de- 5 ¢ ¥, partitioning the elements of the universe, and one bi-
terministic context-freés regular (cf., Theorem 4.1, Theo- nary predicateE that is interpreted as a graph whose edges
rem 5.1, and Theorem 5.4). Here, a languége called  form a single directed path. #hansitive stringover¥ is a fi-
boundedf there exists a number and stringsm, ..., w, nite relational structure over the signaturethat extendsr
suchthat. C wyw; ---w;, (cf. [8]). Alanguagel is called  with a binary predicat&* interpreted as the transitive clo-
commutativef for any stringu € L, any permutation of the  syre ofE. Hence, each element &F can be viewed either

letters ofu is also a string in_. A languagel is calledde- as a transitive string or as a string, depending on whether
terministic context-freé it is recognized by a deterministic e can compare any two of its positions or only successive
pushdown-automaton. positions.

As an immediate consequence of the result on commuta-  Given a string (or a transitive stringy, we denote its
tive languages and our characterization of regular langsiag length (i.e., the cardinality of its universe) by|.
definable in4--inv-FO, we obtain a characterization of the Logics. We denote by FO=), FO(+1), and Fg<)
colored setsjefinable_in+—inv—FO: Over the c_Iass of finjte the first-order logics ovep, o, ando’ respectively. The
colored sets, every--inv-FO-sentence is logically equiva- - semantics of their formulas are defined in the natural way
lent to an FO-sentence with extra predicates for testing the(here we assume that equality™ can be used in atomic
cardinality of the underlying structure’s universe modulo formyjas). Each closed formula defines a language,

some fixed number (cf. Corollary 5.3). which is the set of all stringe € ¥* that, when seen as a
We conclude with an example of a context-free (and non- |ogical structure, satisfy.
regular) language that is definable (A, «)-inv-FO, but We will consider strings with an extra built-in linear

for which we could not settle whether it is definable in order < together with the associated arithmetic, and |og_
+-inv-FO or not.  We conjecture, however, that it is not ics that can make use of this extra arithmetic incager-
definable in+-inv-FO and, moreover, that all Ianguages de- invariantway_ This is formalized as follows.
finable in+-inv-FO are regular. Let o[+] (resp.o’[+] or o[+]) be the extension of
Related work. Besides the references already cited (resp.o’ or o) with a binary predicate< and a ternary
above, we further note that-inv-FO(+1) was studied over  predicate+. We denote the corresponding first-order log-
words and trees in [3], where it was shown to have the sameics on these extensions of ¢/, and ¢ by FO(+1, <, +),
expressive power as K®1). Note that<-inv-FO(+1) is and FQ<, <, +), and Fd=, <, +).

simpler thart-inv-FO(+1); it is immediate from the defi- A o[+]-expansiorof a stringw is a structure oves|+]
nition that<-inv-FO(+1) defines only regular languages.  which interprets the predicates efas inw and interprets
Structure of the paper. We start with the nec- < as a linear order, angt as the addition induced by.

essary notations and definitions in Section 2. In Sec-l.e.,a+ b = c holds true on a stringy whose universe is
tion 3 we characterize the regular languages definable inlinearly ordered by< iff 3 + b = &, wherex denotes the
+-inv-FO. Section 4 shows that bounded languages defin-index of the element in the linear order (here we adopt
able in+-inv-FO(<) are regular. Section 5 deals with com- the convention that the smallest element w-kthas index



0). Itis important to not confuse the linear ordemwith the regular languages satisfying these closure propertiesare
transitive closure oE: they might not be identical! actly those definable in K&, Im), wherelm provides pred-

] ) icates for testing the total length of the string modulo some
Example 2.1. For everyg c N, and everyi € [g] thereis  fiyaq number (see Section 3.2 for the precise definition). As
aFQ(=, <, +)-sentence; 4 such that a[+]-expansion of  hese predicates are expressibletisinv-FO(<) (cf., Ex-

astringw satisfiesp; ¢ iff |w|=17[q]. ample 2.1), we conclude that the languages definable in
For example, the formula, », expressing thatthe length £y~ |m) are exactly the regular languages definable in
of a string is odd, can be chosen as follows: +-inv-FO(<) (see Theorem 3.12).

Using similar arguments, we also obtain (in Section 3.3)
characterizations of the regular languages definable in
(recall that we adopt the convention that the smallest ele-T-INV-FO(+1) and-+-inv-FO(=) by the logics FQ+1,1m)
ment w.r.t.< has index 0). O and FQq=, Im).

IxAz(x+x=z AVy(y<zVy=2z))

A sentencep of FO(+1, <, +) is said to beaddition- 3.1 Closure properties of +-inv-FO(<)
invariant if for any stringw and any twoo[+]-expansions

wy; and w, of w we havewy, E ¢ iff wva E . We
write +-inv-FO(+1) to denote the class of all addition-
invariant FG+1, <, +)-formulas. If ¢ is a sentence in
+-inv-FO(+1), we writew = ¢ to indicate that for some
(respectively, everyy[+]-expansiomw; of w we havew; =

©. The classes--inv-FO(< ) and+-inv-FO(=) are defined
in the analogous way.

Note that Example 2.1 shows thatinv-FO(=) can test
the length of a string modulo some constant.

The goal of this paper is to understand the expressive
power of these logics. Note that, as defined, their syntax
is not necessarily recursive, as testing whether a fornmfula o
FO(+1, <) is order-invariant is undecidable [3]. Whether )
they have an equivalent effective syntax is an interesting  1n€ next theorem provides a closure property of regular

open problem. In Section 5 we show that this is the casel@nguages definable in-inv-FO(<); the rest of Section 3.1
for +-inv-FO(=). is devoted to the proof of this theorem.

We start by investigating the regular languages definable
in +-inv-FO(<), +-inv-FO(+1), and-+-inv-FO(=) in Sec-
tion 3. Then we move to bounded languages in Section 4
and to commutative languages and deterministic context-
free languages in Section 5.

In our proofs, we will sometimes also refer to the logic
FO(<, +), consisting of all first-order formulas of signature
o’ U {+}. When evaluating such a formula on a transitive
string, the symbok- is interpreted with the particular ad-
dition relation that fits to th@atural linear order< on the
positions of the string.

Given a languagé, its syntactic congruence; is de-
fined for stringsx andy by x =, y iff Vu,v € ¥*, uxv € L
iff uyv € L. A string x is calledidempotent(for L) if
xx =; x. Recall that_ is regular iff its syntactic congruence
has finite index (see e.g. [19]). Hence, for every regular lan
guagel there is a natural number, depending only or,
such that for all stringg, the stringx* is idempotent.

We say that. is closed under modulo transfeifsfor all
x,y,z € L* we have:

if |x|=]|z|, then x“xyz* =, x“yzz". Q)

Theorem 3.1. Let L be a regular language definable in
+-inv-FO(<). ThenL is closed under modulo transfers.

Proof. For the sake of a contradiction, assume thas

a regular language that it closed under modulo trans-
fers. Then there exist strings y, z such thatjx| = |z|
but x“xyz* #; x“yzz¥. By symmetry, we can assume
that there exist strings, v such thatux“xyz¥v € L but
ux“yzz¥v ¢ L. By the definition ofw we have for all
a, 8 € Ny, that

ux®xyzP“v e L and ux*“yzzP*v & L. 2)
3 Regular languages and addition-invariance
From ¥ we construct the finite alphab& = ¥ U
The goal of this section is to characterize the regular {(a,x) | a € X} U{(a,z) | a € X}. Letx andz be the
languages definable i#-inv-FO(<), +-inv-FO(+1), and strings constructed from andz by tagging the letters with
+-inv-FO(=). We start with the most expressive of the the appropriate symbol &. l.e., x is obtained fromx by
three,+-inv-FO(<), and we follow the methodology of [3].  replacing every lettes of x with the letter(a, x). Analo-
Using an Ehrenfeucht-Fis®2 game argument, we gously,z is obtained frone.
show in Section 3.1 that regular languages definable in  In the following, forw € ¥* we write|w|5 (and|w/;) to
+-inv-FO(<) have particular closure properties. Then, us- denote the number of occurrences of the stiifgndz) in
ing an algebraic argument, we show in Section 3.2 that thew. We consider the languages



Ly ={we uwvx(xz|zz)* : |w|z, |w|z > w,
Wz = 1], wls = 0[]},
Ly, ={we uvx(xz|zz)* : |w|z |w|z 2w,

wlx =0[w], |wlz=1][w]}.

Aformulay is said toseparatel; from Ly, if L, contains
L; but does notintersect withy. Using equation (2) and the
assumption that is definable in+-inv-FO(<), we obtain:

Claim 3.2. There is a formula oFO(<, +) that separates
L; from L,.

Proof of Claim 3.2.Recall that, by assumption, is defin-
able in+-inv-FO(<). We will use this formula, along with
a suitable FQ<, +) interpretation, to obtain an K&, +)-
formula that separatds from L,.

The FQ <, +) interpretation is constructed in such a way
that, when given a stringy € uyv x (xz | zz)*, it defines a
stringw’ € ux*yz*v such thatv € L; impliesw’ € L, and
w € L, impliesw’ & L.

This FQ(<, +) interpretation replaces letters ¥nandz
by the corresponding letters i and z. Furthermore, it
consists of two formulags,.candyor, €ach with two free
variables. When evaluatedin, the formulas)syccandyorg
define the following successor relation and its associated
transitive closure:

First, there come all the positions in(in the order in
which they appear iw). Then, there come all positions
that belong to one of the substringsin the order in which
they appear inv (this is doable in FO because we use labels
in ¥). Afterwards, there come all positions that belong to
in the order in which they appear im. Then, there come all
positions that belong to one of the substrigge the order
in which they appear imv (again, this is doable in FO since
we use labels ift). Finally, there come all positions that
belong tov, in the order in which they appear n.

From a wordw € uyvx(xz|zz)*, this construction
produces a wordv’ of the formux’yz/v with i = |wls
andj = |wlz. If w € Ly, theni,j > wandi = 1 [w] and
J =0 [w]. Similarly, if w € Ly, theni,j > w andi = 0 [w]
andj = 1 [w]. Thus, by equation (2) we obtain:

If we L, thenw’ € L. If we Ly, thenw’ ¢ L.

Now recall that, by assumption, is definable by a
+-inv-FO(<)-sentencep,. We modify this sentence ac-
cording to the FQ<, +) interpretation that defines’ in

w. l.e., we replace every occurrence of the symtoksnd

E* (for the successor and the natural linear order on the
positions of the string) with the formulags,cc and v org-
Thereby, we obtain an H&, +)-sentence that is satisfied

by wiff w' = ¢, (note that this is the place whesddition-

The desired contradiction for finishing the proof of The-
orem 3.1 now immediately follows from Claim 3.2 and the
next proposition.

Proposition 3.3. Let x,y, z, u, v be strings with|x| =
|z| > 1, and letx, z be obtained fronx, z as above. Fix an
arbitrary w > 2, and letLy, L, be chosen as above. Then,
no formula ofFO(<, +) can separate; from L.

Proof. The proof of the proposition is a consequence of the
following technical lemma that is based on an Ehrenfeucht-
Frais€ game argument. In the statement belews, w’
indicates that the strings and w’ satisfy the same sen-
tences of FQ<, +) of quantifier rank< k. It has an
Ehrenfeucht-Frims game counterpart requiring the exis-
tence of a winning strategy for the duplicator in the cor-
respondingk-round game [11]. Similarly, we define ~

w’ when only sentences of fQ) are considered.

Lemma 3.4. Let x,Zz,y,u, v be chosen as in Proposi-
tion 3.3. For anyk, there existd, d’ € N, with d < d’,
and numbersy, i1, ..., iy € Ns,, such thatt

~t

1. uyvx (xz)°(2z(x2)") ~ )

je{1
Jje{1

—d =0 [w]

d}
d'}

uyv X ()‘(2):’0 (22()_(2)0_) .....

d .

3. i=—d'=-1 v

Before proving Lemma 3.4, let's see why it implies the
proposition. Assume for the sake of a contradiction that
there is a formulap separatingl; from L,. Let k be
its quantifier rank, and led, d’, iy, - - - , iq» be as stated in
Lemma 3.4. Letw be uyv X(xz)"(zz(xz)") 4y and
let w’ beuyv x(x2)° (z2(xz)")

Jje{l,...,
je{1,..d'}

By ltem 2, |w|z = 1 + 27:0’)' =1 [w]and|w|; =
2d + ZJ‘.’:Oij = 0 [w]. Furthermore, sinc@, ..., iy # 0,
we have|w|z, |w|z > w. Thereforew € L;. Similarly,
by Item 3, we havew'|s = 1+ 3¢ i; = 0 [w] and
W'z = 2d' + 37 i} = 1 [w]. Thereforew’ € Lp. But
due to ltem 1, eithew andw’ both satisfy,, or neither of
them satisfiep. Hencey cannot separatk;, from L,.

Proof of Lemma 3.4The proof is essentially an
Ehrenfeucht-Fiis® game argument, the difficulty be-
ing to exhibit a winning strategy in the presence of
addition. In order to do so, we use the following gen-
eralization of a result by Lynch [12], which was proved
in [18] and which allows us to reduce the existence of a
winning strategy in a game with addition to the existence
of a winning strategy in another game, where addition is
not present.

invarianceof ¢, is essential). In particulay separates;
from L,. Thus, the proof of Claim 3.2 is complete. [

IHere, we use the following notation: For strings, ..., wy, we write
(wj)je{l 4} to denote the string/ ws - - - wy.



Proposition 3.5(Immediate from [18]) For all m, h, k' €
N there is a number = r(m, h, k') € N and an infinite set
P={p<p<ps<---} C Nwith p > h and
p; = h[m], forall j > 1, such that the following is true for
all ¢4, 45 € N>1:

if 1 ~< 1%

then (Z, <+ P, P) =~} (Z,<,+, P, P),

whereP; is {py, ..., ps, } While P, is {p1, ..., ps, }, and 1°
and 1 are words of length/; and ¢, over the singleton
alphabet{1}.

Fix my = |xz| = |2z|, m = mw, h = |uyvX|. For any
given k' let r, andpy, p, - - - be given by Proposition 3.5
with these values fok’, m, andh.

Now letip = (p1 — h)/my and forj > 1,i; = (pj+1 —
pj — m1)/my. Then for all we havezfzoij = (pe+1 —
h—20my)/m = —L [w].

We then choose andd’ in N., such thatl? ~< 19,
d =0 [w] andd’ = 1 [w]. The existence of suct and d’

Im) is the logic extending FQ<) with predicatedm(/, q)
(for all i, g € N), that hold true in a structure iff the size of
its universe is equal tomodulog.

Theorem 3.6. Let L be a regular language. Thehis de-
finable inFO(<, Im) iff L is closed under modulo transfers.

The “only if” direction of Theorem 3.6 follows for in-
stance from Theorem 3.1, as languages definable {<FO
Im) are also definable in--inv-FO(<) by Example 2.1.
Proving the “if” direction requires more work; the remain-
der of Section 3.2 is devoted to the proof.

We will make use of the following straightforward ob-
servation:

Claim 3.7. A language is definable iRO(<, Im) iff it is a
finite union of languages of the for&iN Z7, whereS is
definable inFO(<) (i.e., S is a starfree regulalanguage,
cf. [13]), i and g are natural numbers, and? is the set of
all strings of lengthi modulog.

is guaranteed using a standard game argument on transitive As a further ingredient, we use the following conse-

strings (cf., [11]). By Proposition 3.5 we have

(Z,<,+,P,P) =, (Z,<,+, P, P). 3)

A standard first-order interpretation then transforms the

structures of equation (3) into the strings desired for liem

of the lemma. The interpretation assigns a label to each™ We have: [fdy, --

number with 0 < 7 < u (wherey is the minimum element
in P that’s not inPy, resp.P,), using the following rules:

1. if i < h, then it uses the label of tH{g+1)! position in
uyv X
(this is definable in FO, sinckanduyv x are fixed)

2. ifi>h, i=j[m], 0<j < my, and position —j is
not in P, then it uses the label of thg+1) position
of xz,

(this is definable in FO, sinck, m;, andxz are fixed
and+ is available in the structures of equation (3))

3. ifizh, i=j[m], 0<j< m, and position — j
is in P, then it uses the label of thg+1)3! position of
zZ.

Let ko be the quantifier rank of the FO interpretation
that establishes this translation ofZ, <, +, P, P;) and
(Z, <, +, P, Py) into the corresponding stringg, and ws.
Note thatw; and w, are of the form stated in Iltem 1

of Lemma 3.4. Furthermore, equation (3) implies that

wi = wp, for k := k' — k. This concludes the proof
of Lemma 3.4, of Proposition 3.3, and of Theorem 3.1

3.2 Characterization of FO(<,Im)

guence of closure under modulo transfers.

Proposition 3.8. Let L be a regular language that is closed
under modulo transfers. There exigt& N, such that for
all k € N,,, and all stringsvy, ..., vx andxq, ..., xx11 Over

-, §, are natural numbers such that

S1lval + -+ dilv| = 0 [q], (4)
then we have
X1 vj“vflevzw v§2 Ce XK VR V;kak+1
=L xavi’xevs - x, v xker1. (D)

The proof is by induction ok and makes use ofé&out’s
identity. Details can be found in Appendix B.1.

Let L be a regular language closed under modulo trans-
fers. Letq be the number given by Proposition 3.8. For
0 < i< q, letL; be the restriction of to strings of length
modulog. Notice that because of (4), both sides of (5) have
the same length modulp Hence, (5) remains true after re-
placing=, with =;,. We show that,; is definable in FQ<,

Im). This will conclude the proof, as = | J; L;.

Our goal is to show that; = M N Z; for somecounter-
free regular languagé/. By Theorem 3.9 below, this im-
plies thatM is definable in FQ<) and thereford,; is defin-
able in Fg<, Im).

Let A be a minimal deterministic automaton, anddgt
be its transition function. Aounterfor A is a stringu and
asetP = {po, ..., pk_1}, With k > 2, of states such that
da(pi, ) = pit1modulok- A string u is acounterif it forms

We show in this section that closure under modulo trans- a counter with some sét. We will use the following well-

fers corresponds to definability in £Q, Im), where FQ<,

known result.



Theorem 3.9([13]). A regular language. is definable in
FO(<) iff its minimal deterministic automaton does not
have any counter.

Note that if u = v v is a counter, them is also a counter.

Similarly, if v = u;u, is a counter, then itsyclic shiftu,uy
is also a counter. A counteris primeif v is not of the form
vv for anyv. Thesizeof a counteru is the length ofu.
A simple pumping argument shows that4fhas a counter
u, then it has a counter of size bounded by a number
that depends only oA. It thus suffices to consider prime
counters of sizec N.

Let A be the minimal deterministic automaton figt

Let C be the set of prime counters df of size< N.
l.e., C is a set of pair{u, P) whereu € X*, |u| < N,
and P is a set of states ofl of size > 2, satisfying the
condition of prime counters. We keepd@honly one counter
per cyclic shift ofu. Let Cs be the set of strings that are
counters occurring irC, and letk be the maximal length
of such strings. Notice that becaudds deterministic, if
(u,P) e Cand(u, P") € C,thenP N P" = 0.

We construct an automatds such that the minimal de-
terministic finite automaton equivalent ®has no counter,
andL; = £(B)N Z7, whereL(B) denotes the language ac-
cepted byB. This will conclude the proof of Theorem 3.6.

The automatomB essentially simulated. On top of that,
it remembers in its states the ldsprevious letters read. It
also has one counter per element@f that counts up to
w-q. The transition table oB is given by the following
rules, wherec, is the current value of the counter for
andv is the string of the lask letters read, including the
currently read lettes:

1. For allu in Cs such thatv does not end with a cyclic
shift of u, B sets the counter, to 0.

2. If v =v'u,u € Cs, andc, < w-q, thenB simulatesA
and increases the countgrby 1.

3. Ifv =Vu, ue Cs, ¢, = w-q, and the simulation
of A on the current letter gives a stgbec P such
that(u, P) € C, thenB non-deterministically selects a
state ofP. Note that this is the only case wheBedoes
not simply simulateA.

4. In all other cases simply simulatesA.

From the construction a8 we immediately obtain:

Lemma 3.10. A stringw is accepted bB iff it can be de-
composed ag = wj - - - w,, for somen > 1, such that

° wluflwzu§2-~-w,, is accepted by A for some

01, ,0n—1 €N,
e u”?is a suffix ofw;, for eachi < n, and
e u;c Csforall i < n.

Note that the case = 1 implies that every word ac-
cepted byA is accepted by, i.e.,L; C L(B).

It turns out thatB has the desired properties:

Proposition 3.11. (a) L; = £(B) N Z?.

(b) The minimal deterministic automaton recognizing
L(B) does not have any counter.

Proof. We begin by proving part (a).

By Lemma 3.10,; C £(B), and hence it suffices to
show that£(B) N Z7 C L;. Letw be a string of length
i modulo g, accepted byB. By Lemma 3.10 we can de-
COMpOSew aswi w; - - - wy, such thatw; u? woul? - - - w, is
accepted byA. By definition of A, this word has length
i modulog. Hence we have_; |uj|é; = 0 [q]. We can
therefore apply Proposition 3.8 and obtain thatv, - - - w,
is accepted by, as desired.

The proof of part (b) makes use of Proposition 3.8 and
Lemma 3.10, along with a careful analysis of the (poten-
tial) counters ofA and the minimal deterministic automaton
equivalent toB. Details can be found in Appendix B.1[]

This completes the proof of Theorem 3.6. Classical tech-
nigues now imply that, given an automaton foit is decid-
able whethel is closed under modulo transfers: Using the
pumping lemma, one shows that all quantified strings can
be assumed to be short. Then, a brute force analysis yields
the decision algorithm.

Hence, Theorem 3.6 provides an effective test for defin-
ability in FO(<, Im), a result of independent interest. As an
immediate consequence of Theorem 3.1 and Theorem 3.6,
we obtain an effective syntax and a complete characteriza-
tion of the regular languages definabletiinv-FO(<):

Theorem 3.12. A regular language is definable in
+-inv-FO(<) iff it is definable inFO(<, Im).

Furthermore, given an automaton for a regular langudge
it is decidable whethet is definable iFFO(<, Im).

3.3 +-inv-FO(+1) and +-inv-FO(=)

A characterization of the regular languages definable in
+-inv-FO(+1) can be obtained in the same way, using an
additional closure property taken from [19]. A regular lan-
guagel is closed under swapi$ Ve, f,x,y,z € ¥* such
thate, f are idempotent we have:

(6)

The proof of the following theorem is done as for Theo-
rem 3.1, using an Ehrenfeucht-iB& game argument that
can be found in Appendix B.2.

exfyezf =, ezfyexf.

Theorem 3.13. Let L be a regular language definable in
+-inv-FO(+1). ThenL is closed under swaps.



As for Theorem 3.6, we can show the following (see Ap-
pendix B.3 for a proof):

Theorem 3.14. Let L be a regular language. Thehis de-
finable inFO(+1, Im) iff L is closed under modulo transfers
and under swaps.

In summary, we have:

Theorem 3.15. A regular language is definable in
+-inv-FO(+1) iff it is definable inFO(+1, Im).
Furthermore, given an automaton for a regular langudge
it is decidable whethet is definable iFFO(+1, Im).

By further requiring commutativity of the language, we
obtain similar results for--inv-FO(=) (the proof can be
found in Appendix B.4).

Theorem 3.16. A regular language is definable in
+-inv-FO(=) iff it is definable inFO(=, Im) iff it is com-
mutative and closed under modulo transfers.
Furthermore, given an automaton for a regular langudge
it is decidable whethet is definable iFFO(=, Im).

4 Bounded languages

A languagel C %* is calledboundedif there exists
ann € N, and n stringswy, ...,w, € X* such that
L C wiws - - - w;. Bounded languages received quite some
attention in the literature, cf. e.g. [5, 8, 7, 16, 4].  This
section’s main result is:

Theorem 4.1. Every bounded language definable in
+-inv-FO(<) is regular.

Due to space limitations, we prove Theorem 4.1 only for
the special case whetey;| = --- = |w,|; the proof of
the general version will be given in the full paper. More
precisely, we here give the proof of the following Proposi-
tion 4.2. The proof of this proposition contains already all
the ingredients necessary for proving Theorem 4.1.

Proposition 4.2. Letn € N, letws, ..., w, € X* be such
that jwq| = -+ = |w,| = 1, and letay, ..., app1 € XF.
Every language. C ag wy ap wy - -+ ay Wy apyq that is
definable in+-inv-FO(<) is regular.

The remainder of Section 4 is devoted to the proof of
Proposition 4.2.

For n € N,, and ay,...,ap41, W1, ..., w,, € X*
we write @ and w to denote the tuplegay, ..., any1)
and (wy,...,w,). By MZ we denote the language
oWy ap wy - ay Wy apyq. FOr proving Proposition 4.2,
it is convenient to identify a vector = (xq, ..., x,) € N”
with the stringas wy® ao wa? - -+ oy W apy1 € M2, For
eachL C M¥, let /¥ (L) C N" be theset of vectors asso-
ciated with the words of.

It turns out that for languages C MY definable in
+-inv-FO(<), .72 (L) is semi-linearin the following sense:
A setS C N” is calledlinear if there exist a number € N
and vectorsy, ..., v; € N” such that

S = vw+Nvyg+---+Nv.

A setS C N” is calledsemi-linearif S is empty orS is
a finite union of linear sets.
A setS C N”" is calledfirst-order definable in(N, <,
+) if there is a F@<, +)-formula ¢(y1, ..., y») such that
S ={(x1,....x) eN": (N, <, +) E o(x1,.... xn) }

Theorem 4.3([6]). A setS C N” s first-order definable in
(N, <, +) ifand only if it is semi-linear.

Using Theorem 4.3 along with a standard FO interpre-
tation, it is easy to prove the following (in fact, the lemma
is true not only for+-inv-FO(<), but even for FQ<, +))
(see Appendix C.1):

Lemma 4.4. Let L C MY be a language that is definable
in +-inv-FO(<). Then’Z(L) is semi-linear.

It is easy to see that there are non-regular languages such
that the associated set of vectors is semi-linear. Hence,
in order to derive regularity, we need to show that the
set of vectors associated with a language definable in
+-inv-FO(<) has a special property.

For this, we use Ginsburg and Spanier's characteriza-
tion [8] of regular bounded languages by subset&Néfthat
we call semi-dicecheré: A setS C N” is calleddicedif
there exist a number € N, an arbitrary vector, € N”,
and vectorss, ..., v; € N” each of which has exactly one
non-zero componentsuchthatt = vg+Nv;+-- -+ Ny;.

S is calledsemi-dicedf S is empty orS is a finite union of
diced sets. In [8] it was shown that a bounded language is
regular iff its associated set of vectors is semi-diced.nro
this, we obtain:

MY Then,L

[e3%

Theorem 4.5(Immediate from [8]) Let L C
is regular iff 7% (L) is semi-diced.

For proving Proposition 4.2, it therefore suffices to show
that for a language definable i-inv-FO(<), the asso-
ciated set is semi-diced. This is our goal throughout the
remainder of Section 4. For achieving this goal, we give
in Section 4.1 characterizations for semi-linear sets and
semi-diced sets. Based on these characterizations, in Sec-
tion 4.2 we use a game argument to show that for ev-
ery +-inv-FO( <)-definable bounded languagethe semi-
linear set% (L) is actually semi-diced.

2Ginsburg and Spanier did not assign a particular name to ese



4.1 Semi-linear sets and semi-diced sets (b). Property (a) then follows essentially by inductionron
The induction argument can be found in Appendix C.5. We
Forx € Z" let||x|| := "7, |xi|. ForK > 0, we write sketch here the proof for property (b).

N (x) to denote the<-neighborhood of, i.e., By Lemma 4.4,S is semi-linear. LetJ be the finite set
given by Lemma 4.6 fo6.
Nk(x) == {y € Z" : [|x -yl < K}. For any vectow = (uy, ..., u,), we letsupg(u) = {i €

{1,...,n} : u; # 0} be thesupportof u. We choose
ForS C N, x,y € N”, andK € N we say thatVk(x)

and N (y) are identical with respect t6 if for all z € Z" V= {llu|-& : uveUandiesupdu)} (7)

i < — . . . .
with ||z|| < K we havex +z € 5 ytzes. wheree; is the unit vector ofN” which has a 1 in its-th

We believe that the next lemma, which essentially says component and Os in all other components. Clearlys

that any seml-lmear set is ultimately periodic, is known to a finite subset oN", and every element i has exactly
researchers in the area of algebra and number theory. Note

. - . one non-zero coordinate. We need to show tdtas the
however, that Muchnik [15] gave a characterization of semi- , :
. S . desired property formulated in Theorem 4.7.
linear sets based on a similar closure property that differs Let Ko = max{||v|| : v € V}. Now letK € N be an
with the one stated in the lemma in the fact that it does not 0~ n ’

. . e e . arbitrary number. LeK = K + Kp. Choose/ to be the
include the universal quantification ovgr(it is assuming number obtained from Lemma 4.6 for the number

. Now let x € N" be an arbitrary vector withjx|| > ¢.
%y Lemma 4.6 we obtain am € U such that for alfj € N,
Ni (x) andNg (x + ju) are identical with respect t6.

If |supdv)| = 1, thenu € V, and by choosing := u
Lemma 4.6. For every semi-linear se§ C N" there exists ~ andj := 1 we obtain thatV (x) andNk (x+v) are identical
a finite setU C N\ {0} such thatvK € N,3¢ € Nsuch  With respect t5, and we are done.

a proof of the closure property as stated below, we included
a proof in Appendix C.3.

that the following is truex € N” with [|x|| > ¢, Ju € U For the remainder of this proof we consider the case that
such that’j € N, Nk(x) andNk(x+,-u) are identical with |supgu)| > 2. In order to simplify the presentation, we
respect tas. assume thasupgu) = {1,2} (the general case is based

on the same ideas and is presented in Appendix C.5). We
Lemma 4.6 will be our starting point for showing that choosev := ||u|- e;. By (7) we haver € V. Our goal is to
the set of vectors associated with a language definable inprove thaiVx (x) andNk (x+v) are identical with respect to
+-inv-FO(<) is semi-diced. The second ingredient is a S. To this end, let us fix an arbitraye Z" with ||z|| < K.
characterization of semi-diced sets analogous to the onene needto showthak +z € S < x4+ v+ z € S.

given in [15] for semi-linear sets. sectionof a setS C N” This is a consequence of the following claim.
isany setofthe forn$; , :={x=(x1,....,x,) €S : x; = ] ]
¢}, wherei € {1,..., n} and¢ € N. Claim 4.8. There exists d € Nsuchthatx+ Ju+u+z €

S <= x+Jut+v+zeS.
Theorem 4.7. A setS C N” is semi-diced iff the following
is true: (a) every section & is semi-diced, and (b) there
exists a finite se¥ C N" \ {0} such thatevery element in
V has exactly one non-zero coordinatandvK € N, 3¢ €
N such that the following is truevx € N” with ||x|| > ¢,
Jv € V such thatVk (x) and Nk (x + v) are identical with
respect taS.

Before proving this claim, let us point out how to use the
claim for showing thatx + z € § <— x+v+4+z€S.

Let J be chosen according to Claim 4.8. We know that
Ng (x), Ng(x+Ju), andNg (x+(J+1)u) are identical with
respect taS. Furthermore||z|| < K and||v|| < Ko, thus
l|lz+ v|| < K+ Ko = K. Therefore,

o . 1 i <K

The proof of the “only if” direction is straightforward. Xx+z€S — x+(JHlutzes Smce”zH_
The proof of the “if” direction is more elaborate. It proceed = x+Jutvtzes by Claim 4.8
by induction on|V|; details can be found in Appendix C.4. < x+v+z€eS since||v + z|| < K.

In summary, we obtain thaVy(x) and Nx(x + v) are
identical with respect t&. Therefore, in order to finish the
proof of Proposition 4.2, it suffices to prove Claim 4.8. This
is, where the game argument comes in.

4.2 Proof of Proposition 4.2

Fix a languagel. C MY that is definable in
+-inv-FO(<). LetS C N" be .#%(L). By Theorem 4.5
it suffices to show tha$ is semi-diced. By Theorem 4.7 it  Proof of Claim 4.8.We make use of a result similar to
suffices to show tha$ has the properties (a) and (b) stated Proposition 3.5, in order to reduce the existence of a win-
in Theorem 4.7. The most difficult part is to show property ning strategy in a game with addition to the existence of



a winning strategy in another game, where addition is not string V' (resp.W), i.e.,

present.

Proposition 4.9 (Immediate from [18]) For all m, h, k' €
N there is a number = r(m, h, k') € N and an infinite set
P={p<p<ps<---} C Nwith p, > h and
p; = h [m], forall j > 1, such that the following is true for
alld, d" e N,,:

it  0ol0¢1924 09191924

then (Z,<,+, P, Py, P1, P2) =, (Z,<,+, P, P, Pi, Pj),
where, ford; = d' + jd, Py = {p1,....Ps}, P1
{Pas1 o pats P2 = {pay, ... par}, While P
{p1, ... pa}, PL ={pd+1. ..., P, }, P2 = Pa.

~<
r

From Proposition 4.9, the result essentially follows by

d3

Z ij)-u +3du+d-u

Jj=0

yv:X+z+(
(10)

d3
yw=x+z+ (Zy)~u+3d-u+d'~(u+el—eg).
j=0

Recall thatsupgv) = {1, 2}, andd’ is the second com-
ponent ofu. Thus,v = ||u|| -e1 = u+d' - (e1 — &).
By setting J := (Zj’io i,-) +3d + d' — 1, we therefore
have that, = x + z+ Ju+vandyy = x+z+ Ju+ v.

In view of (10) and (9), in order to conclude the proof
of Claim 4.8, it would suffice to have an FO interpretation

an FO interpretation. We here present the main ideas un-similar to the one in the proof of Claim 3.2 transforming the

derlying this interpretation; the details are given in Ap-
pendix C.5.

For anyx := (X1, ..., x») € N”, let W(x) be the word
wit - wXn WeletH := o ap - apps W(x+2), Up :=
W(u), Uy :=W(u+e; — &)andlU; .= W(u — e1 + &).
We then seth := |H| andm := |Up|. Notice that by our
assumption ofw;| = --- = |w,|, we have|lp| = |Ui| =
|Uzl = m. For any givenk’ € N let r andpy, pa, ... be

the numbers given by Proposition 4.9 with these values of

m, h andk’. Letd’ be the second component ofand let
d be such thato?0? 1929 ~< 09191927 (the existence
of d is guaranteed by standard Ehrenfeuchttdssagame
results [11]). By Proposition 4.9 we then have:

(Z,<,+,P,Po,P1,P2) ~f (Z,<,+ P, Py, P, P) (8)

In order to transfer identity (8) into an identity over

strings, we use an FO interpretation similar to the one given
in the proof of Lemma 3.4 for assigning labels to numbers.

This interpretation used for labeling the position8 up to
h—1. For everyi € {0,1, 2}, it usesU; for labelingm con-
secutive positions, the first of which is marked By Fur-
thermore, it used$/; (and counting modulen) for labeling
all remaining positions. Thus, the interpretation transi®
the structures of (8) into the strings

dp

Hw® () (W), (La)],

and

j

. d3
%)
0 j=dr+1

whereip = (p1 — h)/m, and forj > 1,i; = (pj+1 — pj —
m)/m. Denoting these strings by and W, and lettingk;

be the quantifier rank of the FO interpretation, we obtain
from (8) that

H () (), (e

Voxo W 9)

Now let us consider the vectes, (resp.yy ) in N” that
counts the number of occurrences of each ofhén the

stringsV and W into strings inM%.

However, depending on the shapemandw, it might
be the case that such an FO interpretation does not exist,
because once in the middle of the striigor W, there is
no way of distinguishing a letter in a copy af from the
same letter in a copy ofy;, for i # j. This problem is
overcome in the same way as in Section 3.1, by using an
expanded alphabet when performing the first interpretation
after applying Proposition 4.9. The alphabet would be of the
formA = x{w,a}x{1,..., n+1} and, in the argument
above, instead of working with the strings (resp. «;), we
use stringsy; (resp.,@;) in A*, obtained by expanding the
label of each letter in the obvious way.

Once this is done, we can conclude in the same way
as in the proof of Claim 3.2. l.e., we construct an
FO(<, +)-formula vorq defining a linear order such that
reading the letters oV and W according to this lin-
ear order, one obtains the stringsw;"as - - - a, W api1

and alwlyllaz e a,,w,{’/'anﬂ, for (v1,...,yn) = yv and
(y1,.--,¥}) = yw. Letting k> be the quantifier rank of
the formulayoq and choosings’ large enough such that
k" — ki — ko is bigger than the quantifier rank of the
+-inv-FO(<)-formula that defines, we obtain thayy € S

iff yw € S. This concludes the proof of Claim 4.8. The
missing details can be found in Appendix C.5. O

5 Commutative languages, colored sets, and
deterministic context-free languages

Commutative languages. Recall that we call a language
L commutativef for any stringu € L, any permutation of
the letters ofu is in L. As an easy consequence of Theo-
rem 4.1, we obtain:

Theorem 5.1. Every commutative language definable in
+-inv-FO(<) is regular.



Proof. For a stringw = wyws, - - - wy Of length? € N and a As a challenge towards proving or disproving our con-
permutationr of {1, ..., ¢}, be writew,. to denote the string  jecture, we conclude with the following example of a
Wr(1)Wn(2) "+ Wr(¢)- The commutative closure(L) of a non-regular, context-free language, that is definable in

languagel C ¥ * consists of the strings,. for all w € L (4, *)-inv-FO(<) as well as in FQ<, +), but for which we
and all permutations of {1, ..., |w|}. We use the follow-  do not know whether or not it is definable in-inv-FO(<).
ing result by Ginsburg and Spanier [8], where N, and For n,i € N we denote by bip(i) (resp., bin,())
o1, ..., 0, are pairwise distinct letters: the {0,1}-string w of length n representing the bi-
] nary encoding of/, starting with the least signif-
Theorem 5.2([8]). A languagel C o703 - -- oy is regular icant bit (resp., starting with the most significant
if and only if the commutative closuegL) is regular. bit). Let L be the language of strings of the form

binn(O)#mn(l)#binn(2)#mn(3)# U #mn(2n_1)'

for n € N. For instance, L contains the string
0004:00140104011#001#101#4011#111. Let L be the
complement of.. We then have (details in Appendix E):

The proof of Theorem 5.1 now follows by a simple com-
bination of Theorem 5.2 and Theorem 4.1 (details can be
found in Appendix D.1).

Colored sets. A colored setover ¥ is a finite relational ~ Proposition 6.1. L is context-free and definable in
structure over the signatuge= {P, : a € £}, such that  (+ *)-INv-FO(<) and inFO(<, +).

the predicate®, form a partition of the structure’s universe.
By combining Theorem 5.1 and Theorem 3.16, we immedi-
ately obtain the following.
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A A technical lemma summarizing our
Ehrenfeucht-Frais€ game arguments

Basic notation. We write ¢ to denote the empty string.
For an alphabeL, we letpy := {P, : a € L} be the sig-
nature that consists of a unary relation symBglfor each
acy.

The standard representationof a string w =
wy---wy € X* of lengthV > 1 by a ps-structure is the
structure

w = ([N],(P;)aex)

with domain[N] = {0, ..., N—1}, where, for eacls € ¥,
P;/ = {I S [N] D Wi = a}.

The standard interpretation®f < and+ on Z are the
relations

<z = {(i,j) : i,j € Zandi <},
+2 = {(i,j,k) : i,j, k € Zandi +j = k}

For anyN € N., and any relatiorR” C Z (for r > 1) we
let RN = {(ir,....i,) € R : i, ..., i, € [N]}. For each
N € N,,, thestandard interpretationf < and+ on[N] are
the relations<" and+".

From now on, when the context is clear, we will omit su-
perscripts? (resp.-V) and simply write< and+ to denote
the standard interpretation®f < and+ on Z (or [N], for
N e N.,).

If Ais a structure whose domaifom(.A) is a subset of
Z, we write (A, <) to denote the expansion gf by the re-
lation <Z Nndon(A)?. Accordingly,(A, <, +) denotes the
expansion of A4, <) by the relation+Z N don(.A)3. Fur-
thermore, ifP is a subset ofZ, we write (A, <, +, P) to
denote the expansion ¢#4, <, +) by an additional unary
predicate that is interpreted by the gt don(A).

If ¢ is a first-order formula, we writgr () to denote
the quantifier rank of.

EF-games. We use the standard notation concerning
Ehrenfeucht-Frizs games (EF-games, for short); see e.g.
the textbook [11]. In particular, we writd =, B to indi-
cate that the duplicator has a winning strategy intineund
EF-game (for FO) played on two relational structureand

B of the same signature.



Furthermore, we will usdom(.4) anddom(53) to denote
the domain (i.e., the universe) of the structudeands, re-

letr:=r(m,h, g, k") e NandP := {p1,p2,p3,...} CN
be chosen according to Proposition A.1. Ligt:= 2—"

. . . . [U]
spectively. Ifr is the signature af{, we writer to denote and, for eachy > 1, let/; := =P+ | particular
the collection of relations and constants.4f I.e., for ev- o q.m ¢ d f ! - N q.m ’

i =0 (mo m) and, foreacly > 1, j; = —1 (mo m).

ery relation symboR and every constant symbein 7, 74
contains the relatio®* and the constant* with which
the symbolsk andc are interpreted it4.

If o is @ mapping whose domainden(.A), thena(R*)
denotes the set of all tuplgg(xy), ..., a(x,)) for which _ ; P
(x1,....x) € R4 By a(r*) we denote the collection of V= H U.O (@ U'J)jzl ----- a ©
relationsa(R+4) and elements(c) for all relation sym- W = HU" (R U’f')j=1 _____ a0, G
bols R and constant symbotsin 7.

The following is a generalization of a result by Lynch Where, for eachi > 1 and eachy € I the following is true:
[12] which was proved in [18] and which establishes a win- If 7 is thej-th letter in v (respectivelyw), thenQ; = U,
ning strategy for the duplicator in an EF-game on particular (respectivelyR; = U,). Then, the following holds:
structures which have a built-in addition relation.

(a) (M, <, +, P) % (w, <, +, P)

Letv,w € I'* be strings such thafv, <) =, (w, <),
and letd, = |v| andd, = |w|. LetV, W € A* be the
following strings:

Proposition A.1 ([18]). For all m, h,g, k € N there is a

numberr = r(m, h, g, k) € N and an infinite set (0) Let(wa(x))aez be a collection oFO(ea U{<, +, P})-

formulas which, on each of the structur@g, <,+, P)

P:{p1<p2<p3<~~}§N

with p; > h and p; = h (modm), forall j > 1, such
that the following is true for every signature all linearly
ordered finiter U {<}-structuresA and B, and the map-

and (W, <, +, P), defines a partition of the domain
into | x| disjoint sets, and le¥’, W’ € ¥* be the strings
obtained fromV and W by replacing, for eachx, the
letter at positionx with the particular lettera € ¥ for
which the formulap,(x) is satisfied.

pingsa : dom(A) — P andg : dom(B) — P which, for
eachj, map thej-th smallest element of dqrd) w.r.t. the
linear order < (respectively, of dofB) w.r.t. <?) to the
j-th smallest element iR: If A =, B, then the duplicator
has a winning strategy in thie-round EF-game on

Let Ysucdx,y) be a FO(ea U {<,+, P})-formula
which, when interpreted in(V,<,+,P) and
(W, <.+, P), defines a successor relation on the
domain. LetV”, W” € ¥* be the strings obtained
from reading the letters of’’ and W’ according to this
o = (Z,<,+, P a(TA)) and B — (Z,<,+, P 6(73)) particular successor relation. B
Let g be an upper bound on the quantifier rank of the
such that after theé-th round the following holds true: Let, formulast,(x), for all a € X. Then the following is
foreveryi € {1, .., k}, a; andb; be the elements chosen in true:
the-th round on2( andB. Then we have
(i) V" and W” satisfy the samet-inv-FO(+1)-
sentences of quantifier rank at mdst:= k' —
max{q, qr (wSucc)}-

(i) If Yor(x,y) is a FO(pa U {<, +, P})-formula
which, when interpreted inV, <, +, P) and
(W, <,+, P), defines the linear order that fits
to the successor relation defined Byuc{x, y),
then V" and W" satisfy the same--inv-FO(<)-
sentences of quantifier rank at mdst:= k' —

max{q, ar (¢¥suc), Ar (Yord) }-

() aj=0b; [m], forallie{1,.., k}, and

(”) (Cl,'—Clj:b,'—[‘lj) or
(|aj —aj| >2g and |b; — b;| > 2g ),
foralli,j e {1,.., k}.

This proposition is an immediate consequence of [18,
Proposition 6.11 and 6.12].

Using this proposition, we can prove the following
lemma that will serve as one of the main technical tools for
proving our results or--inv-FO(+1) and+-inv-FO(<).

Proof. Ad (a): We apply Proposition A.1 for := or and

A = (v,<) andB := (w, <). By assumption we know
that A ~, B. Letting o and be the mappings defined in
Proposition A.1, we obtain that the duplicator has a winning
strategy in thek”’-round EF-game on

LemmaA.2. LetX, A, T be finite alphabets. Lét' € N,

let H, G, U € A* with [U| > 1 and, for eachy € T, let

U, € A* with |U,| = |U|. Letm > |U| be a multiple of
|U|. For

k" :=2k'+3

h:=|H|, g:=max{h,m, |G|}, A = (Z, <, +, P,a(TA)) and®B = (Z, <, +, P,B(TB))
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such that after th&’”’-th round the following holds true: Let,
for everyi € {1,..,k"}, a; andb; be the elements chosen
in the j-th round orl and®B. Then we have

() a; =b; [m], foralli € {1,..,k"}, and

() (a;—aj:b;—bj) or
(|Cl,' —Clj| > 2g and ‘b,’ - bj‘ > 2g),
foralli,j e {1,..,k"}.

We let2’ .= (V,<,+,P)and®B’ = (W, <, +, P).
Recall thatP = {p; < p» < ps < ---} and note that
the stringV (resp.W) is defined in such a way that (when
making the convention that the first letter/fdfis at position
0), the first letter ofQ; (resp.R;) is at positionp; (for each
j=1).

For showing tha®l’ ~, 9B’, we use the duplicator's
winning strategy in thé&” = 2k’ + 3-round EF-game ofl
andB.

For finding a strategy for the duplicator in the gameXdn
and®’, we let a “virtual duplicator” and a “virtual spoiler”
play a game okl and B as follows: In the first three
rounds, the “virtual spoiler” chooses positions := 0,
as := p4,+1 € P (i.e., the smallest element i that does
not carry any of the letters if), andas; := a, + |G| in the
structure®l. It is easy to see that — in order to win this
“virtual” game on2( and3 in such a way that condition (II)
is satisfied — the “virtual duplicator” has to answer with
by =0, b2 = pg, 1 (i.e., the smallest element that does
not carry any of the letters if in ®8), andbs = by + |G|.
Note thatas (resp.bs) is the smallest element that does not
belong to the domain ofl’ (resp.’).

Now, foreach € {1,.., k'}, thei-th round of the “real”
game orRl’ and®®’ is played as follows: Let us assume that
the spoiler chooses arj in 2’ (the case where he chooses
b} in B’ is symmetric). To find a suitable answgrin B,
the duplicator plays two rounds (namely, rourds-2 and
2i+3) of the “virtual” game as follows: first, she assumes
that the “virtual spoiler” chooses in rourdd+2 the partic-
ular elementiy;» which is the largest integeg af that is
congruenth modulo|U|. Let by;4o be the “virtual duplica-
tor’s” answer in53’.

Next, in round2i+3, the “virtual spoiler” chooses,; .3 :=
al. As|azizs — apiyo| < |U| < m < g, we obtain that ac-
cording to condition (I1), which is enforced by the “virtual
duplicator’'s” winning strategy ofl and®3, the “virtual du-
plicator” then answers with the particular elemest, 5 that
has the same distance fraip,,» asay; 3 has fromay; o,
i.e., boir3 = bojpo + (af — a2it2).

Note that sincen; 13 = a} is a position in2l’, we know
that0 = a; < azi13 < az. Thus, since the “virtual dupli-
cator” wins the “virtual” game o2l and ‘5, we also have
0 = b; < byiy3 < bs. Hence by, 3 belongs to the domain
of ®8’, and thus the duplicator in the “real” game fihand
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B’ can choose the elemelfit:= by, 3 in B’ as her answer
in the j-th round of the “real” game ofl’ and3’.

It is straightforward (but tedious) to check that aftér
rounds of the “real” game ofl’ andB’ (i.e., afterk”
2k’ + 3 rounds of the “virtual” game ol and‘B), the du-
plicator has won the game @ff andB’. — To see this, use
the fact that the “virtual duplicator” wins the “virtual” gase
on® andB in such a way that the conditions (I) and (Il) are
satisfied, and note the following:

e If a} = ayj;3 is one of the positions iH, then, in
particular,a’ < h < g, and due to (Il) we havé’ =
bairs = apiy3 = al. In particular, positior; in 2’
carries the same letter as positigirin 5’'.

e Similarly, if @} = ay;43 is one of the positions i1&,
thenb; = by;;+3 has the same distance frobg asd;
has fromas. In particular, positiord; in B’ carries the
same letter as positiarf in 2’

¢ With the same reasoning one obtains that ifs a po-
sition that neither belongs td nor to G, then alsd’ is
a position that neither belongs tdnor to G. Further-
more, we know from (1) thaa; = b’ [m] and, sincen
is a multiple of|U|, alsoa’ = b} [|U]].

Along the particular choice of the duplicator’s strategy,
it is not difficult to see that there existspac P such
that0 < o} — p < |U| if, and only if, there exists g €

P such that; — g = a} — p, and, moreover, position
p in A carries the same letter fromas positiong in

B (to see this note that, if such and g exist, then

p = azjy2 andqg = ba;y2).

Recall thajU| = |Q;| = |R;| (for any, > 1).

—If, for pg € Pa,—p =b,—q = 6§ €
{0,..,|U|—-1}, then we know from the particu-
lar choice ofV and W that both,a; in 2" andb;
in 9B’ carry the same letter (namely, thit+1)-st
letter of U.,, where~y is the particular letter that

positionsp andg carry in2l and‘B.

— On the other hand, if there do not exjstg <
P such that0 < af — p < |U| and0 < b/ —
g < |U|, then we immediately obtain from the
definition of V and W and from the fact that; =
b; [|U]], thata’ in 2" andb’ in B’ both carry the
(6+1)-st letter of U, for the particular number
6 €{0,..,|U|-1} with a; = h+4d [|U]].

Altogether,
Lemma A.2.

this completes the proof of part (a) of

Ad (b): Let ¢ a+-inv-FO(+1)-sentence of vocabulary
or U {+1,+} and of quantifier rank at mo&t Our aim is
to show thatV” = ¢ <— W’ = ¢.



To this end letp be the FQoa U {<, +, P})-sentence
obtained fromp by replacing every atom of the forfd,(x)
(for a € X) by the formulay,(x), and replacing every atom
of the form E(x, y) by the formulaysycdx, y). It is not
difficult to see that

V,<,+P)E¢ <= V'E ¢, and
W, <,+P) E ¢ = W' E o
Furthermore,® has quantifier rank at most’ = k +

max{q, gr (¥sucd }- From part (a) of the lemma we know
that(V, <, +, P) =~ (W, <, +, P).

Thus, (V. <.+, P)E ¢ — (W.<,+,P) E¢.

In summary, we obtain thatV” = ¢ — W’ E .
l.e., V" andW” satisfy the same--inv-FO(+1)-sentences
of quantifier rank at moskt, and the proof of part (b) (i) of
Lemma A.2 is complete. The proof of part (b) (ii) follows
along the same lines. O

Let us give an easy example of how to use Lemma A.2.

Example A.3. In this example we show that the language
L := {a"b" : n € N} is FO(<, +)-definable, but not
+-inv-FO(<)-definable.

It is easy to see thdt is FO(<, +)-definable via a sen-
tence which expresses that there exists a postt&urch that
all positions< x carry the lettera, all positions> x carry
the letterb, andx + x + 1 is the maximum position in the
domain.

A simple application of Lemma A.2 shows thais not
+-inv-FO(<)-definable: For contradiction, assume thag
definable by at--inv-FO(<)-sentencep. Aiming at apply-
ing Lemma A.2, choos& = A = {a, b} andl' = {0, 1}.
Letk’ := 1+qr(y). LetH = G = eandU = ab, Up = aa,
and U; = bb. Choosem := |U| = 2 and leth, g, k" and
r:=r(m, h, g k") andP C Nandj; (for j € N) be chosen
asinLemmaA.2.

We letd € N, be large enough such that

(v, <) = (w, <)

for the strings v := 091% and w := 0919"! (an easy
EF-game argument shows that ahy> 2" will do, see e.g.
[11]).

Let V andW be chosen as in Lemma A.2, i.e.,

V = (ab)b (aa (ab)"f) (bb(ab)’f)

W= Vv (bb (ab)’2d+1>

j=1,...d j=d+1,...,2d

Note that foré, := Zfioij and/ly = Ly + i1, the
following is true: The string/ consists ofny := ¢y + 2d
occurrences of the lettarand ny, occurrences of the letter
b. The stringW consists of, := £y, + 2d occurrences of
the lettera andny, + 2 occurrences of the lettér.
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Aiming at applying part (b) of Lemma A.2, let,(x) :=
P,(x) andvyp(x) := Pp(x). Furthermore, letbor(x, y) be
a quantifier-free formula which, when interpreted Iri, <)
and(W, <), defines a linear order on the domain\éfand
W, in which the positions that carry the letteprecede all
positions that carry the lettéxr For example, we can choose

1/’0rd(Xv y) :

(Pa(x) A Po(y)) V' \/ (x <y AP(x) A Pe(y)).-
ce{ab}

Finally, letysucdx, y) be a formula (of quantifier rank
1) that defines the successor relation that corresponds to th
linear order defined byor(x, y). Then, the stringy’” and
W' chosen in Lemma A.2 (b) are exactly the string§ =
a"v b and W” = a"w p"™w+2_In particular,V” € L and
W" ¢ L.

From Lemma A.2 (b) (ii) we obtain that” and W" sat-
isfy the samet-inv-FO(<)-sentences of quantifier rank at
mostk = k' — 1. Since, by our assumption,is definable
by a-+-inv-FO(<)-sentencep of quantifier rankk, this is a
contradiction to the fact that” € LandW"” & L. O

B Proofs omitted in Section 3

B.1 Missing elements in the proof of
Theorem 3.6

Proof of Proposition 3.8:
We start by defininggy and then prove the proposition by
induction onk.

Let L be a regular language. Recall that denotes the
syntactic congruence df. Let p; be the syntactic mor-
phism of L, i.e. the morphism sending a worde ¥* to
its syntactic equivalence clasgj(u) = pp(v) iff u =, v.
Recall that=; has only finitely many equivalence classes.

Fix a numberp and letX? be the strings of lengtip.
Let M, be the syntactic classes of the strings of length
M, = i (XP). As we have only finitely many equivalence
classes there must pe< p’ such thatl, = M,. Note that
this implies that for any > p andj € N, we haveM; =
Mi.j—p)- L€t p1,j € N be such thap = p; + j(p’ — p)
andp; < (p’ — p). Letg = p’ — p1. Notice that we have
2q=q+p —pr=q+p1+j(p—p)+(p —p)—pr=
g+ (j+1)(p' — p). Hence we havé/, = M,. A simple
induction shows that it; has lengthD modulo g we have
ui(u) € My. When combined with closure under modulo
transfer this yield the following interesting property ¢am
as quasi aperiodicity [19]):

Vx € T*, (11)

Indeed, considex such thaix| = 0[q]. By the remark
above we have, (x¥) € M,. Hence there exist of length

x| = 0[q] implies x* =, x“*!




g such thatz =; x“. By closure under modulo transfer
we havex“xz¥ =; x“z¥z. By definition ofw we have
x“xz% =; x*t andx¥z¥z =; x¥ and (11) is proved.

Hence for any string and anyj € N, we have

jlu| = 0[q] implies v = u** (12)

becausa” =, (#/)* and by (11)(#)* =, (#)“+ =,
aach

In particular, by taking = g in (12), in the proof be-
low, we can assume we have enough copieg’advailable,

so that any negative integer that may occur is treated as it

positive counterpart module.

We now show that has the desired property by induc-
tion onk.

If k = 1, hypothesis (4) yield§; |vi| = 0 [q]. Therefore,
from (12), we obtain

XiviXo € L iff Xpv T X € L,

as required.
Assume now thak > 1. Seta; = |v;|forl <7 < k. Let
d be the greatest common divisor (gcd),@f,, - - -, ax.

Then we have by equation (4) thdtalso dividesd;a;.
Let ¢ = g/d and, forj > 1, aj’- «j/d. Because of
81-q"-a1 = d1-a-q = 0 [q], by the observation above we
have

w w. 619"
Vl ==L V]_ Vl .

(13)
By the closure ofL under modulo transfers, applied with

8- o
x=v,' Y z= vj‘s1 “! (notice thatix| = |z|), we also have

for all x’ € X*:

510/-
w ! W
Tvi XY

/VEA]

61(11
/j V; .

; (14)

= vx

By Bézout's identity there exist, ..., B« € Z such that
1= B1q + Bacty + - - + Bral,. Thus, we have
61 = 161G + Badian + -+ + Brdrav. (15)

By replacing inx; vy’ V161X2V§” v262 Ce XV vkakﬂ, 61 by the

value provided by (15) and applying equations (13) and (14)

’ S5 /
1619 'Vlﬂ2 103

to each of the termg” V% e obtain:

o1

d2
41

w w w0
XLV VL X Ve Vo s X ViE Vi Xieq

& 5
w w w
= v’ xovs vy Xk Vi v xkr1 (16)

where, forj > 1, 6} = §; + 0104 5;.
Consider nowA = §iap + -+ - + S = drap + - - -
Sk + 010 (Baca + - - -+ Bra). Notice that Socp + - - -

+
+
Brax) = d(1 — p1q') = d [q] and recall thav;ajd =

SRecall that Bzout's identity states that the greatest common divisor
of non-zero integersy, ..., z, can be written as a linear combination of
z1, ..., zp With integer coefficients.
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d10q. ThusA = d1a1 + - -+ + dkax = 0 [g], and we can
conclude by induction that

5 s
w w
XV Vo2 - X ViE VK X1
= X2V5J i 'XkV;uXH,l. (17)

Combining (16) and (17) yields the desired result. [

Proof of part (b) of Proposition 3.11:
Let Ny = ¢°. The following claim will be useful in the

éaroof.

Claim B.1. If w is accepted byB, in the decomposition
wy - - - w, given by Lemma 3.10 such thafud wou? - - - w,
is accepted byi, we can assume without loss of generality

thatn < No.

Proof. Assume thatn > Ny, and leta; < ¢ such that
aj = 0;-|ui| [q]. From the choice of we can findjy, ..., jg
such thatej, = «; for all m < g. Hence, we have
>minlui] = g = 0 [q]. We can therefore apply
Proposition 3.8 and remove th%&%m without affecting
membership in(A). By Lemma 3.10 this yields a new

decompositiorw = wy - - w/, withn" = n— q. O

For the proof of part (b) of Proposition 3.11, let us as-
sumev andP form a counter for the minimal deterministic
automatonB’ equivalent toB. Recall that this means that
|P| > 1. Assume for the sake of a contradiction thais
not a counter forA. Hence there exists some such that
vm =(4) vyl

Let X be a string such that the run & on that string
gives a state oP, and consider a striny” such thatXy
is accepted byB’. Becaus€v, P) is a counter forB’, the
string Xv? Y is accepted by’ for anyd that is a multiple of
|P|. By applying Lemma 3.10 withv := Xv° Y, we obtain
appropriateextensiongin the sense of the lemma&’, Y’
of X, Y, and numbers;, o; and stringsvy;, v»; such that
v = vjwj, for all j € J, whereJ is a suitable finite set,
such that the string

X/ (an Vij u V2j)' Y/

jed
is accepted by.

By Claim B.1 we can assume that| < Np. By tak-
ing for 6 any multiple of |P| larger thanmN,, we can
make sure that one of thg is bigger thanm. Because
v =) v™+1 we can insert there one extra copywof
while still being accepted by. By Lemma 3.10 this im-
plies thatXv°+1Y is accepted bys’. Because is a multi-
ple of |P|, this implies thatXvY is accepted bys’.

As all implications above can be reversed, we also have
that if XvY is accepted byB’, then alsoXV is accepted
by B’. Therefore, we have shown that for afl, XY is



accepted byB’ iff XvY is accepted bys’. Hence, since3’
is minimal, the state reached I/ after evaluatingXv is
the same as the state reached®wfter evaluating<. This
contradicts the fact thaP| > 1.

Altogether, we have shown that(if, P) is a counter of
B’, thenv is a counter ofA. It remains to show that if was
a counter forA, thenv is no longer a counter fa8’. This is
essentially a consequence of the constructios,afhich is
designed for removing the countersAf

Let v be a counter ofA and assume that for sonfg,
(v, P) is a counter forB’. Consider again a strin¥ such
that the run ofB’ on that string gives a state &Y, and con-
sider a stringY” such thatXY is accepted by3. Because
(v, P) is a counter forB’, we also have thaXv°Y is ac-
cepted byB’, for anyd that is a multiple offP|. Consider
now an accepting run a8 on Xv*9”lY and consider the
states reached by at the end of each of the lakt copies
of v in the sequence betweefand Y. Some state must
repeat. There are two cases.

In the first one, a different state occurs between the
two occurrences gb. Then we have a non-trivial loop and
p is part of a counter fov. In this caseB could therefore

make a non-deterministic move and accept also the string

XvwalPI+1y and thereforexvy .

In the second case, frop after reading/, B returns to
statep, and thereforé8 could read one more copy efand
acceptXvwalPl+1y,

In both casesB’ acceptsXvY. Similarly, one can show
that if XvY is accepted byB’ then XY is also accepted by
B’. As this is true for allY, the state reached bf’ after
evaluatingXv is the same as the state reached®jafter
evaluatingX. This contradicts the fact thaP| > 1 and
concludes the proof of part (b) of Proposition 3.11. O

B.2 Proof of Theorem 3.13

Proof of Theorem 3.13:
Let L C X* be a regular language definable in
+-inv-FO(+1). Let S, be the syntactic monoid df, i.e.,

can show that

AE™ XFYEVZFVB €L
= v

(18)
e AEWZFWYEwWXFWwB € L
= w
Aiming at applying Lemma A.2 we leh be the alphabet
Y x{A B E F, X, Y, Z} x {start, —} x {end —}.
With egc@ 01: thg vyorgsz;\,~ B,E, F, X, Y, Z, we associate
wordsA, B, E, F, X, Y, Zin A* as follows:
o If A=AiA--- A with A; € X, then
A = A1/Z\2 v Ae with Aj = (Aj,A,p,, I/), where
(u=start < j=1) and ¢ = end < j =).

e The wordsB, E, F, X, Y, Z are defined analogously.

Furthermore, letl := {1}, and let k¥’ := k + 7, wherek
is the quantifier rank of the--inv-FO(+1)-sentencep that,
by assumption, definds Furthermore, we let

""""" U = EFEF,
Ul = U.

We choosem |U| and let h, g, k” and r
r(m, h, g, k") andP = {p1, p, ...} C Nandj; (for j € N)
be chosen asinLemmaA.2. We &€ N be a large enough
evennumber such thafv, <) ~, (w,<) for v = 197!
andw = 19 (an easy EF-game argument shows that any
d > 2"+ 1 will do, see e.g. [11]).

Let V andW be chosen as in Lemma A.2. .V is

G .= EFEF EFEF,

AXVZB (EFEF)® ((EFEF)™)"

EFEF EFEF

j=1
andW is

Aiming at applying part (b) of Lemma A.2 we let, for
eacha € ¥, ¥,(x) be a (quantifier-free) formula that
states that there exiéti, j», j3) € {A, B,E,F, X, Y,Z} x
{start —} x {end —} such that the letter at positionis
(a,j1, /2, j3) € A: the formulay,(x) is simply the dis-
junction of the formulasP, j, j, ;,)(x) for all (j1, 2, j3) €

S, is the set of equivalence classes of the syntactic congru-{A B, E. F, X, Y, Z} x {start —} x {end —}. Then, the

ence=;.

For showing thatL is closed under swaps, we let
e, f,x,y, z be elements 0f; such thate andf are idem-
potent. Furthermore, we l&t, F, X, Y, Z € L* be shortest
strings ine, f, x, y, z, respectively.

Our goal is to prove thatexfyezf ezfyexf.
For showing this, leA and B be arbitrary stings irr*. It
should be clear that, in order to prove the theorem, it sudfice
to find natural numbersy, n\,, ny, andn;,, for which we
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words V'’ and W’ defined in Lemma A.2 are identical to the
words V and W, where each letter i\ is restricted to its
first component.

We let
d—1
by = io+( (1+i,~))+2,
j=1
d—1
lw = io+( (1+ij))+(1+id)+2.

-
Il
—



Note that
V! = AXYZB (EFEF)",
W' = AXYZB (EFEF)™.
We choose
nw = fw+1,
ny = ny, = ly, / (19)
ny = fw—1,
and let
V" = AE™XF™YE™ZF"B,
W" = AE™ ZF™YE"XF'™wB.

Claim B.2. There is aFO(ta U {<,+, P})-formula
Ysued X, y) of quantifier rank at most“which, when in-
terpreted in(V, <, +, P) and (W, <, +, P), defines a suc-

cessor relation on the domain such that, when reading thes,

letters of V/ and W’ according to this particular successor
relation, one obtains the wordg” and W".

Before proving this claim, let us first note that part (b) (i) 6

of Lemma A.2 then tells us that” andW" satisfy the same
+-inv-FO(+1)-sentences of quantifier rank at mdst=
k" — 7. Sincek is the quantifier rank of the--inv-FO(+1)-
sentencep which, by assumption, definds we conclude
thatV” € L < W" e L. Recalling equation (18), the

proof of Theorem 3.13 therefore is complete after having 8.

proved Claim B.2.

Proof of Claim B.2: Note that V' and W' are “permuta-
tions” of V/ and W in the following senseV’ — as well

as V" — contains one occurrence of each of the substrings
A X,Y,Z, B,andny + n|, = 2¢y occurrences of each of 10.

the substring€ and F (and the analogous statement holds
for W/ andW").

Furthermore, when making the convention that the left-11.
most position ofA is the position 0, we have the following 1

situation: theE directly right to the prefix

starts at positiop; . Similarly, for everyj’ € {1,..,d}, we
have that the&E directly right to the prefix

!

AKXV 2B (EFEF)" ((EFEF)")
J:
starts at positiom; 1.
The formulaysyc{x, y) defines the following succes-
sor relationSucc (where “leftmost”, “rightmost”, “first”,
and “last” always corresponds to the natural linear order

available in the schema):

47 is just an upper bound here; when writing down the formulatein
tail, one will most probably end up with formulas of quantifiank smaller
than 7.
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. The first position oBuccis the first position of the natu-

ral linear order<.

. Within each substring of the for, X, Y, Z, B, E,

F, Succcorresponds to the successor associated with
the natural linear ordex. Note that because we use
A X, Y, .. instead ofA, X, Y, ... , itis definable in FO
whether we are in this case.

. The Sucesuccessor of the last position iA (i.e.,

the unique position that carries a letter of the form
(a, A j,end with a € ¥ andj € {start —}) is the first
position of the first occurrence, relative<q of E.

4. The Sucesuccessor of the last position of the last-but-

one occurrence, relative to, of E is the first position of
X.

The Sucesuccessor of the last position i is the first
Qosition of the last-but-one occurrence, relativetoof
F.

. TheSucesuccessor of the last position of the first occur-

rence, relative tac, of F is the first position ofY.

. TheSucesuccessor of the last position &f is the first

position of the second occurrence, relativedtoof E.

TheSucesuccessor of the last position of the last occur-
rence, relative tac, of E is the first position ofZ.

. TheSucesuccessor of the last position #fis the first

position, relative to<, of the last occurrence df.

TheSucesuccessor of the last position of the second oc-
currence, relative tec, of F is the first position oB.

The last position i is the last position oSucc

. TheSucesuccessor of the last position (denoteith the

following) of an occurrence, relative ta, of E that is
neither tpe last nor the last-but-one occurrence, relative
to <, of E, is chosen as follows:

e If this particularE starts at a position that belongs
to P, then theSucesuccessor of is the first posi-
tion of the next (relative tec) occurrence ot.

o Ifthe next (relative to<) occurrence of starts ata
position that belongs t&, then theSucesuccessor
of x is the first position (denotegdin the following)
of the next-but-next-but-one occurrencefof(l.e.,
betweenx andy there are 2 occurrences Bf)

e In all other cases, th8ucesuccessor ok is the
first position of the next-but-one (relative tg oc-
currence oft.



13. TheSucesuccessor of the last position (denoteith the
following) of an occurrence of that is neither the first
nor the second occurrence, relativetpof F, is chosen
as follows: Letx’ be the starting position of the particu-
lar occurrence of that ends directly to the left of, and
let y’ be such thak’ is the Sucesuccessor of’ (note
that thisy’ is uniquely defined in item 12, and is the
last position of a particular occurrence Bf. Then, the
Sucesuccessor of is the first position of the first occur-
rence ofF to the right ofy’. (Thus, in some sense, the
Sucesuccessors correspondingfe are the “reversed”-
versions of theSucesuccessors correspondingfs.)

Note that in(V, <, +, P), the predicate® is interpreted
by the setPY = {p1,..,pq}. In (W, <, +, P), the pred-
icate P is interpreted by the s&®" = {pi, .., p4, pds1}-
Recall thatd is even. Note that th&uccrelation that is

defined through 1-13 forms a path that connects the first

position of the first occurrence @ with the first position
of the occurrence of that starts at positiop;, from there

on, the path leads to the first positions of the occurrences| o inma 3.10 we have that’E’ U'F' V' E" W' E" Y'

of E that start at positionss, ps, p7, etc. Sinced is even,
the uniqueSucepath in V that only visitsEs and starts at
the first position of the leftmogk in V, ends at the last po-
sition of the last-but-oné in V. Continuing this kind of
reasoning, it is not difficult to see that the string obtaibgd
reading the letters of in the order specified by the relation
Sucg is exactly the word

AEWKENY EVZEVB

Similarly, sinced+1 is odd, the uniqu&ucepath in W
that only visitsE's and starts at the first position of the left-
mostE in W, ends at the last position of the lastin W.
Continuing this kind of reasoning, it again is not difficult
to see that the string obtained by reading the lettetd4/oh
the order specified by the relati®ucg is exactly the string

BEM 7 Froy B X EivB

Finally, it is straightforward to formalize items 1-13
by a first-order formulaps,cdx, y) over the signature of
(V. <.+, P)and(W, <, +, P) (which even does not need
to make use of the addition predicate.

This completes the proof of Claim B.2 and thus also the
proof of Theorem 3.13. O

B.3 Proof of Theorem 3.14
Proof of Theorem 3.14:

Let L be a regular language definable in(HQ, Im). Then,
L is also definable in+-inv-FO(<) and therefore is closed

For the opposite direction, we follow the lines of the
proof of Theorem 3.6. Let be a regular language closed
under modulo transfers and under swaps.

Let g be the number given by Proposition 3.8. Box
i < g, let L; be the restriction ot to strings of length/
modulog. We show that; is definable in FQ+1, Im). This
will conclude the proof, ag = | J; L;. Our goal is to show
thatL; = M N Z for some regular languadd definable in
FO(+1). This implies thatV is definable in FQ+1), and
thereforeL; is definable in FQ+1, Im).

Let A be the minimal deterministic automaton for Let
B be the automaton constructed frofnas in the proof of
Theorem 3.6. By Proposition 3.1B, defines an aperiodic
language (i.e., the minimal deterministic automaton equiv
alent toB has no counters). We now use the fact thais
closed under swaps to show that al3@) is closed under
swaps.

Consider a stringKE"UF"VE"WF"Y in L(B), where
E and F are idempotents forf(B). We want to
show thatXE"WF"VE"UF"Y also belongs taC(B). By
is ac-
cepted byA, whereE’ is of the form

n; 5
and similarly forE”, F/ and F”. By Claim B.1, we can
further assume that/| < Ny. Hence, by takingr > wqhp,
we are sure that one of thg > wgq. This also holds for
E”, F" andF"”, hence each of them contains a segnietit
or F9“, which are idempotent for(A). We can therefore
use that fact thaf(A) is closed under swaps for swapping
the corresponding segments, one containihgthe other
containingl/. Applying Lemma 3.10 again on the resulting
string yields the desired result thd(B) is closed under
swaps.

We can now conclude thal(B) is definable in FQ+1)
by using the following well-known theorem.

Theorem B.3 ([2]). A regular language is definable in
FO(+1) iff it is aperiodic and closed under swaps.

Applying this theorem, we obtain thal(B) is defin-
able in Fg+1). From Proposition 3.11 we know that
Li = £(B)n Z. Thus,L; (and therefore alsgJ; L;) is
definable in FQ+1, Im). O

B.4 Proof of Theorem 3.16

Proof of Theorem 3.16:

Obviously, every language definablefninv-FO(=) has to

be commutative. All that remains to show is that a com-
mutative regular language closed under modulo transfers is

under modulo transfers. By Theorem 3.13, it is also closeddefinable in F@=, Im). This follows from a simple count-

under swaps. This proves one direction of the theorem.
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ing argument:



Fix such a languagg, and letq be the number derived
from Proposition 3.8. AssumE = {aj,...,ax}. Letf
be the function that associates to a stringe ~* a tuple
f(w) = (a1, -+, ak, B), wherea; is the number of oc-
currences ofs; in w up to thresholdg-w, while 5 is the
length of w modulog-w. Let S be the image off. Notice
that S is a finite set and that for eache S, the language
L, ={w | f(w) = 7} is definable in FQ=, Im).

The result then follows from the next lemma, showing
thatL is of the formUTesL L., for asuitableS; C S.

Lemma B.4. For all w, w’ € X* with f(w) = f(w’) we
have:w € Liff w' € L.

Proof. For any stringu, letw be the string:;i1 e ak, where,
for anyj, i; is the number of occurrences afin u. Obvi-
ously, f(u) = f(u). Furthermore, by commutativity df,
we haveu € Liff o € L.

Now letw, w’ be strings withf (w) = f(w’). Our aim is
to show thatwv € Liff w’ € L.

To this end, letr := f(w) = f(w’). For eachj €
{1,..., k+1}, by 7[j] we refer to thej*" element ofr. If
all the components i are strictly smaller thag-w, then
w = w’ and the lemma is proved.

From now on we assume without loss of generality that

7[1] = qw.

Assume thatr[2] = g-w and that the number of occur-
rences oh, in w is q-w + . Then, by modulo transfers, we
can, inw, transfera occurrences oé, into « occurrences
of a;. By repeating this argument for all lettersfwe end
up in a stringw such thatf(w) = =, w € Liff w € L, and
a is the only letter occurring strictly more thapw times
in w.

Analogously, we construot’ from w’. Notice thatiw

i1 to denote the'[+]-expansion ofs in which the predicate
< is interpreted by the natural linear orderwofi.e., by E™,
cf. Section 2), and- is interpreted by the addition induced
by <.

For proving Lemma 4.4, we do not really need the as-
sumption that. is +-inv-FO(<)-definable. In fact, the fol-
lowing assumption will suffice (note that this assumption is
met, in particular, by languages definabletifinv-FO(<)):

There is aFO(<, <, +)-sentencep such that for
every stringu € M¥ we have:u € L iff & = .

Let S := .%(L). Our aim is to find a FQ<, +)-formula
¢’ with n free variables such that
S={(x,...x) EN": (N, <, 4) E¢'(x1, ..., xn) }-
The straightforward idea is to construgt in such a way
that, when interpreted ifN, <, 4) for a tuple(x, ..., x,) €
N”, it simulatesp when evaluated of, for
U= o Wit aa Wt e oy W Qg (20)

To this end, note that the stringsy,...,a, 1 and
wi, ..., w, are fixed and thus can be “hard-coded” in the
formulay’. In particular, e.g., there is a formula(v, x;)
ensuring that = |w;| - x; by stating that

v = X+t X,
N————

[wi

Similarly, for everyj with 0 < j < |w;| there is a formula
Xi j(v) ensuring that is congruenj modulo|w;| by stating

andi’ are identical, except maybe for their number of oc- that there exists &’ such that

currences of;. It remains to show that € Liff W' € L.
Let o be the number of occurrences afin w, and let
o’ be the corresponding number fé/. By construction,
a > gqw and, asf(w) = f(#'), we havea = o' [g-w].
From (11) we have, for ank > 0, thatad” =, a%.
Thereforew € Liff W' € L, andw € Liff w’ € L.

This completes the proof of Lemma B.4 and the proof of

Theorem 3.16. O

C Proofs omitted in Section 4
C.1 Proof of Lemma 4.4

Proof of Lemma 4.4:

According to Theorem 4.3, it suffices to show that the set

S = .7%(L) is first-order definable i(N, <, +).
For showing this, it will be convenient to use the follow-
ing notation. For any (transitive) stringover > we write
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v = jH+V 4+
—————

[wi
We choose the formula’ definingS in (N, <, +) as
¢ = 3yi- eIz Fzopn (1 A $D),

wherep] andy/, are defined as follows:

The formulay] ensures that the variables, ..., yn+1
and z, ..., z,41 are interpreted by the following natural
numbers:

o y1 =0,

e foreachi € {1,...,n}, z = yi + |ail,

Yiv1 = zi + |wi| - x;, and

® Zpi1 = Ypt+1 + |Oén+1|-



Thus, when identifying the positions of the stringfrom
(20) with the number$, 1, ..., |u|—1, theny; denotes the
first position ofc; in u, z; denotes the first position of;*
in u (for i < n), andz,,; denotes the first position to the
right of u.

The formula ¢} is obtained from the FQ<, <, +)-
sentence that, by assumption, defines the languagby

(1) relativizing all quantifications to numbetsz, .1,

(2) replacing every atomic subformula of of the form
E*(v1, va) Or vi < v, by the formulav; < vy,

(3) replacing every atomic subformula of of the form
E(v1, v») by the formula
(V1 < vy A —|E|V3(V1 <wvzAvz < Vz)), and

(4) replacing every atomic subformula of of the form
P,(v) (for a € X) by a formula stating that

o either, thereisane {1, ..., n+1} such that; <
v < z;, and there is @ with 0 < j < |«;| such
that the(j+1)%! position of«; carries the lettes,
andv = y; + J,

e or, there is a numbere {1, ..., n} such that;; <
v < yi+1, and there is a numbgmwith 0 < j <
|w;| such that the¢j+1)3 position ofw; carries the
lettera, andv — z; is congruen modulo|w;|.

It is straightforward to formalize this in H&, +). Further-
more, it can easily be seen that for afyy, ..., x,) € N”
and the associated string

U= g Wit ap Wt e oy W Qi
we have:
(N,<,+) E ¢(a,....xn) <= UEe
<— wuelL
<~ (x1,....,xn) €S.

Thus, S is first-order definable ifN, <, +) and hence, by
Theorem 4.35 is semi-linear. This completes the proof of
Lemma 4.4. O

C.2 Proof of Theorem 4.5

Proof of Theorem 4.5:

The proof makes use of the following result of Ginsburg and

Spanier [8].

Theorem C.1([8]). LetX be a finite alphabetp € N.,,
vi,..,vp € £*,andL C v{vy---v;. Then,L is regular
iff the set {(x1,....x,) € N” © vj*v?2-..v» € L} is
semi-diced.
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Now, let T := {y = (1,....¥2nt1) € N2nt+l
o' witay a2 twin oyt € L), andlet S =

(L) C N". By Theorem C.1 we know thdtis regular
if and only if T is semi-diced. Clearhys = m46...2,(T),
wherem, 46 2, : N?"*1 — N" denotes the projection onto
the “even” components. Our aim is to show thas regular
if and only if S is semi-diced.

For the “only if” direction, assume that is regular.
Then, by Theorem C.1T is semi-diced. It is straightfor-
ward to see that the class of semi-diced sets is closed under
projections. ThusS = mp 46 . 2,(T) is semi-diced.

For the “if” direction, assume th& is semi-diced. Let
o1, ..., 0, ben pairwise distinct letters that do not belong to
Y. SinceS is semi-diced, we obtain from Theorem C.1 that
the languagel; := {o7'02*-- -0 @ (x1,....xn) € S} Is
regular. It is then straightforward to see that also the lan-
guage Lp := {an o' ap - @0 Qpy1 ¢ (X1, ..., Xn) €
S} isregular. Leth : {oy,...,0,} — X* be the mapping
that substitutes, for every € {1, ..., n}, the lettero; by
the wordh(o;) := w;. SincelL; is regular, we obtain that
also the languageh(Ls) = {a1 wi ap -+ ap W iy
(x1,...,xn) € S} isregular. Note thab(L,) = L. Thus,L
is regular, and the proof of Theorem 4.5 is complete.[]

C.3 Proof of Lemma 4.6

Proof of Lemma 4.6:
For the proof, we use the following lemma that is implicit
in [7] (see the proof of Theorem 6.1 in [7]).

Lemma C.2([7]). Let T be a finite set of linear sets C
N". ForeachL € T, lett; € Nandvj, ..., vi € N” such
that L = v§+ Nv{ +---+ Nv}. Forthe set

LDT (N + o),

MT =

the following is true:

(a) Either My = {0}, or there exists a numbef € N,
and vectorss, ..., v,] € N"\ {0} such that M7 =
Nvy" + - + Nyl

(b) There exists a finite s€tr C N” such that

Nt -

LeT

U c+ Mr.
ceCr

We will use this lemma for proving Lemma 4.6. Obvi-
ously, Lemma 4.6 holds i6 = () or S = N”. Let us thus
assume thaf) # S # N”. SinceS is semi-linear, there
exists arr € N, and linear setg,, ..., L, such that

S =LU---UlL,.



The class of semi-linear sets is closed under complementaNow let K be an arbitrary number with € N. We let the

tion (cf., Theorem 4.3). Therefore, for eack {1, ..., r},

the setl; := N”\ L; is semi-linear, and there exists an

r; € Ny, and linear seté; 1, ..., L; ,. such that

L= LiqU---UL,.
We letL; := L; and consider the collection
L = {L,"j RS {1, e r} andj S {0, ey I’,'}}

of the linear sets that all thg andL; are composed of.
EveryL € L is linear, thus there exists a numbgre N
and vectors/, ..., v € N” such that

L= vOLJvalL+~~+NvtLL.

For everyT C L we let

My = () (Nvf 4+ V).
LeT
From Lemma C.2 (a) we know that eithtfr = {0}, or
there exists a numbet € N, and vectorsy’, ..., v/ €

N™\ {0} such that
Mr = Ny +-- +Ny/[.

We choose

T .
AT

U= {v/,. T C £ such thatVir # {0}}.

Clearly, U is a finite subset aN” \ {0}.
For eachx € Z" let

type(x) == {Le L : xe L}

Let
T = {type(x)

be the set of types that are realizableZihh Note that for
everyr € T and everyi € {1, ..., r}, the following is true:

i x €7}

Lioer < forallje{l, .. nr} Lij¢&r.

Therefore, for any € 7 and the set

L= (L

LeT
the following is true:
(1) forallx,y € L, wehavex €S < y € S, and

(2) for all x € Z" with type(x) = 7 we havex € L,.
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K-typeof x be the mapping
typex(x) : Nx(0) = T

which associates with every vectar € Ng(0) the set
type(x + w), i.e.,

typex(x)(w) := type(x + w), for eachw € Ni(0).

Let
Tk = {typey(x) : x € Z"}

be the set of all realizablk-types. For each € T let
R ={xeZ":
for eachw € Ni(0) we havex + w € L ()}
Note that the following is true for every € Tx:

() forall vectorsx, y € R, and allw € Nk (0) we have
x+weS < y+weS, and

(I for all vectorsx € Z" with type,(x) = 7 we have
x € R;.

Furthermore,R, =

N (~w)+L =

we Nk (0),
Ler(w)

ﬂ (o —w) +Nvf +--+Nv,..
weNK(0),
Ler(w)

Foreachr € T let T, :=
{L € L : thereis av € Nk(0) such that € 7(w)}.
Recall that for the set

Mz, = ﬂ NV{'+~~+NvtLL
LeT,

we know that eitherMy_ = {0} or My, = Ny " +--- +
Nv;:. Furthermore, from Lemma C.2 (b) we obtain that
there is a finite se€, C N” such that

R, = |J c+Mr,.
ceC,

We choose € N to be bigger than the norf - || of any
element inC. for any realizable<-typer, i.e.,

¢ = 14+ max{||c|| : c€ U C .
TETK

Now let x € N” be an arbitrary vector withx|| > ¢. Let

T = typey(x). Clearly,x € R.. Furthermore, since
lIx]| = ¢ we know thatMy_ # {0} and thusMr,
Nv,/" + -+ + Ny7. In particular,u := v/~ € U, and
xU) e R, for everyj € N andx) := x + ju. From ob-
servation (I) we thus obtain that for agye N and any
w € Nx(0)we havex +w e S < x) +weS. le,
Nk (x) and Nk (x1)) are identical with respect t5. This
completes the proof of Lemma 4.6. O



C.4 Proof of Theorem 4.7 L(T), L(S) = ojo5---0; \ Z(S), and Z(Siy) =
ZL(S)N{weojos---0k i |w|s, =L},

This section is devoted to the proof of Theorem 4.7. We  Since$ and T are semi-diced, we obtain from Theo-
start with some basic observations on the structure of semi-em C.1that#’(S) and.#(T) are regular. Furthermore, the
diced sets. languagesrios - - o and{w € o030, ¢ |wl, =

By using Theorem C.1 (cf., Section C.2), one easily ob- ¢} are regular. Since the class of regular languages is
tains the following closure properties of the class of semi- closed under intersection and complement, the languages

diced subsets df". L(S)NL(T), oio5 -0, \ Z(S), andZ(S) N {w €
ojoy---on o |w|,, = ¢} areregular. Therefor&N T, S,
Lemma C.3(closure properties of semi-diced sets) ands; , are semi-diced.

The class of all semi-diced sets contains the empty set and For showing closure under cartesian productSlet N”
every finite subset df” and is closed under union, inter- and T C N™ be semi-diced. We view?’(S) as a regular
section, complement, taking sections, projection, anteear  subset objo3 - - - o, and we viewZ(T) as a regular sub-
sian product. In other wordsf is semi-diced, every finite  setofo’, --- o}, .. Clearly, the concatenatidnof .Z(S)
setF C N"is semi-diced, and i, T C N” are semi-diced, and.#(T) is regular, and. = #(S x T). Due to Theo-

thenalsaSUT, SNT andS := N"\ S are semi-diced. Fur-  rem C.1, thusS x T is semi-diced. O
thermore, ifS C N” is semi-diced; € {1,...,n}, ¢ € N, ) . L .
thenS; , is semi-diced. 16 C N” and T C N™ are semi- For reasoning about semi-diced sets, it is convenient to

diced. thenS x T C N"™ is semi-diced. IS C N is note that every semi-diced set is a finite unioruniformly

semi-dicedy < nandji, ..., j, are pairwise distinct ele-  dicedsets, defined as follows.

ments in{1, ..., n}, then andm, ;. (S) := {(Xq, .-, %) - Definition C.4 (uniformly diced) A setS is called uni-
(x1, ..., x,) € S} is semi-diced. formly dicediff there are a vecton, € N”, a number

- . . e N.,,andaset C {1, ..., n}, such that
Proof. From the definition of semi-diced sets, one immedi- q 2! i n}

ately obtains the following: S = w+ Z Nge; .
e The empty sef is semi-diced <!
The numbey is called theperiodof S.

- CNT - o _ _
* every finite sef € N"is semi-diced, Lemma C.5. Every nonempty semi-diced set is a union of

e the union of two semi-diced sets is semi-diced, and @ finite number of uniformly diced sets, each with the same
period.

e if S C N"is semi-diced angk, ..., j, are pairwise dis Proof. Let us start with a straightforward observation: For

diced. o r alla, b € N,

— / /
For proving the remaining closure properties, we apply Na+Nb = O<U<b aa + bb'+ Nab,

Theorem C.1 for the special case where the alphalpen- 0<b/ <a
sists ofn pairwise distinct lettersr, ..., o, with v; := o;
for everyi € {1, ..., n}.

We use the following notation: For a string and a

and in general, for arbitrary € N, a1, ...,ax € N,
¢:=lcm{ay, ..., ax}, andq any multiple of¢,

letter o; we write |w|,, to denote the number of occur- k k )
rences of the lettes; in w. For a setS C N" we let > Naj = U (> aja}) +Nq.  (21)
Z(S) = {of'0?---0F : x = (x1,...,xa) € S} j=1 (0<aj<a/aj)j=1,.k  J=1

For a languagd. C ojo3 -0} we let.S(L) = {x =
(x1,....xn) € N" : 0f'03’---0)f € L}. Note that for
eachS C N" we have”(.Z(S)) = S. Similarly, for each
L C ofo%- -0} we haveZ((L)) = L. Theorem C.1
states that. C o703 --- o} is regular if and only i£#(L) is
semi-diced.

For showing closure under intersection, complement
and taking sections I, T C N” be semi-diced sets. The-
orem C.1 tells us that in order to show tiSat 7, S, andS;
are semi-diced, it suffices to show th&t(S N T), .Z(S), ZNQJ - U bi x + Ng.
and.Z(S; ) are regular. Note tha?(SN T) = Z(S) N e KeK:

Now, letS = vg + Nv; + --- + Nv; be an arbitrary diced
subset ofN". For each coordinate € {1,..., n} let J; be
the set of all thos¢ € {1, ..., t} such that; is a multiple of
the j-th unit vectore;, and leta; € N, such that; = aje;.
Let / be the set of all thosee {1, ..., n} such that); # 0.
Let g € N, be any mulitple oflcm{a; : j € {1,..., t}}.
’ For eachi € | we apply equation (21) to obtain a finite set

K; and numbers; , € N for all k € K; such that
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Now it is easy to see that

vo—i-Z(Zij)

el jed;

vo + Z (ZNajei)

iel  jed;

Vo + Z ( U bj kei + qu;)

i€l keK;

v0+2{b,-,ke,- ke K,-}—l—Zqu,-.

i€l iel

)

Thus, every diced s€&f is a finite union of uniformly diced
sets, each with the same perigd From this, one easily
obtains that every semi-diced set is the finite union of uni-
formly diced sets, each with the same peripd O

For proving Theorem 4.7, it will be convenient to use the
following notation.

Definition C.6. Let S, N C N”, and letv € Z". We say
thatv is a period ofS in N if the equivalence

yeS < y+ves
is true for ally € N" such thaty € N andy + v € N.
Definition C.7. LetS, V C N".

(a) We say thab has property(x) with respect toV if the
following is true:

VK € N, 3¢ € N such that the following is true:
Vx € N" with ||x|| > ¢, 3v € V such that
v is a period ofS in Nk(x).

(b) We say thab has property(xx) with respect toV if the
following is true:

VK € N, 3¢ € N such that the following is true:
Vx € N" with ||x|| > ¢, 3v € V such that
Nk (x) andNk(x + v) are identical w.r.tS.

Note that property(xx) is used in the formulation of The-

andy + v € Ng(x). Our goal is to show that € S iff
y+ves.

Sincey € Ng(x), we have forz := y — x, ||z|]| <
K. SinceNk(x) and Nk(x + v) are identical w.r.tS, we
therefore knowthat+z € Siff x+v+ze€ S.l.e,y €S
iff y + v € S. Thus,v is a period ofS in Nk(x).

For the “only if” direction letKy := max{||v|| : v €
V}, and note that it suffices to show the following: ufis
a period ofS in Nk k,(x), thenNk(x) andNk(x + v) are
identical w.r.t.S.

Let us now assume thatis a period ofS in Nk, (x).
In order to show thafVk(x) and Nk(x + v) are identical
w.r.t. S, consider an arbitrary € Z" with ||z|] < K. Our
goalistoshowthat +z € Siff x4+ v+ 2z € S.

Since||z|]] < K < K+ Ky and||v + z|| € K + Ko,
we havex + z € Nkik,(x) andx + v + z € Nyjx,(x).
Thus, fory := x + z we havey € Ny, (x) andy +
v € Nkik,(x). Sincev is a period ofS in Nk k,(x), we
therefore knowthay € Siff y+v € S. Thus,x+z € Siff
x+v+z€eS. HenceNk(x) andNk(x + v) are identical
W.r.t. S. O

Our proof of Theorem 4.7 will proceed by induction on
the size of the seV. The induction base is established by
the following lemma.

Lemma C.9. LetS C N” be a set for which the following
is true: (1) There exists a vectorof the formk - e; (with
k € Ny, andi € {1, ..., n}) such thatS has property(x)
with respect to the sat := {v}, and (2) every sectio§; ,
(for every? € N) of S is semi-diced. Ther§ is semi-diced.

Proof. For simplicity in notation we assume that 1, i.e.,
v=k-e = (k0,..,0). By assumptionS has property
(*) with respect to{v}. Thus, there exists ah > 0 such
that for everyx € N” with ||x|| > ¢, v is a period ofS in
Ni(x). Sincex andx + v belong toN,(x), we therefore
know for all x € N” with ||x|| > fthatx € § <«
x+v e S. Thus,v = (k,0,...,0) is a period ofS in the
setNL, := {x e N" : [|x|| > ¢}.

Therefore, for an arbitrary = (x1, x2, ..., x,) € N”
with x; > ¢ the following is true: Ifr € {0, ..., k — 1} and
g € N such that, = £+ r + gk, then

orem 4.7. The next lemma is an easy observation showing

that, for finiteV/, property(x) is equivalent to propertfg).

Lemma C.8. Let S, V C N” such thatV is finite. ThenS
has property(x) w.r.t. V iff S has property(sx) w.r.t. V.

Proof. For the “if” direction it suffices to show the follow-
ing: If Nk(x) andNk(x + v) are identical w.r.tS, thenv
is a period ofS in N (x).

Let us therefore assume thilk (x) and Nk (x + v) are
identical w.r.t.S. In order to show that is a period ofS
in Ni(x), consider an arbitrary € N” with y € Ng(x)
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(x1, %2, ..., X)) €S <= (L+r,x2,....,%) ES.

By assumption, the sectidf ¢, , is semi-diced, i.e., a finite
union of diced sets of the form + Nv; + - - - + Nv;. Now
let 51 ¢+ be the union of the according sets+ Nvq +- - -+
Nv; + Nv. Clearly, 5 ¢4, is semi-diced, andS; ¢4, =

{x=0a,x,....x,) €S : xy 2 Landxy =+ r [k]}.
Therefore,

512@ = {X = (X1,X2, ,Xn) €S : X1 = (}



is equal to Uf;& Si04r, and thusS; >, is semi-diced. Fur- By assumption we know thd; , is semi-diced. From the
thermore, by assumption we know that each of the sectionsdefinition of semi-diced sets it is straightforward to ses th
51,0, 511, .-, S14-1 IS sSemi-diced. Since also the set

S=50US1U-US1USi>e, foo= A X, xn) T (K X2, x0) € Sie}

we therefore obtain th&t is semi-diced. This concludes the s semi-diced. From Lemma C.3 we know that the class of

proof of Lemma C.9. O semi-diced subsets is closed under intersection and cemple

For the induction step in our proof of Theorem 4.7, the ment. Therefore, also the set

following notion is convenient. BA(S.v)ig = Sie Si’e

Definition C.10. LetS C N” andv € Z". Theboundary o )

Bd(S, v) of S in the directionv is the set is semi-diced. This completes the proof of Lemma C.11.
O

Bd(S,v) = {xeS :x+v¢S}
Lemma C.12. Let S,V C N” such thatS has property
The next two lemmas are analogues of lemmas given in(x) with respect toV, V is finite with|V| > 2, and every
[15]; they will be used for the induction step in our proof of v € V has exactly one non-zero coordinate. Then for every
Theorem 4.7. v € V the following is true:Bd(S, v) and Bd(S, —v) have

Lemma C.11. Let S C N” and letv € N” such thatv property () with respect t/'\ {v}.

has exactly one non-zero coordinate. If all sectionSafe  proof. For simplicity in notation we assume w.l.o.g. that

semi-diced, then all sections Bt(S, v) and all sections of  , — . ¢ for somek € N.,. Letv € {v,—v}. We

Bd(S, —v) are semi-diced. have to show thaBd(S, v') has property(x) with respect
to V' \ {v}. To this end, lek’ > 0 be an arbitrary size of a

Proof. For simplicity in notation we assume w.l.0.g. that
v = k - ¢ for somek € N,,. Consider thd/, ¢)-section
of Bd(S,v) and Bd(S, —v), i.e., the sets83d(S, v);, and
Bd(S, —v);.. Letv’ € {v, —v} and letk’ be the first com-
ponent ofv’ (i.e., k’ is eitherk or —k).

Case 1:i = 1. Then, Bd(S,v')1, =

neighborhood.

By assumption$ has propertyx) with respect toV. In
particular, fork’ + k there exists af > 0 such that for
everyx € N" with ||x|| > ¢ there is a € V such that is
a period ofS in Ny/ 4k (x).

If ¥ = v, thenv is a period ofS in Ny 1 x(x). Note that
{x=U,x2,....,%n) € S1¢ : for eachy € Ny (x), N k(x) contains each of the vectors

, y andy + v'. Therefore Bd(S, v') N Ny (x) = @, and thus
(C+ K, x2, ... %) & Steqk0 }- any elementin/ \ {v}is ai)erioc)j ode((S,)v’) in Ny (x).

By assumption,S; ; and S; ,,« are semi-diced. Due to If ¥ # v, then¥ is a period ofBd(S, v') in Nk (x): To

Lemma C.3, also the projections 6f, and S; ;- to the ~ seethis, ley € N (x) such thaty + 7 € Ny (x) and note
coordinate, ..., n are semi-diced. From Lemma C.3 we thaty € Bd(S,v') <= y € Sandy +Vv' ¢ S =
know that the class of semi-diced sets is closed under intery + ¥ € Sandy +v' + 7 ¢ S <= y + ¥ € Bd(S, V).

section and complement. Therefore, also the set In summary, we have shown that/(S, v') has property
(*) with respect toV' \ {v}. This completes the proof of
T = {(x,.... %) : (£,x2,....%n) € S10 Lemma C.12. 0

and (0 + k', x2, ..., Xn) & St o4k
(C+ K Xn) & St} We are now ready for the proof of Theorem 4.7.

is semi-diced.
Due to the closure under cartesian product and since the’roof of Theorem 4.7: _
finite set {(¢)} C N! is semi-diced, we obtain that also the Due to Lemma C.8, it suffices to show the following:

set{(()} x T = A setS C N” is semi-diced iff the following is true:
{(6,x2, ..., xn) = (x2,...,xy) € T} = Bd(S,v')1¢ (a) every section of is semi-diced, and
(b) there exists a finite sat C N" \ {0} such that

every element iV has exactly one non-zero
coordinate andS has property(x) w.r.t. V.

is semi-diced.
Case 2:i > 2. Then, Bd(S, V'), =

{x=0a % ...xn) € Sy : The “only if” direction follows easily from Lemma C.5
(x1 + k' X2, ... xn) € Sio }. along with the definition of semi-diced sets. The proof of
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the “if” direction proceeds by induction d¥|. Theinduc- S is semi-diced. The remainder of the proof is devoted to
tion basefor |V| = 1 is established by Lemma C.9. showing thatS, . is semi-diced.

For theinduction stepassume thatV| > 2, and letv Recall thaty = k - e;. Forx = (xq, ..., x,) € N" let
be an arbitrary element itr. By assumption we know that
V C N is finite, that every element itY has exactly one (x)%, == {x+j-v : jeZsuchthatq 4 -k > d}
non-zero coordinate, that all sections$fire semi-diced,

and thatS has property(x) with respect tov. Let
Lemma C.11 tells us that all sectionsBd(S, v) and all 1y . o

sections ofBd(S, —v) are semi-diced. From Lemma C.12 SW = {x€Sx: (L, CSH  and

we obtain thatBd(S, v) and Bd(S, —v) have property(x) S@ = 5.\ SO

with respect toV/ \ {v}. The induction hypothesis thus tells g

us thatBd(S, v) andBd(S, —v) are semi-diced. Note thatSs. = Sy s@. In order to show tha$s . is
Our aim is to show thas is semi-diced. For simplicity  semi-diced, it therefore suffices to show tisab) is semi-

in notation we assume w.l.0.g. that diced and to find a semi-diced s&tsuch thats® C S’ C

S>... To this end let us consider the set
v =k-e = (kO0,..,0)
T ={xeNl_ :(x)’,CSor(x)\,CN"\S
for somek € N.,. Furthermore, we write { Se (X0 (02 \ S}

and the cube
BT :=Bd(S,v) and B~ := Bd(S,—v).
C:={x=0q,...,x) €N":
We already know thaB* and B~ are semi-diced. Usin .
the COﬂStI‘L}J/CtiOH from the proof of Lemma C.5, we obtgin €<% <c+q foreachi € {1,....n}}.
that there exists a periaflc N, such that the followingis  \gte thatT © ).
true: g is a multiple ofk, and for each) € {+, —} there -

exists a finite set/® such that for eacti € J° thereisa  Claim C.14. Forall x € C\ T, the following is true:

vectorv® € N"and aset® C {1, ..., n} such that If x € S, thenx+3> "  Nge C S.
If x¢ S, thenx+> " Nge; C N\ S.
o _ o
58 = (Vj + quf)' Proof. Letx € C\ T. Sincex ¢ T, there exist’, x” €
jese iel? (x)¢, with x € S andx” ¢ S. By choice ofC andg we

) o obtain that there must exist integgrsand;— that have the
Let d be the smallest integer that is bigger than any COMPO-£qiowing three properties:

nent in any vector in
e 0<jt<{ and 0>, >,
{vj<> cOe{+ -}, je ).

e xS < x+jT-ves
From the particular choice af and g we immediately ob- — x+ (t+1)-v ¢S5,
tain the following:
Claim C.13. Fo o N? e x€5 < x+j -ves
aim C.13. For every( € {4, —} and for everyx € e x+(--1)-v &S

such that each componentofs > d, the following is true:

If x € IHSO, then x + anﬂoqui C BY Ifx ¢ B%then | et + andj~ be chosen such that these conditions are met
x+ 3.1 Ngej; © N"\ BY. and|j*| and|j~| is as small as possible. Clearly, for ahy
Letc := d + g. Furthermore, let with j~ <j < jtwehavethak+j-v € S < x€8S.

7. == {xN" : each component ofis > c} Now let y be an arbitrary element ir + ;qu,-. It
sufficesto showthate S <— y € S.

The proof of =" proceeds as follows. Ik € S, then

the following is true:x + j* - v € BY, x+ /= -v € B™,

' + U B~ foranyjwith j~ < j < j*. B

S = S.. U Sy, andx + jv ¢ BT U | Y Jj J J<Jj". By

> ’:U1 ZL:JO o Claim C.13 we obtain that+,*-v € BT, y+,~-v € B™,

andy + jv ¢ BT U B~ for anyj with j~ < j < j*. Thus,

Since, by assumption, all sectiofis, of S are semi-diced,  Definition C.10 tells us thay + j - v € S for all j with

in order to show tha$ is semi-diced it suffices to show that = < j < *. In particular,y € S.

and S>. := SNNZ_. Note that

n c—1
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The proof of “=" proceeds as follows. Ik ¢ S, then
the following is truex+(j*+1)-v € B~,x+(j~—1)-v €
Bt,andx +j-v ¢ BT U B~ foranyj with j— <j < /™.
By Claim C.13 we obtain thay + (j* +1)-v € B™,
y+(~—-1)-veBtandy+, - v ¢ BtUB™ forany
J with j= < j < jT. Thus, Definition C.10 tells us that
y+j-v ¢ Sforanyjwith j— < j < j*. In particular,
y € S. This completes the proof of Claim C.14. O

ClaimC.15. T = U x + Zqu;. In particular, T

) o xeCNT i=1
is semi-diced.

Proof. Lety = (y1, ..., y») € NZ_. Consider the particular
elementx = (x, ..., x,) € C wherex; = y; [q], for every
i €{1,..., n}. Obviously,

n
Yy € x+ Zqu;.
i=1

It sufficesto showthatkk € T <— y e T.

The proof of =" proceeds as follows: Ik € T, then
(by definition of T), we have(x)¥, € Sor (x)¥, € N"\ S.
In particular, this implies thafx)?, € N"\ B, for any¢ €
{+.—}. By Claim C.13 we obtain thay)¥, € N"\ B, for
any( € {+, —}. Thus, eithefy)?, C Sor(y)%, C N"\S.
le,yeT.

The proof of “="follows analogously. O

Claim C.16. S() is semi-diced.

Proof. It is straighforward to verify thatS(!) has prop-
erty (x) with respect to the setv}. Lemma C.9 thus tells
us that in order to show th&!) is semi-diced, it suffices to
show that every sectioﬁl(? (for any/ € N) is semi-diced.

Note thatSl(fle) = S, N T. By assumption we know that
every sectionS; » of S is semi-diced, and by Claim C.15
we know thatT is semi-diced. Since the class of semi-
diced sets is closed under intersection (cf., Lemma C.3), we
therefore obtain thaﬁl(’l} is semi-diced. O

Claim C.17. The set

U X—i—Zqu,-

x€SN(C\T)  i=1

S =

is semi-diced, an6d(® C §’ C S.

Proof. S’ is semi-diced by definition. Due to Claim C.14,
S’ C S. It remains to show tha§(® C S’. To this end,
consider an arbitrary € S@ = S5\ SO In particular,
yeT.

Consider the particular elemert= (xi,...,x,) € C
wherex; = y; [q], for everyi € {1,..., n}. Obviously,
y € x+ > i, Nge;.
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x+ > ,Nge; CS’,and hencg € S'.

Sincey ¢ T, Claim C.15 tells us that ¢ T. Thus,
Claim C.14 (together with the fact that € S) tells us
that x € S. By definition of S/, we then have that
O

In summary, we know the§> . = SHUS’, andS™) and
S’" are semi-diced. Thusss. is semi-diced, and the proof
of Theorem 4.7 is complete. O

C.5 Proof of Proposition 4.2

We actually prove a result slightly stronger than Propo-
sition 4.2. For formulating this result in the next lemma, we
need the following notation.

Definition C.18. A languagel is called +-inv-FO(<)-
definable in a languag®/ iff if there exists a sentencg
of FO(<, <, +) such that for any string € M and any two
o[+]-expansions; andu, of uwe haveu; = ¢iff u = .

Note that Proposition 4.2 is an immediate consequence
of the following lemma.

Lemma C.19. Letn € N, letwy, ..., w, € X* such that
lwi| = - = |wy| =2 1, letay, ..., a1 € X*, and let
M = aiwfaawy - apw, a,r1. Every languagd C
M that is+-inv-FO(<)-definable inM is regular.

The proof of Lemma C.19 follows the line sketched in
Section 4.2. We recall here the main steps and provide the
missing details.

Recall that for @ (a1, ..., apr1) and w
(w, ..., w,) we use the following notation:

W * * *
o MY o1 Wy Qp W5 e Qi Wy Qlpgd.

e For L C MY, the set.”%(L) C N" consists of
all vectors x (x1,...,x,) € N" such that the
string o wi* ap w32 -+ - oy W apyq @SSoCiated toc
belongs tal.

Proof of Lemma C.19:
LetM := M¥. Fixalanguagé C M that is+-inv-FO(<)-
definable inM. LetS C N" be . (L).

Our goal is to show that is regular. By Theorem 4.5,
it suffices to show tha$ is semi-diced. By Theorem 4.7 it
suffices to show tha$ has the properties (a) and (b) stated
in Theorem 4.7. l.e., it suffices to show that

(a) every section of is semi-diced, and

(b) thereis afinite se¥ C N"\{0} such that every element
in V has exactly one non-zero coordinate afnd <
N, 3¢ € N such that the following is trueyx € N”
with ||x|| > ¢, v € V such thatVk(x) and Nk (x + v)
are identical with respect t6.



The most difficult part is to show property (b). Property Here, equivalence (1) holds sinéé;(x) and NR(X(J+1))

(a) then follows essentially by induction en We split the
proof of (b) and (a) into two claims.

Claim C.20. S has property (b).

Proof. By Lemma 4.4 is semi-linear. LetU C N"\ {0}
be the finite set given by Lemma 4.6 f6r
Let V be defined asin (7), i.e.,

V = {||u|]|-& : uve Uandie supfu)},
wheree; is the unit vector ofN” which has a 1 in its-th
component and Os in all other components. Cledrlys a
finite subset olN", and every element it¥ has exactly one
non-zero coordinate.

All we need to show is that' has the following property:

VK € N, 3¢ € N such that the following is true:
Vx € N" with ||x|| = ¢, 3v € V such thatVk(x)
andNk(x + v) are identical with respect 6.

Let Ko := max{||v|| : v € V}. Now letK € N be an
arbitrary number. LeK := K + K. Choosel := { to be
the number obtained from Lemma 4.6 for the numiser

Now letx € N" be an arbitrary vector withx|| > ¢. By
Lemma 4.6 we obtain an € U such that for allj € N and
for xU) := x + ju, Ngx(x) and Ng(xY)) are identical with
respect tcs.

If |supdu)| = 1, thenu € V, and by choosing := u
we obtain thak + v = x(), and thusV(x) and N (x + v)
are identical with respect t6.

For the remainder of this proof we consider the case
that |supu)| > 2. For simplicity in notation we assume

w.l.o.g. thatsupdu) = {1,...,t} for somet € N with
2<t<nn

We chooser := ||u]| - e;. By (7) we havev € V. Our
goal is to prove thalVi(x) and Nx(x + v) are identical
with respect ta5. To this end, let us fix an arbitragy e 72"
with ||z|] < K. We need to show thak + z € § <

x + v+ z € S. We will see that this is a consequence of:

Claim 4.8. There exists & € N such that
x+Jut+u+zeS < x+Jut+v+zeS.

Before proving this claim, let us point out how to use t
claiminorderto showthak+z € S <= x+v+z€S.

Let J be chosen according to Claim 4.8. We know that Note that|U,| = |U| for every~y € T (since|is| = - -
N (x), Ng (x9), andNg (xU+1) are identical with respect

to S. Furthermorel|z|| < K and||v|| < Ko, thus||z+v|| <
K + Ko = K. Therefore,

x+z€$S <— x4 zeS (1)
—= xUDtutzes (2
—= xN4vizes 3)
= x+v+ze$S (4).

are identical w.r.tS. Equivalence (2) holds sincé/*1) =
xU) 4+ u. Equivalence (3) holds due to Claim 4.8. Equiva-
lence (4) holds sinct/; (x()) andN, (x) are identical w.r.t.
S.

In summary, we obtain thaVx(x) and Nx(x + v) are
identical with respect t&. Therefore, in order to finish the
proof of Claim C.20, it suffices to prove Claim 4.8.

Proof of Claim 4.8:
By the assumption of Lemma C.19 we are given strings
a1, ..., apr1 € X* and stringswy, ..., w, € £* such that
wi| = = [wn| > 1.

Let ¢ := max{|wi|, |aa], ..., |ans1]}. We consider the

alphabet
A=Y x{w,a} x{1,...,n+1} x{1,...,¢}. (22)

With each of the stringg; (resp.,«;) we associate a string
w; (resp.,&;) in A* as follows:

o If wy = Wi1Wio - Wiy, with wi; € Y, thenw; :
W,'vll/NV,'yz v VNV,'YKV. with |7V,'J = (W,"j, w, I,_])

o If o = Q102 Qg with ajj € Y, thena; :
5[;'15[,"2 s ONZ,"SI. with CNV,'J = (Oé,"j, «, I,_[)

For eachx = (xy, ...

W(x)

. Xn) € N" let

=t e W € AT

Aiming at applying Lemma A.2 we choog® as in equa-
tion (22), andr := {0;, 1;, 2; : i € {2,...,t}}. We let
k' == 1+ ar(y), wheregp is the +-inv-FO(<)-sentence
that, by assumption, defines langudge M. Furthermore,

we let

H 8162 -+ @1 W(x + 2),
G = ¢
U = W(u).

Note that|U| > 1. For eachy € I, the stringU, is defined
as follows: For every € {2, ..., t},

Uy, U,
U, = Wute —e),
he Uy, = W(u — e+ e,-).

|n])-

We choosem :
r(m, h,g, k") and P
asinLemma A.2.
We letd € N be large enough such th@t, <) =, (w, <)
for the strings

|U|. Let h,g, k" and r

C Nandj; (for j € N) be chosen

v

- oy oy oo
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and then we have
wo= 05121925 05191525 - 0f 1y 17 2] WweES < yweSs. (23)

(an easy EF-game argument shows thatany 2" will do,
see e.g. [11]). LeD = d, = d,, be the length of each of
these strings, i.eD = 3d - (t—1) + >, u;.

Let V and W be chosen as in Lemma A.2, i.e., (recall

Now let ¥ andjy, be the vectors itN” which, for each
i € {1,..., n}, indicate in theiri-th component the number
of copies ofw; that occur inV and W, respectively. Note

h
thatG = ¢) that
Vo= HU"(qUY) and V7= arw " apug e an Wit gy,
. . j=1,....D W// = o W]).’W‘l an W{W,Z e W,}:/W'" Qnt1.
w o= HU* (R UY)
J .
j=1,....D

Therefore, from equation (23) we obtainthgt € S <—
where, for eachi > 1 and eachy € I the following is true: yw € S. To finish the proof of Claim 4.8, it thus suffices to
If v is thej-th letter inv (respectivelyw), thenQ; = U, show that there exists A€ N such that
(respectivelyR; = U,).
Aiming at applying part (b) of Lemma A.2, we let, for w=xDrut+z and jy = xD+v+z
eacha € ¥, ¥,(x) be a (quantifier-free) formula that states .
that there existgji, j»,j3) € {w,a} x {1,..,n+1} x To this end, note that
{1, ..., £} such that the letter at positionis (a, j1, 2, j3) € o

A: The formulas,(x) is simply the disjunction of the = D :
formulas P, j, ;. 5)(x) for all (ji,j2,3) € {w,a} x x+z+ (Z,J) cu+3d(t—1)-u + (Zu,-) u
{1,...,n+1} x {1,..., £}. j=0 i—2

Then, the stringd/’ and W’ defined in Lemma A.2 are IR
identical to the stringd/ and W, where each letter if is -7
restricted to its first component. and

We letyo(x, y) be a formula which, when interpreted ~ , t
in(V,<,+, P)and(W, <, +, P), defines a linear order on ywoo= oy F Z (i (u+ e —e)).
the domain ofV and W such that when reading the letters =
of V and W according to this particular linear order, one Notethatv = |[u||- &1 = u+ Y\, (ui- (e1 — &)).
obtains strings that belong to Therefore,

Gy Wy G Wy - Gy Wiy Gipgr- t t
P o Z(u;-(u+el—e;)) = ((Zu;)—l)-u + v.

By our particular choice of the alphahat it is straightfor- i— i—
ward to see that this can be formalized bguantifier-free
formulator(x, y). For

Furthermore, we let's,c{x, y) be a first-order formula D .
(of quantifier rank 1)_ that defines th_e successor relationtha  , ._ (Z ij) +3d(t—1) + (( u,-) _ 1)
corresponds to the linear order definedyayq(x, y). s P

Let V" andW" be chosen asin Lemma A.2 (b). L&/
andW" are the strings obtained from reading the letters of we thus obtainthatyy = x+z+ J-u+u and jy =
V' and W'’ according to the successor relation defined by x + >+ J. u + v. le.,
Ysuce It is straightforward to see that” and W’ both
belong toM = MY = a3 wi ap wj -+ ap W) py1. v = xD4u+tz and  jw = xU 4v 4z
From Lemma A.2(b) (ii) we obtain that” and W"
satisfy the same--inv-FO(<)-sentences of quantifier rank  Thus, the proof of Claim 4.8 — and hence also the proof of

at mostk := k' — 1. Since, by assumptiony is a Claim C.20 — is complete. O
+-inv-FO(<)-sentence of quantifier rarithat defines the
languagel in M, we obtain thatV” € L «<— W" € L. We are now ready to finish the proof of Lemma C.19,
Thus, ifyy andyy, are elements ifN” such that i.e., to show the following:
V"= arw]" aowy " e an WY aga, Claim C.21. S has property (a) and (b), i.eS is semi-
W” = agwi™ ao w3 - ap Wi apya, diced.
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Proof. We proceed by induction on. From Lemma 4.4,
we know that the sef = .%(L) C N" is semi-linear.

For theinduction baser =1 note that every semi-linear
set s a finite union of sets of the form+Np, wherem, p €
N. Note that sincen = 1, each of these sets @ced and
thusS is semi-diced. Theorem 4.7 therefore tells us that
has property (a) and (b).

For the induction steplet n > 2. Let wy,..., w,,
ai, ..., a1, and M be chosen as in the assumption of
Lemma C.19, and let (a1, ..., apr1) and w
(wa, ..., w,). LetL C M be alanguage that is-inv-FO(<
)-definable inM. Our aim is to show that the s& =
¥ (L) C N"has property (a) and (b) (i.e., by Theorem 4.7,
S is semi-diced).

From Claim C.20 we already know th&thas property
(b). For showing thats also has property (a), we choose
i€ {1,...,n} and? € N, and show that the s& , is semi-
diced. For simplicity in notation, we only consider the case
wherei = n (the proof fori < nis analogous).

Let w’ (wi,...,w,_1) anda’ (a1, ..., ap_1, )
wherea!, == a, w’ apy1.

Clearly, for everyx = (x,

W' (x) = W¥(x, {), where

... Xp—1) € N"~1 we have

o’

—
w — X1 X2 Xp—1 1
Wz (x) ar Wt aowa? s ol W, A,

W X X n—1 4
W (x, £) a1 Wit ao Wa? e QUp Wy _q Qin W, Qtpyt.

Let us consider the s&,, = {y = ()4, ...
S} and the languagéd’ :=

y.yn—lrg) : .ye

WE(y) : v € Snl = WV (%) -

Clearly,l’ € M" := MZ/, andL’ is +-inv-FO(<)-definable
in M’ (by the same--inv-FO(< )-sentence that, by assump-
tion, defined. in M).

From the induction hypothesis we obtain that the set
S’ == % (L) € N"~! has property (a) and (b), i.eS/
is semi-diced. Note that

(x,0) € Spe}. (24)

s =

{xe N1 W¥(x)e L'}
(x,0) € S}.

eqéz4) {X c N"_l )

Thus, S, = S x {(¢)}. We already know that’ is
semi-diced. Consequently, alsf , is semi-diced. This

completes the proof Claim C.21 and thus also the proof of

Lemma C.19. ]
C.6 Proof of Theorem 4.1

In fact, we even get a result slightly stronger than The-
orem 4.1. The following formulation of this result uses the
notation introduced in Definition C.18.
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Theorem C.22. Letn € N, and letw, ..., w, € X*.
Every languagel C wjws ---w; that is +-inv-FO(<)-
definable inw; wy - - - w; is regular.

Note that Theorem 4.1 is an immediate consequence of
Theorem C.22. The proof of Theorem C.22 can be obtained
as an easy consequence of Lemma C.19 from Section C.5:

Proof of Theorem C.22:
Let L C wiwy---w} be +-inv-FO(<)-definable in
wiwy -+ - w) by a+-inv-FO(<)-sentencep. W.l.o.g. we
can assume that eaeh is nonempty, i.ejw;| > 1.

Let ¢ := lem{|m|, ..., |w,|}. Foreachi € {1,...,n}
let ¢; = Ivﬁé‘ let w; := w, and for eacly € [(;] =

{0, ,E,‘*l} Ieta,-,j = VV,J

Clearly, forJ := [¢1] x - - - x [{,] we have wyw} ---w) =
U onp % a2, % - any, Wy . (25)

Un.--win)€J = M; for j = (jr, .., Jn)
For eachj € Jletl; := LN M;. Note that for ev-

erywordw € M; we have w € L; < w E ¢.
Thus, L; is +-inv-FO(<)-definable inM;. Furthermore,
|| = --- = |W,| = 1. Thus, we obtain from Lemma C.19
(with apq1 being the empty word) thdlt; is regular. Since

L = UJ.GJ L; and since the class of regular languages is
closed under union, we obtain thats regular. Thus, the
proof of Theorem C.22 is complete. O

D Proofs omitted in Section 5
D.1 Proof of Theorem 5.1

Proof of Theorem 5.1 (continued):
Let L be a commutative language that is definable in
+-inv-FO(<). Let X be the alphabet of, let n := ||,
and letoq, ... 0, be an enumeration of all letters In

Letl' := LNofos---ok. Clearly,L’ is +-inv-FO(<)-
definable (since, by assumption, is definable in
+-inv-FO(<) and, obviously,oios --- o} is definable in
FO(<)). By Theorem 4.1 we obtain théat is regular. Since
L is commutative, we know that = ¢(L’). From Theo-
rem 5.2 we obtain that is regular. O

D.2 Proof of Theorem 5.4
We will make use of the following pumping lemma for
languages definable ir-inv-FO(<).

Lemma D.1. Let L be a
+-inv-FO(<).
> *, Let

language definable in
Let u,v,w;, wo, ws be five words of

0y = [v|-(Jul +|v]) and &, = |uf-(lu]+ |v]).



Then we havey/ € N, 3v € N such that

v+16, v—I18

wiu WoV 'wy € L iff wpu"wov¥ws € L. (26)

Proof. We assume w.l.o.g. that| > 1 and|v| > 1 (note
that the lemma’s statement is trivial|if| = 0 or |v| = 0).
Leta = |u|, 8 = |v|, andz = afB. Let k be the
quantifier rank of ther-inv-FO( <) formula definingL, and
choosek’ := k + 1.
Aiming at applying Lemma A.2, we Idt := {0, 1} and

A (a,u)|ae X}

U{(av)laeX}

U {(awm)]aeX}

U {(2, w)
U {(a,ws) |ac X}

With each of the stringss, v, wy, wo, w3 we associate a

string @, v, wy, vin, w3 Of A* by using the letters marking

the string it belongs to.

We further let

H .= W1W2W3, G = g,
(27)
U = (i), Up =%, Up=i.
We choosem := |U| and note thatn > 1 and |U| =

|Uo| = |U1]. We leth, g, k” andr := r(m, h, g, k") and
P = {p1,p>,...} C Nandj (for j € N) be chosen accord-
ing to Lemma A.2.
Now fix an arbitrary/ € N, and letd € N be a large
enough number such that for alj, d; > d,
Odg 1d1 ~, Odo+/ 1d17/- (28)
An easy EF-game argument shows that any 2/ will
do, see e.g. [11].
We choose
do:=d«, dy:=df, d = do + di. (29)
Notice thatd,-dy = d,-di = d-a-B-(a + ), and that
bothdy andd; are greater thad (sincea # 0 andj # 0).
Recall that according to Lemma A, i1, ..., igr are the

following numbers: ip = 2=, and j; = 222 _ 1 for
all1 <j < d'. We set
v = Z(I0+Il+—‘rld/) + 9, do. (30)

Now let V and W be chosen according to Lemma A.2
ie.,

’
~ Oy [~ o\ ZE d
v (nv)®

Jj=do+1

V= wninia(a0) (i @0y ) (7

j=t

N I S A T N TN AL do+/ 5 ~ &\ ZI d
W = Vin s (o)™ (o (av)™ (Ti)*
j=1 Jj=do+/+1
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Note that the number of occurencesioin V is v, and
the number of occurrences bfin V is v, while the number
of occurrences off andv in W is, respectivelyy + 6,/ and
v—20,l.

Aiming at applying part (b) of Lemma A.2 we let, for
eacha € X, ¥,(x) be the quantifier-free formula satisfied
by all positionsx whose label is eithes or (a, u) or (a, v)
or(a, w;) fori € {1,2,3}.

We letyor(x, y) be a formula which, when interpreted
n(V, <, +, P)and(W, <, +, P), defines a linear order on
the domain of and W such that, when reading the letters
of V and W according to this particular linear order, one
obtains strings that belong to

By our particular choice of the alphabat it is straightfor-
ward to see that this can be formalized byuantifier-free
formulaor(x, y).

Furthermore, we lets,c{x, y) be a first-order formula
(of quantifier-rank 1) that defines the successor relatiah th
corresponds to the linear order definedyayq(x, y).

Then, the stringy”” andW” defined in Lemma A.2 are:

V" = wiu¥ wo vY ws,
(31)
W = wy 0wy vV 0 .

Now, by Lemma A.2 we know that’”’ and W" satisfy
the samet--inv-FO( < )-sentences of quantifier-rank at most
k' — 1. Thus, by our choice o’ we obtain that/” € L iff
W' e L. This completes the proof of Lemma D.1. [

The following notation will be useful for our proof of
Theorem 5.4.

Let A be a deterministic pushdown-automaton (DPDA,
for short) whose set of states@ and whose stack alpha-
betisl'. A configurationof A is a pair(q, v) whereq € Q
and~y € '* is the content of the stack. Tlgpeof a config-
uration(gq, v) is the pair(q, S) whereS is the top symbol
of the stacky. Becauseéd is deterministic, for eaclv € ©*
there is a unique type reached Bwfter readingv, denoted
by 7a(w). Given a stringv € X* we say thatv is a loop for
the type(q, S) if, when starting in the configuratiofy, S)
(where the stack contains only the symi5¢] A ends in the
same configuratiofyq, S) after readingw.

Definition D.2. Let Abe a DPDA, and let be the language
accepted byA. A tuple (u, v, wi, w,) is apumping pairfor
Lif

1. wy is aloop forra(wyu),
2. uwmyv is aloop forra(wy),

3. 7a(w1) = Ta(wiu), and



4. ta(wiuwy) = Ta(wiuwav).

Note that if (v, v, wi, wp) is a pumping pair for, then
also(u, v, wyu, wp) is @ pumping pair for.

We will make use of the following pumping lemma for
deterministic context-free languages:

Lemma D.3. Let L be a deterministic context-free language
recognized by a DPDA. Let(u, v, wy, w,) be apumping
pairfor L. Then, for allws € ¥* and all k, | € N we have:

k1 (32)

wiu“u k

wovlws € L iff wauKwows € L.

Proof. By induction on/, using Definition D.2, one easily
sees that'wyv' is aloop forra(wy ). By induction onk, us-
ing Definition D.2 we also obtain thah(w;) = 7a(w; u¥).
The lemma then follows easily. O

We will use the next lemma, proved by Valiant in [20]
(there, the lemma was used in order to show the decidability
of the problem whether a given deterministic context-free
language is regular).

Lemma D.5 (Implicit in [20]). If L is a deterministic
context-free language that is not regular, then there exist
stringswi, u, wp, v such that:

1. (u, v, wi, wp) is @ pumping pair forl,
2. wiulwsv is notL-equivalent tow; uwsv, and

3. uis null-transparent forl.

We are finally ready for the proof of Theorem 5.4.

We are now ready to prove a pumping lemma for deter- Proof of Theorem 5.4:

ministic context-free languages definabletiFinv-FO(<).

Lemma D.4. Let L be a deterministic context-free language
definable i4--inv-FO(<). Let(u, v, w1, w,) be a pumping
pair for L, and lets = (|u| + |v|)?.

Then, for allw; € ¥* and for all/ € N we have:
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wiuwovwy € L iff  wiuuwovws € L. (33)

Proof. Fix ws and/.
Since L is definable in+-inv-FO(<), we can apply
Lemma D.1 with/, and we get a number € N such that

: (34)

UV+/6

wy v’ ws € Liff wautwav¥ws € L.

Notice thaty = §,+4,. SincelL is deterministic context-
free, applying Lemma D.3 to the left hand side of (34)
yields:

w0 v v s e Liff wiu’ TP waviws € L

s (35)

iff wiuu'®wovws € L.

Applying Lemma D.3 to the right hand side of (34) yields:
(36)

wiut"woviws € L iff wiuwovws € L.

Now, combining (34), (35), and (36) concludes the proof

of Lemma D.4. O

For the proof of Theorem 5.4 we use the following nota-
tion:

If Lis a language, then two words andw’ are said to
be L-equivalentif Vv, wy € Liff w'yv € L. We are now
ready to conclude the proof of Theorem 5.4.

The next notation is taken from [20]. A wordis said to
benull-transparent forl if it satisfies the following:

Vx,y € £*, Vm,n €N,
if |yl <min{m, n}
then xu™y € L iff xu"y € L.

(37)
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Let L be a deterministic context-free language definable in
+-inv-FO(<).

Aiming at a contradiction, let us assume tllats not
regular. Then, lew;, u, wy, v be the strings given by
Lemma D.5.

Since (u, v, wi, w») is a pumping pair forl, by
Lemma D.4 we have for ali; and all/ € N

wiumwovws € L iff - wiuu®wovws € L. (38)

For a givenws, fix / such that'd > |wavws|. Sinceu is

null-transparent fot, using (37) we obtain:

wiud®wovws € L iff wauu twovws € L. (39)
Applying, again, Lemma D.4, gives:
wud " wpvws € Liff wiPwovns € L. (40)

By combining equations (38), (39), and (40) we obtain
that for all stringsws:
wiuwovws € L iff wauPwovws € L. (412)
Thereforew; uws v is L-equivalent tow; u?ws v, contra-
diction Item 2 of Lemma D.5. Thud, is regular, and the
proof of Theorem 5.4 is complete. O

E Proof omitted in Section 6

Proof of Proposition 6.1:
Let us first show that is context-free: A non-deterministic
pushdown automaton (PDA) recognizirgfirst guesses
why the input stringw is not in L, and then verifies that
its guess is correct.

In the following, byblockwe mean a factor o’ between
two consecutive# symbols.



A string w is not in L because either (i) two consecu-
tive blocks do not have the same length or (ii) they corre-
spond to non-consecutive numbers. In the case of (i) the
PDA guesses the corresponding blocks and compares their
respective length using the stack. In the case of (ii), the
PDA guesses the corresponding block while maintaining in
its state whether the corresponding number is coded with
least or most significant bit first. It is then not too hard to
use the stack for performing an increment.

It is not difficult to see thal is in FO(<, +): The po-
sition of the leftmost# provides the lengtlv of the blocks
and can then be used with addition to test whether all blocks
have the same length. Testing that two consecutive blocks
represent consecutive numbers is done bit by bit using the
fact that thei™” bit of a number represented by some block
is at distance exactly— i + 2 from thei*" bit of the number
represented by the following block.

ThatL is expressible irf+, *)-inv-FO(<) follows along
the same lines as Lemma 5.4 in [1]. O
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