
Theoretical Computer Science 411 (2010) 4291–4322

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Weak bisimulation for Probabilistic Timed Automata✩

Ruggero Lanotte a, Andrea Maggiolo-Schettini b, Angelo Troina c,∗

a Dipartimento di Informatica e Comunicazione, Università dell’Insubria, Via Carloni 78, 22100 Como, Italy
b Dipartimento di Informatica - Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy
c Dipartimento di Informatica - Università di Torino, Corso Svizzera 185, 10149 Torino, Italy

a r t i c l e i n f o

Article history:
Received 26 March 2007
Received in revised form 15 June 2010
Accepted 1 September 2010
Communicated by V. Sassone

Keywords:
Probabilistic timed automata
Weak bisimulation

a b s t r a c t

We are interested in describing timed systems that exhibit probabilistic behaviour. To this
purpose, we consider a model of Probabilistic Timed Automata and introduce a concept
of weak bisimulation for these automata, together with an algorithm to decide it. The
weak bisimulation relation is shown to be preserved when either time, or probability
is abstracted away. As an application, we use weak bisimulation for Probabilistic Timed
Automata to model and analyze a timing attack on the dining cryptographers protocol.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The application of formal methods to the development of validated systems mainly concentrates on specification
languages, with semantics adequate to support implementation and verification, and methods and tools for verifying
specifications with respect to properties expressed in suitable formalisms.

Models based on the concept of states and transitions, also called automata, have turned out to be particularly intuitive.
States of the automaton represent snapshots of the described system, while transitions represent state changes.

Basic formalisms allow the description of the nondeterministic approximation (sometimes called possibilistic) behaviour
of a system. This is enough to model the functionality of systems, and hence to capture the qualitative behaviour, but if one
wants to capture also quantitative aspects, such as time- or frequency-dependent properties, formalisms must be extended
with real-time and probabilistic features. Hence, in systems that model quantitative processes, steps are associated with a
given quantity, such as the probability that the step will happen or the resources (e.g. time or cost) needed to perform that
step.

Timed Automata have been introduced by Alur and Dill [3] as an extension ofω-Automata to describe real-time systems.
Timed Automata are equipped with variables measuring time, called clocks. Transitions are guarded by clock constraints,
which compare the value of a clock with some constant, and by reset updates, which reset a clock to the initial value 0. The
range of application of analysis through Timed Automata is particularly wide [4,6,12,14,40,41]. Extensions with probability
have been proposed (e.g. in [11,35,36]) and may be used to describe real-time systems exhibiting a probabilistic behaviour.

In general, behavioural equivalences may be used to verify a property of a system by assessing the equivalence of the
considered system with a system one knows to enjoy the property. Just as an example, the problem of formalising the
notion of confidentiality could be boiled down to that of verifying equivalence of processes (see [24,52], where equivalence

✩ This work has been partially carried out during the third author’s postdoc at Laboratoire d’Informatique (École Polytechnique) and Laboratoire
Spécification et Vérification (École Normale Supérieure de Cachan) supported by the INRIA/ARC project ProNoBiS: Probability and Nondeterminism,
Bisimulations and Security.
∗ Corresponding author. Tel.: +39 011 6706851; fax: +39 011 751603.

E-mail addresses: ruggero.lanotte@uninsubria.it (R. Lanotte), maggiolo@di.unipi.it (A. Maggiolo-Schettini), troina@di.unito.it (A. Troina).

0304-3975/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2010.09.003

http://dx.doi.org/10.1016/j.tcs.2010.09.003
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:ruggero.lanotte@uninsubria.it
mailto:maggiolo@di.unipi.it
mailto:troina@di.unito.it
http://dx.doi.org/10.1016/j.tcs.2010.09.003

4292 R. Lanotte et al. / Theoretical Computer Science 411 (2010) 4291–4322

relations are used to testwhether two systems cannot be distinguished by an intruder). This is a central and difficult question
at the heart of computer science towhich there is no unique answer.Which notion of equivalence is appropriate depends on
the context and application. For example, one should not be surprised that the information security community has failed
to come up with a consensus on what constitutes confidentiality. In [24], however, bisimulation equivalences have been
successfully used for the analysis of information flow security properties in multilevel systems. They are fine enough to
capture any unsecure behaviour that can give rise to information flow, but not so strict as to classify as unsecure behaviours
which are instead correct.

Most of the time one wants to assess bisimilarity considering as silent (non observable) system internal moves. This
kind of equivalence relations, called weak bisimulations, offer several advantages: they exploit abstraction from internal
computation, in the process algebraic domain they are usually compositional with respect to parallel composition and other
operators, and they can be exploited to minimize components with respect to their internal behaviour.

In this paper, we introduce a notion of weak bisimulation which combines some results from real-time and probabilistic
models. We consider amodel of Probabilistic Timed Automata inspired by themodels in [11,35,2], where schedulers [35] are
used in order to resolve the nondeterministic choices.We define aweak bisimulation equivalence relation for thismodel and
we prove its decidability. The algorithm we propose is based on the well established partitioning technique [48,33], where
large classes of potentially equivalent states are refined into smaller ones. More precisely, we partition the equivalence
classes composed by the timed regions [2] of a Probabilistic Timed Automatonwhen they contain configurations fromwhich
it is possible to reach a certain classwith different probabilities. In a certain sense, such amethodology extends the technique
of [20] for real-time systems, in order to combine it with the one for probabilistic systems in [7].

On the one hand, a notion of weak bisimulation for Probabilistic Timed Automata allows us to prove behaviour
inclusion (hence to define behavioural properties) for systems where both probability and time play a role. As we will
show in the last section, one may, for example, define bisimulation based properties in order to capture timing attacks
in probabilistic protocols. As another example, in [39,42] we developed a framework based on behavioural equivalence
to analyze information flow security properties for Probabilistic Timed Automata. In particular, we were able to describe
systems exhibiting a covert channel due to the combination of probability and time, that neither a formalism with only
probability nor a formalism with only time can express.

On the other hand, weak bisimulation can be used as a minimization technique for reducing the state space of a system.
Actually, automata based formalisms are amenable to formal analysis such as model checking, and state space reduction is
one of the main research issues in that field.

From the computational point of view, we prove that strong and weak bisimulations are decidable, respectively,
in exponential and double exponential time on the size of the Probabilistic Timed Automaton. These results are in
agreement with the results for the untimed version. Actually strong and weak bisimulations are decidable in polynomial
and exponential time, respectively, for the class of Probabilistic Automata, but the region graph has an exponential size with
respect to the size of the considered Timed Automaton. Moreover, the algorithmwe propose uses a symbolic representation
for checking bisimilarity. To the best of our knowledge this is the first paper that gives an algorithm for deciding weak
bisimulation that makes use of a symbolic representation.

1.1. Summary

The remainder of this paper is organized as follows. In Section 2 we recall some basic definitions of Labeled Transition
Systems, Probabilistic Automata and Timed Automata, together with notions of weak bisimulations in the different
models. We show that weak bisimulation for Probabilistic Automata and Timed Automata is preserved in the purely
nondeterministicmodel obtained by abstracting away from probabilities and time. In Section 3we introduce the framework
of Probabilistic Timed Automata, we define their semantics, introduce the weak bisimulation relation, and again show that
weak bisimulation is preserved with respect to the models of Timed Automata and Probabilistic Automata. In Section 4
we give a decision procedure based on backward analysis for verifying the weak bisimulation relation for the model of
Probabilistic Timed Automata, and we develop the theory needed for assessing the correctness of our procedure. As a
toy example, in Section 6 we use the means we have developed to model and capture a timing attack on the dining
cryptographers protocol. Finally, in Section 8 we draw some conclusions.

2. Preliminaries

The models used in this paper are all based on Labeled Transition Systems (LTSs), also called automata. These have turned
out to be an intuitive and powerful framework for the analysis of concurrent systems, and they have been extended with
probability and time.

Different types of LTSs give rise to different notions of external behaviour. Informally, the external behaviour of an LTS,
also called visible behaviour, is given by its sequences of external actions. A special invisible action τ is considered. The
external behaviour of a timed LTS (Timed Automaton) also considers the passage of time as an externally observable action.
In probabilistic LTSs (Probabilistic Automata) the probability of performing each action is taken into account. Actually, the
measure is associated with each measurable set of sequences of actions.

R. Lanotte et al. / Theoretical Computer Science 411 (2010) 4291–4322 4293

✒✑✓✏❄
q0✛ b✒✑✓✏

q1 ✲
a ✒✑✓✏

q2✟✟
✟✟✟

✟✟✟✯a ✒✑✓✏
q3

e1 = (q0, b, q1)
e2 = (q0, a, q2)
e3 = (q0, a, q3)

Fig. 1. Example of LTS.

We may show that the external behaviour of an automaton is contained in or is equal to the external behaviour of
another one by proving behaviour inclusion or equality. However, this is a rather complex task. In this case, simulation
and bisimulation relations can be extremely useful. These relations compare the stepwise behaviour of systems and when
two systems are shown to be bisimilar, then there is also behaviour inclusion. Intuitively, the idea behind bisimilar states is
that each step one of them may take can be mimicked by the other.

2.1. The possibilistic model

We recall some basic notions of finite Labeled Transition Systems together with a notion of weak bisimulation.

Definition 1. A Labeled Transition System (LTS) is a tuple A = (Σ,Q , q0, δ), where Σ is a set of labels, Q is a finite set of
states with q0 ∈ Q the initial one. The set of transitions is given by δ ⊆ Q × (Σ ∪ {τ })× Q , where τ represents an internal
silent move.

Notice that we use the special symbol τ (not contained inΣ) to denote internal (unlabeled) actions.
Given two states qi, qj ∈ Q of A = (Σ,Q , q0, δ), there is a step from qi to qj labeled with a (denoted qi

a
−→ qj) if

(qi, a, qj) ∈ δ. With ST we denote the set of terminal states of A, namely ST = {q ∈ Q | ∀q′ and ∀a ∈ Σ ∪ τ , (q, a, q′) ∉ δ}.

An execution fragment of A is a finite sequence of steps σ = q0
a1

−→ q1
a2

−→ · · ·
ak

−→ qk, where q0, . . . , qk ∈ Q and
ai ∈ Σ ∪ {τ }. With ExecFragA we denote the set of execution fragments of A, and with ExecFragA(q) we denote the set of
execution fragments of A starting from q. We define last(σ) = qk and |σ | = k. For any j ≤ |σ |, with σ j we define the

sequence of steps q0
a1

−→ q1
a2

−→ · · ·
aj

−→ qj. The execution fragment σ is called maximal iff last(σ) ∈ ST .

An execution of A is either a maximal execution fragment or an infinite sequence of steps q0
a1

−→ q1
a2

−→ · · ·, where
q0, q1 . . . ∈ Q and a1, a2, . . . ∈ Σ ∪ {τ }. We denote with ExecA the set of executions of A and with ExecA(q) the set of
executions of A starting from q. Finally, with σ↑ we denote the set of executions σ ′ such that σ ≤prefix σ

′, where ≤prefix is
the usual prefix relation over sequences.

Example 1. In Fig. 1 we show an example of LTS. From the initial state q0, the LTS may perform transition e1 labeled with b
reaching state q1 or it can nondeterministically perform transitions e2 and e3, labeled with a and leading to states q2 and q3,
respectively. An example of execution of the LTS in Fig. 1 is σ = q0

a
−→ q2.

Behavioural equivalence. As a relation of observational equivalence for LTS, we now introduce the notion of weak
bisimulation [46].

The bisimilarity of two systems is based on the idea of mutual step-by-step simulation. Intuitively, two systems A and
A′ are bisimilar, if whenever one of the two systems executes a certain action and reaches a state q, the other system is
able to simulate this single step by executing the same action and reaching a state q′ which is again bisimilar to q. A weak
bisimulation is a bisimulation which abstracts away from τ (internal) moves. In this sense, whenever a system simulates an
action of the other system, it can also execute some internal τ actions before and after the execution of that action.

In order to abstract away from τ moves, Milner [46] introduced the notion of observable step, which consists of a single
visible action a preceded and followed by an arbitrary number (including zero) of internal moves. Such moves are described
by a weak transition relation H⇒, defined as a

H⇒= (
τ

−→)∗
a

−→ (
τ

−→)∗, where −→ is the classical strong relation, and
τ

H⇒= (
τ

−→)∗. It is worth noting that, with such a definition, a weak internal transition τ
H⇒ is possible even without

performing any internal action.

Definition 2. Let A = (Σ,Q , q0, δ) be a LTS. A weak bisimulation on A is an equivalence relation R ⊆ Q × Q such that for
all (p, q) ∈ R and ∀a ∈ Σ ∪ {τ } it holds that:

– if p
a

−→ p′, then there exists q′ such that q a
H⇒ q′ and (p′, q′) ∈ R;

– conversely, if q
a

−→ q′, then there exists p′ such that p a
H⇒ p′ and (p′, q′) ∈ R.

4294 R. Lanotte et al. / Theoretical Computer Science 411 (2010) 4291–4322

✒✑✓✏❄
r0✛ b✒✑✓✏

r1 ✲
a ✒✑✓✏

r2 ✲
τ ✒✑✓✏

r3

Fig. 2. Example of weak bisimulation for LTSs.

Two states p, q are called weakly bisimilar on A (denoted p ≈A q) iff (p, q) ∈ R for some weak bisimulation R.

Two LTSs A = (Σ,Q , q0, δ) and A′
= (Σ ′,Q ′, q′

0, δ
′), such that Q ∩ Q ′

= ∅, are called weakly bisimilar (denoted by
A ≈ A′) if, given the LTS

Â = (Σ ∪Σ ′,Q ∪ Q ′
∪ {q̂}, q̂, δ ∪ δ′

∪ {(q̂, τ , q0), (q̂, τ , q′

0)}),

it holds q0 ≈Â q′

0.

Note that it is always possible to obtain Q ∩ Q ′
= ∅ by state renaming.

Example 2. Let A be the LTS in Fig. 1 and A′ be the LTS in Fig. 2. It holds that A ≈ A′. Intuitively, from the initial states q0
and r0 the two LTSs may either perform a step labeled with a or b and then reach a state where no other visible steps may
be performed.

2.2. The probabilistic model

We introduce the formalism for probabilistic systems together with a notion of weak bisimulation. We also show how
to remove probabilities in order to get a nondeterministic system, and that weak bisimulation is preserved when reducing
to the possibilistic model. We shall use the same terminology for operators and bisimulation in the different models when
this does not give rise to ambiguity.

Our probabilistic model is a slight variant of the Markov Decision Processes (MDPs) of [9,30] and the Probabilistic
Automata of [53,56].

Actually, we give a definition of Probabilistic Automata which is a bit closer to the one of MDPs, where probability
distributions are defined over the set of transitions. Intuitively, our definition derives from the effort to find themore natural
way to add probabilities to a given LTS (we take the definition for LTSs and spread probabilities over transitions). This choice,
while requiring some particular attention in the definition of the semantics, allows for a simple and intuitive backward
reconstruction of the original LTS by simply removing probabilities from a PA.

In [53,56], instead, probability distributions are defined over the set of target states and associated with each transition.
It is possible, however, to give translations from these models to ours, and vice versa.

Definition 3. A Probabilistic Automaton (PA) is a tuple A = (Σ,Q , q0, δ,Π), where:

– Σ is a finite alphabet of actions;
– Q is a finite set of states and q0 ∈ Q is the initial state;
– δ ⊆ Q × (Σ ∪ {τ })× Q is a finite set of transitions;
– Π = {π1, . . . , πn} is a finite set of probability distributions as functions πi : δ → [0, 1], for any i = 1, . . . , n, where
πi(e) is the probability of performing transition e according to distribution πi.

For a state q of a PA, we denote with δ(q) the set of transitions with q as source state, i.e. the set {(q1, a, q2) ∈ δ | q1 = q}.
We require that

∑
e∈δ(q) πi(e) = 1 for any i and q. Moreover, we assume that for all ej there exists some πi such that

πi(ej) > 0.

Transition steps, execution fragments and executions of a PA are defined as for LTSs.
The probability of executing a transition step from a state q is chosen, among all the transitions in δ(q), according to the

values returned by some distribution π .
Intuitively, the probability distribution of a transition step is chosen nondeterministically. Hence, executions and

execution fragments of a PA arise by resolving both the nondeterministic and the probabilistic choices [35]. We need a
notion of scheduler to resolve the nondeterminism that arises when choosing a distribution π within the setΠ .

A scheduler of a PA A is a partial function F assigning a distributionπ ∈ Π to each finite sequence σ in ExecFragA. Namely,
F : ExecFragA → Π . Given a scheduler F and an execution fragment σ , we assume that F is defined for σ if and only if ∃q ∈ Q
and a ∈ Σ ∪ {τ } such that last(σ)

a
−→ q.

For a scheduler F we define ExecFragF
A (resp. ExecFA) as the set of execution fragments (resp. executions) σ = q0

a1
−→

q1
a2

−→ q2
a3

−→ · · · of A such that, for any i, πi((qi−1, ai, qi)) > 0 where πi = F(σ i−1).
Given a scheduler F and an execution fragment σ = q0

a1
−→ q1

a2
−→ q2

a3
−→ · · ·

ak
−→ qk in ExecFragF

A , if k = 0 we put
PF
A (σ) = 1, else, if k ≥ 1, we define PF

A (σ) = PF
A (σ

k−1) · F(σ k−1)(e), where e = (qk−1, ak, qk).

R. Lanotte et al. / Theoretical Computer Science 411 (2010) 4291–4322 4295

✒✑✓✏❄
q0✛

b, 1
6✒✑✓✏

q1 ✲
a, 1

3 ✒✑✓✏
q2✟

✟✟✟
✟✟✟

✟✯a, 1
2 ✒✑✓✏

q3

e1 = (q0, b, q1) π(e1) =
1
6

e2 = (q0, a, q2) π(e2) =
1
3

e3 = (q0, a, q3) π(e3) =
1
2∑

e∈δ(q0)
π(e) = 1

Fig. 3. Example of PA.

Assuming the basic notions of probability theory (see e.g. [25,53]), we define the probability space on the executions
starting from a given state q ∈ Q as follows. Given a scheduler F , let ExecFA (q) be the set of executions in ExecFA starting from
q, ExecFragF

A (q) be the set of execution fragments in ExecFragF
A starting from q, and σFieldFA(q) be the smallest sigma field on

ExecFA (q) that contains the basic cylinders σ↑, where σ ∈ ExecFragF
A (q). The probabilitymeasure ProbFA is the uniquemeasure

on σFieldFA(q) such that ProbFA(σ↑) = PF
A (σ).

Given a scheduler F , a state q and a set of states Q ′
⊆ Q , with ExecFA (q,Q

′)we denote the set of executions starting from
q that cross a state in the set Q ′. Namely, ExecFA (q,Q

′) = {σ ∈ ExecFA (q) | last(σ i) ∈ Q ′, for some i}.
If a PA does not allow nondeterministic choices it is said to be fully probabilistic.

Definition 4. Given a PA A = (Σ,Q , q0, δ,Π), we say that A is fully probabilistic if |Π | = 1.

Example 3. In Fig. 3 we show an example of a PA with Π = {π}. Intuitively, from the initial state q0, the PA performs
probabilistically transitions e1, e2 or e3 with probabilities 1

6 ,
1
3 and 1

2 , respectively. Note that |Π | = 1, thus the PA is
fully probabilistic. As a consequence, nondeterministic choices are not performed since every scheduler can return the only
distribution π .

Examples of executions of the PA in Fig. 3 are σ1 = q0
a

−→ q3 and σ2 = q0
b

−→ q1 with P(σ1) =
1
2 (we may omit

indexes A and F from PF
A (σ) when this does not give rise to ambiguity) and P(σ2) =

1
6 . To make the presentation easier to

understand, when there is just one probability distribution, we put probabilities also on the arcs of the automaton. Note,
however, that probabilities are not a part of the transition label.

The next proposition derives from results in [15].

Proposition 1. Let A1 and A2 be two PAs and Q1 and Q2 be two subsets of states of A1 and A2, respectively. It is decidable
in exponential time whether for any scheduler F of A1 there exists a scheduler F ′ of A2 such that ProbFA1(Exec

F
A1
(q1,Q1)) =

ProbF
′

A2
(ExecF

′

A2
(q2,Q2)), where q1 and q2 are states of A1 and A2, respectively. If for any σ ∈ ExecFA1(q1,Q1) ∪ ExecF

′

A2
(q2,Q2)

it holds that last(σ 1) ∈ Q1 ∪ Q2, then the problem is decidable in polynomial time.

Behavioural equivalence. For the definition of weak bisimulation in the fully probabilistic setting, Baier and Hermanns [7]
replace Milner’s weak internal transitions q τ

H⇒ q′ by the probability Prob(q, τ ∗, q′) of reaching state q′ from q via internal
moves. Similarly, for visible actions a, Baier and Hermanns define q a

H⇒ q′ bymeans of the probability Prob(q, τ ∗aτ ∗, q′). As
already mentioned, the probabilistic model we obtain for PAs, when a scheduler is given that resolves the nondeterministic
choices, is that of fully probabilistic systems.

Hence, the definition of weak bisimulation for PAs is inspired by the ones in [7,1]. The only difference is given by the
introduction of schedulers in order to obtain a fully probabilistic model.

In the following, q ∈ Q is a state of A, C ⊆ Q a set of states and â stands for a if a ∈ Σ and for ε (the empty string) if
a = τ .

Let ExecFA (q, τ
∗âτ ∗,C) be the set of executions that lead to a state in C via a sequence belonging to the set of sequences

τ ∗âτ ∗ starting from state q and crossing the states equivalent to q. We define the probability ProbFA(q, τ
∗âτ ∗,C) =

ProbFA(Exec
F
A (q, τ

∗âτ ∗,C)).

Definition 5. Let A = (Σ,Q , q0, δ,Π) be a PA. Aweak bisimulation on A is an equivalence relation R on Q such that, for all
schedulers F and (q, q′) ∈ R, there exists a scheduler F ′ such that for all C ∈ Q/R and a ∈ Σ ∪ {τ } it holds:

ProbFA(q, τ
∗âτ ∗,C) = ProbF

′

A (q
′, τ ∗âτ ∗,C)

and vice versa.
Two states q, q′ are called weakly bisimilar on A (denoted q ≈A q′) iff (q, q′) ∈ R for some weak bisimulation R.

4296 R. Lanotte et al. / Theoretical Computer Science 411 (2010) 4291–4322

✒✑✓✏❄
r0✛

b, 1
3✒✑✓✏

r1 ✲
a, 1

3 ✒✑✓✏
r2✟

✟✟✟
✟✟✟

✟✯a, 1
3 ✒✑✓✏

r3

e1 = (r0, b, r1) π(e1) =
1
3

e2 = (r0, a, r2) π(e2) =
1
3

e3 = (r0, a, r3) π(e3) =
1
3∑

e∈δ(r0)
π(e) = 1

Fig. 4. Example of weak bisimulation for PAs.

As for LTSs, in order to define weak bisimulation for PAs we resort to a disjoint sum of automata.

Definition 6. Let A = (Σ,Q , q0, δ,Π) and A′
= (Σ ′,Q ′, q′

0, δ
′,Π ′) be two PAs such that Q ∩ Q ′

= ∅. Consider the PA

Â = (Σ ∪Σ ′,Q ∪ Q ′
∪ {q̂}, q̂, δ ∪ δ′

∪ {(q̂, τ , q0), (q̂, τ , q′

0)}, Π̂),

where π̂1, π̂2 ∈ Π̂ such that π̂1(e) = 1 if e = (q̂, τ , q0), 0 otherwise, and π̂2(e) = 1 if e = (q̂, τ , q′

0), 0 otherwise; moreover,
for each couple (π, π ′) ∈ Π ×Π ′, π̂ ∈ Π̂ such that

π̂(e) =


π(e) if e ∈ δ
π ′(e) if e ∈ δ′.

A and A′ are weakly bisimilar (denoted by A ≈ A′) if it holds q0 ≈Â q′

0.

Note that each distribution π̂ is well defined since Q ∩ Q ′
= ∅ implies δ ∩ δ′

= ∅.

Example 4. Let A′ be the PA in Fig. 4, and A the PA in Fig. 3. We have that A ≉ A′ since from the initial state q0, PA A may
perform a step labeled with b and reach a terminal state with probability 1

6 , while from r0, PA A′ reaches a terminal state
through a transition labeled with bwith probability 1

3 .

Removing probabilities. Given a PA A, we call possibilistic abstraction of A (written unprob(A)) the LTS obtained from A by
simply removing the set of probability distributionsΠ . This can be easily done since we assumed that for each transition of
A there is at least one probability distributionwhich assigns to such a transition a probability greater than 0 (seeDefinition 3).

Definition 7. Given a PA A = (Σ,Q , q0, δ,Π), unprob(A) = (Σ,Q , q0, δ).

Example 5. Let A be the PA in Fig. 3. If we remove probabilities from A the possibilistic abstraction unprob(A) can be found
in Fig. 1. Actually, the PA in Fig. 3 could be seen as a probabilistic specification of the LTS in Fig. 1.

The following conservativeness result holds.

Lemma 1. Given PAs A and A′, A ≈ A′
⇒ unprob(A) ≈ unprob(A′).

Proof. Let us assume A = (Σ,Q , q0, δ,Π), A′
= (Σ ′,Q ′, q′

0, δ
′,Π ′) and Â constructed as in Definition 6. Since A ≈ A′

for a weak bisimulation R, we have that for all schedulers F and (q, r) ∈ R, there exists a scheduler F ′ such that for all
C ∈ Q ∪ Q ′/R and a ∈ Σ ∪ {τ }, ProbF

Â
(q, τ ∗âτ ∗,C) = ProbF

′

Â
(r, τ ∗âτ ∗,C). Now, if ProbF

Â
(q, a, q′) > 0 for some q′

∈ C,

then there exists a state r ′ and a scheduler F ′ such that ProbF
′

Â
(r, τ ∗âτ ∗, r ′) = ProbF

Â
(q, a, q′) > 0. Therefore, for each step

q
a

−→ q′ there exists r ′ such that r a
H⇒ r ′ and, since q′ and r ′ are in the same equivalence class,R is also aweak bisimulation

for Q̂np, where Q̂np is the set of states of the LTS constructed as in Definition 2 starting from unprob(A) and unprob(A′). The
same holds if we exchange the roles of q and r . �

2.3. The timed model

We introduce the formalism for timed systems togetherwith a notion ofweak bisimulation.We also showhow to remove
time in order to get a nondeterministic system, and that weak bisimulation is preserved when reducing to the untimed
model.

Let us assume a set X of nonnegative real variables called clocks. A valuation over X is a mapping v : X → R≥0 assigning
real values to clocks. For a valuation v and a time value t ∈ R≥0, let v+t denote the valuation such that (v+t)(x) = v(x)+t ,
for each clock x ∈ X .

R. Lanotte et al. / Theoretical Computer Science 411 (2010) 4291–4322 4297

The set of constraints over X , denoted Φ(X), is defined by the following grammar, where φ ranges over Φ(X), x ∈ X ,
c ∈ N, and ∼ ∈ {<,≤,≥, >}:

φ ::= true | false | x ∼ c |φ1 ∧ φ2.

We write v |H φ when the valuation v satisfies the constraint φ. Formally, it holds that v |H true, v |H x ∼ c iff v(x) ∼ c ,
v |H φ1 ∧ φ2 iff v |H φ1 and v |H φ2.

Let B ⊆ X; with v[B]we denote the valuation resulting after resetting all clocks in B. More precisely, v[B](x) = 0 if x ∈ B,
v[B](x) = v(x), otherwise. Finally, with 0we denote the valuation with all clocks reset to 0, namely 0(x) = 0 for all x ∈ X .

Now, we are able to recall the definition of Timed Automata [3].

Definition 8. A Timed Automaton (TA) is a tuple A = (Σ, X,Q , q0, Inv, δ), where:

– Σ is a finite alphabet of actions;
– X is a finite set of nonnegative real variables called clocks;
– Q is a finite set of states and q0 ∈ Q is the initial state;
– Inv : Q → Φ(X) is the invariant function assigning to each state a formula (called state invariant) that must hold in any

instant in which the state is enabled;
– δ ⊆ Q × (Σ ∪ {τ })× Φ(X)× 2X

× Q is a finite set of transitions;

For a state q, we denote with δ(q) the set of transitions with q as source state, i.e. the set {(q1, a, φ, B, q2) ∈ δ | q1 = q}. We
also require that (q0, 0) |H Inv(q0).

A configuration of a TA A is a pair (q, v), where q ∈ Q is a state of A, v is a valuation over X and v |H Inv(q). The initial
configuration of A is represented by (q0, 0).

There is a discrete transition step from a configuration si = (qi, vi) to a configuration sj = (qj, vj) through action a ∈

Σ ∪ {τ }, written si
a

−→ sj, if there is a transition e = (qi, a, φ, B, qj) ∈ δ such that vi |H φ, vj = vi[B], vi |H Inv(qi) and
vj |H Inv(qj).

There is a time step from a configuration si = (qi, vi) to a configuration sj = (qj, vj) through time t ∈ R>0, written

si
t

−→ sj, if qj = qi, vj = (vi + t) and ∀t ′ ∈ [0, t] vi + t ′ |H Inv(qi).
An execution fragment of A is a finite sequence of steps σ = s0

α1
−→ s1

α2
−→ · · ·

αk
−→ sk, where s0, . . . , sk are

configurations, and αi ∈ Σ∪{τ }∪R>0. With ExecFragA we denote the set of execution fragments of A, andwith ExecFragA(s)
we denote the set of execution fragments of A starting from configuration s. We define last(σ) = sk and |σ | = k. For any
j ≤ |σ |, with σ j we define the sequence of steps The execution fragment σ is calledmaximal iff there is not any configuration
s and α ∈ Σ ∪ {τ } such that σ

α
−→ s.

With SA we denote the set of configurations reachable by A, more precisely, SA = {last(σ) | σ ∈ ExecFragA(s0)}.

An execution of A is either a maximal execution fragment or an infinite sequence of steps s0
α1

−→ s1
α2

−→ · · ·, where
s0, s1 . . . ∈ SA and α1, α2, . . . ∈ Σ ∪ {τ } ∪ R≥0. We denote with ExecA the set of executions of A and with ExecA(s) the set of
executions of A starting from s.

Example 6. In Fig. 5 we show an example of a TA. In this example, and in the following ones, we omit the condition on a
transition when the condition is true. We write state invariants in bold face and, again, we omit them when they are equal
to true.

From the initial state q0, the TAmay always perform some time step and update the value of clock x. Transition e1 labeled
with b can be performed by the TA if the value of clock x is less than or equal to 5. Transitions e2 and e3, labeled with a and
leading to states q2 and q3, respectively, may be performed at any time (their guard condition is true). Note, however, that
if transition e2 is performed, then the value of the clock x is reset to 0.

An example of execution fragment of the TA in Fig. 5 is (q0, 0)
9.7

−→ (q0, 9.7)
a

−→ (q2, 0)
3.2

−→ (q2, 3.2), where (q, t)
represents the configuration composed by the state q and the valuation v such that v(x) = t .

Regions. We recall the definitions of clock equivalence [3] and the theory of clock zones [12]. Clock equivalence is an
equivalence relation of finite index permitting us to group sets of evaluations and to have decidability results. Unfortunately,
the number of equivalence classes is exponential w.r.t. the size of the TA. Amore efficient symbolic representation bymeans
of clock zones is introduced (see [26,12]), and this helps in representing parts of the state space in practice.

Let A be a TA; with CA we denote the largest constant appearing in A.
Let us consider the equivalence relation ≈ over clock valuations containing precisely the pairs (v, v′) such that:

– for each clock x, either ⌊v(x)⌋ = ⌊v′(x)⌋, or both v(x) and v′(x) are greater than CA;
– for each pair of clocks x and y with v(x) ≤ CA and v(y) ≤ CA it holds that fract(v(x)) ≤ fract(v(y)) iff fract(v′(x)) ≤

fract(v′(y)) (where fract(·) is the fractional part);
– for each clock xwith v(x) ≤ CA, fract(v(x)) = 0 iff fract(v′(x)) = 0.

4298 R. Lanotte et al. / Theoretical Computer Science 411 (2010) 4291–4322

✒✑✓✏❄
q0

x≤8

✛ b

0≤x≤5✒✑✓✏
q1 ✲

a

x := 0 ✒✑✓✏
q2✟✟

✟✟✟
✟✟✟✯a ✒✑✓✏

q3

e1 = (q0, b, 0 ≤ x ≤ 5,∅, q1)
e2 = (q0, a, true, {x}, q2)
e3 = (q0, a, true,∅, q3)

Fig. 5. Example of TA.

As proved in [3], v ≈ v′ implies that, for any φ ∈ Φ(X) with constants less than or equal to CA, v |H φ iff v′
|H φ. With [v]

we denote the equivalence class {v′
| v ≈ v′

}. The set of equivalence classes is finite. We recall the definition of clock zone
and its properties. For more details see [12,26].

The set of clock zones on X (denoted with Ψ (X)) is the set of formulae ψ such that

ψ ::= true | false | x ∼ c | x − y ∼ c ′
|ψ1 ∧ ψ2

where ∼∈ {<,≤,≥, >}, c ∈ N, c ′
∈ Z and x, y ∈ X .

With ΨC (X) we denote the set of clock zones in Ψ (X) that use integer constants in [−C, C]. We will write v[x := c] to
denote the valuation such that (v[x := c])(x) = c and (v[x := c])(y) = v(y), for any y ≠ x. Moreover, we will write v |H ψ
if ψ is true when valuating each clock x with v(x). Hence, two clock zones are equivalent if are satisfied by the same set of
valuations.

Given a set B = {x1, . . . , xm} ⊆ X , with ∃B.ψ we denote the formula ∃x1. · · · .∃xm.ψ , with ∀x.ψ the formula ¬∃t.¬ψ
and, moreover, with B = 0 we denote the formula


x∈B x = 0 and with ψ[B := B + t] we denote the formula ψ where

each occurrence of x ∈ B is substituted with x + t .

Known properties of clock zones are expressed by the following propositions.We note that a clock zone is a convex space
and can be represented by a Difference Bound Matrix (DBM). Forward operators pose problems if diagonal constraints are
allowed (as shown in [12]). Hence we consider backward operators for which the approximation and symbolic verification
are correct (see [12]).

Proposition 2. Let ψ be a clock zone in Ψ (X) and x ∈ X. A clock zone ψ ′ in Ψ (X \ x) is computable in polynomial time such
that ψ ′ is equivalent to the set of v such that v[x := c] |H ψ , for some c ∈ R≥0.

With abuse of notation, from now on, we will write ∃x.ψ to denote its equivalent clock zone.
The following proposition gives an upper bound to the number of clock zones.

Proposition 3. There exists Ψ ′
⊂ ΨC (X) with exponential cardinality w.r.t. C and |X | such that each clock zone in ΨC (X) is

equivalent to a clock zone in Ψ ′.

Hence from now on we can suppose that the set of clock zones in ΨC (X) has finite cardinality.

Definition 9. Let A be a TA with states in Q and clocks in X; a region of A is a pair (q, ψ)where q ∈ Q and ψ ∈ Ψ (X).

Example 7. As an example the clock zone x > 0∧x ≤ 10 expresses the set of valuations assigning to x a real value in (0, 10].
Hence the region (q1, x > 0∧ x ≤ 10) of the TA of Fig. 5 represents the set of configurations (q1, v) such that v(x) ∈ (0, 10].

The following proposition states that the set of configurations reachable by performing either a discrete or a time step
starting from a set of configurations expressed by a region, is a region.

Proposition 4. Given a region (q, ψ) and a transition e = (q′, a, φ, B, q), the set of configurations {(q′, v) | v |H φ ∧

Inv(q′) and v[B] |H ψ ∧ Inv(q)} from which it is possible to reach a configuration within the region (q, ψ) by a discrete step
triggered by e, is equal to the region (q′, φ ∧ Inv(q′) ∧ ∃B.(ψ ∧ B = 0 ∧ Inv(q))).

The set of configurations {(q, v) | v + t |H ψ and v + t ′ |H Inv(q) for some t ∈ R>0 and for all t ′ ∈ [0, t]} from which it
is possible to reach a configuration expressed by (q, ψ) by means of a time step, is equal to the region (q, ∃t.t > 0 ∧ ψ[X :=

X + t]∧∀t ′ ∈ [0, t].Inv(q)[X := X + t ′]). Moreover, ifψ ∈ ΨC (X), then ∃t.t > 0∧ψ[X := X + t]∧∀t ′ ∈ [0, t].Inv(q)[X :=

X + t ′] ∈ ΨC (X).

Example 8. As an example the set of configurations that can reach with a transition step a configuration expressed by the
region (q1, x > 0 ∧ x ≤ 5) of the TA of Fig. 5, is expressed by the region (q0, x > 0 ∧ x ≤ 5). Moreover, the set of
configurations that can reach with a time step a configuration expressed by the region (q0, x > 5∧ x ≤ 8) of the TA of Fig. 5
is expressed by the region (q0, x ≥ 0 ∧ x < 8).

R. Lanotte et al. / Theoretical Computer Science 411 (2010) 4291–4322 4299

✒✑✓✏❄
r0✛ b

0≤y≤3✒✑✓✏
r1 ✲

a

y := 0 ✒✑✓✏
r2✟✟

✟✟✟
✟✟✟✯a ✒✑✓✏

r3

e1 = (r0, b, 0 ≤ y ≤ 3,∅, r1)
e2 = (r0, a, true, {y}, r2)
e3 = (r0, a, true,∅, r3)

Fig. 6. Example of weak bisimulation for TAs.

Now, it is obvious that, due to the discrete step, we can reach regions that contain constants that are not in [−CA, CA].
Thus, we need an approximation for discrete steps.

If ψ is a clock zone of A, we denote with ApA(ψ) the set {v | ∃v′
≈ v s.t. v′

|H ψ}.
The following proposition, proved in [12], states that ApA returns a clock zone.

Proposition 5 (Approximation). ApA(ψ) ∈ ΨCA(X).

The following theorem, proved in [12], states the correctness of the operator Ap.

Theorem 1. The sequence of steps (q0, v0)
α0

−→ (q1, v1)
α1

−→ · · · is an execution of A iff there exists a sequence of regions
(q0, ψ0), (q1, ψ1) . . . such that, for all i, vi |H ψi and, if αi ∈ Σ∪{τ }, thenψi = ApA(φ∧ Inv(qi)∧∃B.ψi+1∧B = 0∧ Inv(qi+1))
for some transition (qi, αi, φ, B, qi+1), and, otherwise, ψi = ∃t.t > 0 ∧ ψi+1[X := X + t] ∧ ∀t ′ ∈ [0, t].Inv(qi)[X := X + t ′]
and qi+1 = qi. Moreover, each ψi is computable in polynomial time w.r.t. C and |X |.

Behavioural equivalence. The definition of weak bisimulation introduced for LTSs (see Definition 2) can be naturally adapted
for TAs.

Definition 10. Let A = (Σ, X,Q , q0, Inv, δ) be a TA. A weak bisimulation on A is an equivalence relation R ⊆ SA × SA such
that for all (s, r) ∈ R and ∀α ∈ Σ ∪ {τ } ∪ R>0 it holds that:

– if s
α

−→ s′, then there exists r ′ such that r α
H⇒ r ′ and (s′, r ′) ∈ R;

– conversely, if r
α

−→ r ′, then there exists s′ such that s α
H⇒ s′ and (s′, r ′) ∈ R.

Two configurations s, r are calledweakly bisimilar on A (denoted s ≈A r) iff (s, r) ∈ R for some weak bisimulation R. (Note
that a weak time transition is of the form

τ
−→ · · ·

τ
−→

t
−→

τ
−→ · · ·

τ
−→ with t ∈ R>0.)

Two TAs A = (Σ, X,Q , q0, Inv, δ) and A′
= (Σ ′, X ′,Q ′, q′

0, Inv
′, δ′) such that Q ∩Q ′

= ∅ and X ∩ X ′
= ∅ are called weakly

bisimilar (denoted by A ≈ A′) if, given the TA

Â = (Σ ∪Σ ′, X ∪ X ′,Q ∪ Q ′
∪ {q̂}, q̂, ˆInv, δ ∪ δ′

∪ {(q̂, τ , true,∅, q0), (q̂, τ , true,∅, q′

0)}),

with

ˆInv(q) =

true if q = q̂
Inv(q) if q ∈ Q
Inv′(q) if q ∈ Q ′

it holds that (q0, 0) ≈Â (q
′

0, 0), where the valuation 0 is defined over all clocks of the set X ∪ X ′.

Again, note that it is always possible to obtain Q ∩ Q ′
= ∅ and X ∩ X ′

= ∅ by state and clock renaming.

Example 9. Let A′ be the TA in Fig. 6, and A the TA in Fig. 5. We have that A ≉ A′ since from the initial configuration
(q0, x = 0), TA A may perform a time step of duration 5 and then, from configuration (q0, x = 5) a discrete transition step
labeled with b. On the contrary, from (r0, y = 0), TA A′, by performing a time step of duration 5, reaches configuration
(r0, y = 5) from which a discrete transition step labeled with b is not possible anymore.

Removing time. Given a TA A, we call untime(A) the LTS obtained as the region automaton of A. Intuitively, the region
automaton (see [3]) is obtained by considering timed regions as states. Note that in the region automaton there might
be an admissible step between regions R and R′ with symbol a also if there is an admissible run s

t
−→ s′′

a
−→ s′ of the TA

such that t ∈ R>0 and where s ∈ R and s′ ∈ R′. We use the silent label τ to label all the transitions of the LTS untime(A)
arising from time steps of the TA A. Intuitively, time steps are not visible anymore in the untimed setting.

Definition 11. Given a TA A = (Σ, X,Q , q0, Inv, δ), we define the LTS untime(A) as the tuple (Σ,Q × V, (q0, [0]), δ′),
where V is the set of equivalence classes of the valuations of A:

4300 R. Lanotte et al. / Theoretical Computer Science 411 (2010) 4291–4322

A untime(A)

✒✑✓✏
✲ q0 ✲a, x=0 ✒✑✓✏

q1 ✒✑✓✏
✲ u0 ✲a ✒✑✓✏

u1

✻
τ

✒✑✓✏
u3

✻
τ

✒✑✓✏
u2

Fig. 7. Example of untime(A).

– ((q, [v]), τ , (q, [v′
])) ∈ δ′ iff v′

= v + t for some time t ∈ R>0 and v′
|H Inv(q) (note that we do not need to check each

time in [0, t] since we are considering convex spaces);
– ((q, [v]), a, (q′, [v′

])) ∈ δ′ iff (q, a, φ, B, q′) ∈ δ, v |H φ ∧ Inv(q) and v′
= v[B] |H Inv(q′).

Example 10. In Fig. 7 we show the TA A and its untimed version, the LTS untime(A). States u0, u1, u2 and u3 correspond,
respectively, to the pairs (q0, [v0]), (q1, [v0]), (q1, [v1]) and (q0, [v1]), where [v0] = {v | v(x) = 0} and [v1] = {v | v(x) > 0}.
In the figure we omitted self-loop transitions (ui, τ , ui) for i ∈ {2, 3}.

Given an execution σ = (q0, v0)
α1

−→ · · ·
αn

−→ (qn, vn) of a TA A, with [σ] we denote the corresponding execution

(q0, [v0])
α′
1

−→ · · ·
α′
n

−→ (qn, [vn]) of untime(A)where α′

i = αi if αi ∈ Σ ∪ {τ } and α′

i = τ if αi ∈ R>0. We also say that σ is a
timed instance of [σ] (written σ ∈ [σ]).

As a consequence of Lemma 4.13 in [3] we have the following result.

Lemma 2. Given a TA A, if σ is an execution fragment of A, then [σ] is an execution fragment of untime(A). Vice versa, if [σ] is
an execution fragment of untime(A), then there exists σ ′

∈ [σ] such that σ ′ is an execution fragment of A.

The following conservativeness result holds.

Lemma 3. Given TAs A and A′, A ≈ A′
⇒ untime(A) ≈ untime(A′).

Proof. The implication holds by the construction of the region automaton untime(A) and by Lemma 2. Actually, for each
sequence of steps of a TA, there exists an analogous sequence of the LTS obtained with untime(A) and vice versa. Weak
bisimulation is, therefore, preserved. �

3. Probabilistic Timed Automata

The framework of Probabilistic Timed Automata (PTAs) allows the description of timed systems showing a probabilistic
behaviour, in an intuitive and succinct way. Therefore, within the framework of PTAs, where time and probabilities are
taken into consideration, the modeler can describe, on a single model, different aspects of a system, and analyze real-time
properties, performance and reliability properties.

Our definition of PTAs is inspired by the definitions in [11,35,2]. Intuitively, our definition of PTA derives from the idea
of putting a PA (obtained by adding probabilities to an LTS) into a timed context (which adds temporal constraints to
transitions and states, thus guarding some of the possible steps). Note, again, that translations can be given from our model
of Probabilistic Timed Automata to the others, and vice versa.

As for PAs, we give a definition of Probabilistic Timed Automata where probability distributions are defined over the set
of transitions. This choice, while requiring some particular attention in the definition of the semantics, allows us to easily get
rid of probabilitieswhen reducing to the non probabilistic case. Such a definition requires, in particular, the re-normalization
of probabilities when time guards prevent the execution of some transitions. In a sense, time becomes a resource the PTA
might consume and adds new constraints on the possible execution of the automaton.

Definition 12. A Probabilistic Timed Automaton (PTA) is a tuple A = (Σ, X,Q , q0, Inv, δ,Π), where:

– Σ is a finite alphabet of actions;
– X is a finite set of nonnegative real variables called clocks;
– Q is a finite set of states and q0 ∈ Q is the initial state;
– Inv : Q → Φ(X) is a function assigning a constraint φ ∈ Φ(X) (called state invariant) to each state in Q ;
– δ is a finite set of transitions in Q ×Σ × Φ(X)× 2X

× Q ;
– Π = {π1, . . . , πn} is a finite set of probability distributions as functions πi : δ → [0, 1], for any i = 1, . . . , n, where
πi(e) is the probability of performing transition e according to distribution πi.

For a state q ∈ Q , we denote with δ(q) the set of transitions with q as source state, i.e. the set δ(q) = {(q′, a, φ, B, q′′) ∈

δ | q′
= q}. We require that

∑
e∈δ(q) πi(e) = 1 for any i and q. Moreover, we assume that for all ej there exists some πi such

that πi(ej) > 0.

R. Lanotte et al. / Theoretical Computer Science 411 (2010) 4291–4322 4301

3.1. Semantics of Probabilistic Timed Automata

Configurations, steps, execution fragments, and executions of a PTA are defined as for TAs.
Given a configuration s = (q, v), with Adm(s) = {(q, a, φ, B, q′) ∈ δ | v |H φ and v[B] |H Inv(q′)} we represent

the set of admissible transitions that an automaton could execute from configuration s, and we say that a transition in
Adm(s) is enabled in s. Given two configurations s = (q, v), s′ = (q′, v′), and given a ∈ Σ ∪ {τ }, we represent with
Adm(s, a, s′) = {(q, a, φ, B, q′) ∈ δ | v |H φ ∧ v′

= v[B] |H Inv(q′)} the set of transitions that lead from configuration s to
configuration s′ through a transition step labeled with a. A configuration s = (q, v) is called terminal iff Adm(s′) = ∅ for all
s′ = (q, v + t)with t ∈ R≥0; we denote with ST the set of terminal configurations.

The probability of executing a transition step from a configuration s is chosen, among all the transitions enabled in s,
according to the values returned by some distribution π , while we set the probability of executing a time step labeled with
t ∈ R>0 to the value 1. Intuitively, a PTA chooses nondeterministically the distribution of a transition step or to let time
elapse by performing a time step, and, in this case, also the amount of time passed is chosen nondeterministically.

Executions and execution fragments of a PTA arise by resolving both the nondeterministic and the probabilistic
choices [35]. To resolve the nondeterministic choices of a PTA, we introduce now schedulers of PTAs.

A scheduler of a PTA A is a partial function from ExecFragA toΠ ∪ R>0. Given a scheduler F and an execution fragment σ ,
we assume that F is defined for σ if and only if ∃s ∈ SA and α ∈ Σ ∪ {τ } ∪ R>0 such that last(σ)

α
−→ s.

For a scheduler F of a PTAAwedefine ExecFragF
A (resp. ExecFA) as the set of execution fragments (resp. the set of executions)

σ = s0
α1

−→ s1
α2

−→ s2
α3

−→ · · · of A such that, for any i,αi ∈ R>0 iff F(σ i−1) = αi, andαi ∈ (Σ∪{τ }) iff ∃e ∈ Adm(si−1, αi, si)
and πi(e) > 0 where πi = F(σ i−1).

Given a scheduler F and an execution fragment σ = s0
α1

−→ s1
α2

−→ s2
α3

−→ · · ·
αk

−→ sk ∈ ExecFragF
A , if k = 0 we put

PF
A (σ) = 1, else, if k ≥ 1, we define PF

A (σ) = PF
A (σ

k−1) · p where

p =



−
e∈Adm(sk−1,αk,sk)

(F(σ k−1))(e)−
e∈Adm(sk−1)

(F(σ k−1))(e)
if αk ∈ Σ ∪ {τ }

1 if αk ∈ R>0.

Notice that such ameasure is consistent, sincewe are assuming that, given the execution fragment σ , there is a step from
sk−1 to sk labeled with αk. Now, if αk ∈ R>0, then p = 1, otherwise the probability of going from sk−1 to sk through a discrete
transition labeled with αk is re-normalized according to the transitions enabled in sk−1. In this latter case, Adm(sk−1) ≠ ∅,
since there exists at least the step sk−1

αk
−→ sk.

Given a scheduler F , let ExecFA (s) be the set of executions in ExecFA starting in s, ExecFragF
A (s) be the set of execution

fragments in ExecFragF
A starting in s, and σFieldFA(s) be the smallest sigma field on ExecFA (s) containing the basic cylinders σ↑,

where σ ∈ ExecFragF
A (s). The probability measure ProbFA is the unique measure on σFieldFA(s) such that ProbFA(σ↑) = PF

A (σ).

Remark. Note that, given a PTA A and a scheduler F , the executions of A driven by F do not contain any nondeterministic
choice. Hence, a PTA A driven by a scheduler F gives rise to a fully probabilistic behaviour.

Example 11. In Fig. 8 we show an example of a PTA with Π = {π}. Intuitively, from the initial configuration (q0, 0), the
PTA may nondeterministically choose whether to perform some time step and update the value of clock x or to perform,
probabilistically, transitions e1, e2 or e3 with probabilities 1

6 ,
1
3 and 1

2 , respectively.
If some time step is performed in state q0, such that the value of clock x becomes greater than 5, then the transition labeled

with b cannot be performed anymore, and the probabilities of performing the other transitions should be redistributed. In
this case, even if the transition was at some point enabled in state q0, we might intuitively say that the automaton has
consumed too much time resources to be able to perform transition e1 anymore. Even if the case is quite simple in the
depicted automaton, similar situations may arise whenever the automaton returns to a certain state at different times and
some of the transitions may not be enabled anymore. Note that re-normalizing probability at run-time allows us to relax
the condition of admissible target states used in [35].

For appropriately chosen F and F ′, examples of executions of the PTA in Fig. 8 are σ1 = (q0, 0)
9.7

−→ (q0, 9.7)
a

−→

(q2, 0)
3

−→ (q2, 3) and σ2 = (q0, 0)
3

−→ (q0, 3)
b

−→ (q1, 3)
1.2

−→ (q1, 4.2)with PF (σ1) =
2
5 and PF ′

(σ2) =
1
6 , where (q, t)

represents the configuration composed by the state q and the valuation v such that v(x) = t . Please notice the difference
between F , which chooses to wait 9.7 time units before taking a discrete transition, and F ′, which chooses to wait only 3
time units.

In the following, A is a PTA, F is a scheduler of A, α̂ stands for α if α ∈ Σ ∪ R>0 and for ε (the empty string) if α = τ ,
s ∈ SA and C ⊆ SA.

Let ExecFA (s, τ
∗α̂τ ∗,C) be the set of executions that lead to a configuration in C via a sequence belonging to the set of

sequences τ ∗α̂τ ∗ starting from the configuration s and crossing configurations equivalent (according to our bisimulation
relation) to s. Finally, we define the probability ProbFA(s, τ

∗α̂τ ∗,C) = ProbFA(Exec
F
A (s, τ

∗α̂τ ∗,C)).

4302 R. Lanotte et al. / Theoretical Computer Science 411 (2010) 4291–4322

✒✑✓✏❄
q0

x≤8

✛
b, 1

6

0≤x≤5✒✑✓✏
q1 ✲

a, 1
3

x := 0 ✒✑✓✏
q2✟

✟✟✟
✟✟✟

✟✯a, 1
2 ✒✑✓✏

q3

e1 = (q0, b, 0 ≤ x ≤ 5,∅, q1) π(e1) =
1
6

e2 = (q0, a, true, {x}, q2) π(e2) =
1
3

e3 = (q0, a, true,∅, q3) π(e3) =
1
2∑

e∈δ(q0)
π(e) = 1

Fig. 8. Example of PTA.

3.2. Regions of PTAs

In [35] it as been shown that for forward symbolic reachability, the computation of probability could be an
overapproximation due to the time successor operator. To solve this problem, we have split transition steps from time
steps in the region graph. Moreover, we have defined a special function Clean that considers a time predecessor for a set of
regions instead of a single region. Hence, for the timed regions of PTAs, we have exactly the same concepts and properties
given for regions of TAs in Section 2.3.

3.3. Behavioural equivalence

We introduce a notion of weak bisimulation for PTAs.
As already mentioned, weak internal transitions s τ

H⇒ s′ are replaced by the probability Prob(s, τ ∗, s′) of reaching
configuration s′ from s via internal moves. Similarly, for visible actions α, transitions s α

H⇒ s′ are replaced by the probability
Prob(s, τ ∗ατ ∗, s′). The next definition is obtained by adapting Definition 5 to the model of PTAs.

Definition 13. Let A = (Σ, X,Q , q0, Inv, δ,Π) be a PTA. A weak bisimulation on A is an equivalence relation R on SA such
that, for all schedulers F and (s, s′) ∈ R, there exists a scheduler F ′ such that for all C ∈ SA/R and α ∈ Σ ∪ {τ } ∪ R>0:

ProbFA(s, τ
∗α̂τ ∗,C) = ProbF

′

A (s
′, τ ∗α̂τ ∗,C)

and vice versa.
Two configurations s, s′ are called weakly bisimilar on A (denoted s ≈A s′) iff (s, s′) ∈ R for some weak bisimulation R.

Again, in order to define weak bisimulation among PTAs, we resort to the notion of a disjoint sum of automata.

Definition 14. Let A = (Σ, X,Q , q0, Inv, δ,Π) and A′
= (Σ ′, X ′,Q ′, q′

0, Inv
′, δ′,Π ′) such that Q ∩Q ′

= ∅ and X ∩X ′
= ∅.

Let

Â = (Σ ∪Σ ′, X ∪ X ′,Q ∪ Q ′
∪ {q̂}, q̂, ˆInv, δ ∪ δ′

∪ {(q̂, τ , true,∅, q0), (q̂, τ , true,∅, q′

0)}, Π̂),

where π̂1, π̂2 ∈ Π̂ such that π̂1(e) = 1 if e = (q̂, τ , true,∅, q0), 0 otherwise, and π̂2(e) = 1 if e = (q̂, τ , true,∅, q′

0), 0
otherwise; moreover, for each couple (π, π ′) ∈ Π ×Π ′, π̂ ∈ Π̂ such that:

π̂(e) =


π(e) if e ∈ δ
π ′(e) if e ∈ δ′.

The invariant conditions of Â are given by:

ˆInv(q) =

true if q = q̂
Inv(q) if q ∈ Q
Inv′(q) if q ∈ Q ′.

We say that A and A′ are weakly bisimilar (denoted by A ≈ A′) if (q0, 0) ≈Â (q
′

0, 0), where the valuation 0 is defined over all
clocks of the set X ∪ X ′.

Example 12. Consider the PTAs of Fig. 9. Intuitively, they both can perform action a or action b before 5 time units, with
equal probability 1

2 . By applying the notion of weak bisimulation introduced above, the two PTAs turn out to be equivalent.
Please note that the probabilities in A2 are re-normalized according to the transitions enabled in the different configurations.
Let Â be the automaton built from the automata A1 and A2 by following the procedure described in Definition 14.

We call π1 the only probability distribution of A1 and π2 the only probability distribution of A2.

R. Lanotte et al. / Theoretical Computer Science 411 (2010) 4291–4322 4303

A1 A2

✲✒✑✓✏
q0

✡
✡

✡
✡✡✢

a, 1
2

x ≤ 5

✒✑✓✏
q1

❏
❏

❏
❏❏❫

b, 1
2

x ≤ 5

✒✑✓✏
q2

✲✒✑✓✏
r0 ✠

τ , 1
3 , z > 5

✡
✡

✡
✡✡✢

a, 1
3

z ≤ 5

✒✑✓✏
r1

❏
❏

❏
❏❏❫

b, 1
3

z ≤ 5

✒✑✓✏
r2

Fig. 9. A1 ≈ A2 .

With R we denote the equivalence relation on SÂ such that ((q, v), (r, v′)) ∈ R if one of the following requirements
holds:

– q = q0, r = r0 and 0 ≤ v(x) = v′(z) ≤ 5.
– q = q0, r = r0 and v(x) = v′(z) > 5.
– q ∈ {q1, q2} and r ∈ {r1, r2} and v(x) = v′(z).

Note that the case x ≠ z is not considered since no reachable configuration allows this case.
Moreover, the set of classes has infinite cardinality. Actually, each value in [0, 5] generates a class. Hence, for any

m ∈ [0, 5], we call Cm the class composed by the two configurations {(q0, x = m), (r0, z = m)}. As we will see,
to solve the problem of the infiniteness of classes, the algorithm we propose groups the set of {Cm}m∈[0,5] in the triple
(q0, r0, x ≤ 5 ∧ x = z).

With C we denote the set of classes containing each configuration (q0, v) and (r0, v) such that v(x) = v(z) > 5. This
set of classes can be represented by the triple (q0, r0, x = z ∧ x > 5). Finally, with C ′ we denote the class containing each
configuration (q, v) such that q ∈ {q1, q2} and (r, v) such that r ∈ {r1, r2} and v(x) = v(z).

In the following we assume α ∈ {a, b, τ } ∪ R>0, where α is chosen according to a scheduler F and a distribution πi.
We consider the case in which the configuration is in a state of A2, the other case is easier since from q0 there is not any

τ transition.
Given s = (r0, v) ∈ Cm and s′ = (q0, v′) ∈ Cm and a scheduler F . We have the following cases:

– If ProbF (s, τ ∗,Cm) = 1, then ProbF
′

(s′, τ ∗,Cm) = 1, for any scheduler F ′. Namely, ϵ ∈ τ ∗.
– If ProbF (s, τ ∗ατ ∗,Cm+α) = 1 where α ∈ R>0 and α ≤ 5 − m, then it is possible to choose F ′ such that

ProbF
′

(s′, τ ∗ατ ∗,Cm+α) = 1 where F ′(s′) = α.
– If ProbF (s, τ ∗ατ ∗,C) = 1where α ∈ R>0 and α > 5−m, then it is possible to choose F ′ such that ProbF

′

(s′, τ ∗ατ ∗,C) =

1 where F ′(s′) = α.
– If ProbF (s, τ ∗ατ ∗,C ′) =

1
2 where α ∈ {a, b}, then it is possible to choose F ′ such that ProbF

′

(s′, τ ∗ατ ∗,C ′) =
1
2 where

F ′(s′) = π1.

Moreover, for each s ∈ C we have that if ProbF (s, τ ∗ατ ∗,C) = 1 where α ∈ R>0, then ProbF
′

(s′, τ ∗ατ ∗,C) = 1 where
F ′(s′) = α. Similarly for each s ∈ C ′.

The probability of any other case we have not considered here is 0 for any scheduler F . In this case, in order to show the
weak bisimulation, it has been sufficient to consider F ′

= F .
Now, R is a weak bisimulation on Â and, since (q0, 0) and (r0, 0) are in the same class, A1 and A2 are weakly bisimilar.

The next example shows a subtle feature of weak bisimulation for PTAs. Namely, internal actions, even if not visible, may
alter the probability of observing the passage of time.

Example 13. Consider the PTAs of Fig. 10. Intuitively, both of them, eventually, perform action lwith probability 1 and then
reach a terminal configuration. At a first glance the two automata appear to be bisimilar, however, the internal move in A2
allows a scheduler to make different the probability of observing passage of time with respect to A1. Namely, A1 and A2 are
not bisimilar because there exists no scheduler F of A1 able to simulate the behaviour induced by the following scheduler F ′:

F ′(σ0) = π σ0 = (r0, 0)
F ′(σ1) = 1 σ1 = (r0, 0)

τ
−→ (r0, 0)

F ′(σ2) = π σ2 = (r0, 0)
τ

−→ (r0, 0)
1

−→ (r0, 1)
. . .

where π is the only probability distribution of A2 depicted in Fig. 10.

4304 R. Lanotte et al. / Theoretical Computer Science 411 (2010) 4291–4322

A1 A2

✲✒✑✓✏
q0 ✲✒✑✓✏

q1
l

✲✒✑✓✏
r0 ✠

τ , 1
2

✲✒✑✓✏
r1

l, 1
2

Fig. 10. A1 ≉ A2 .

If C is the class containing the configuration (r0, 1)we have that ProbF
′

A2
((r0, 0), τ ∗1τ ∗,C) =

1
2 , and no scheduler exists

for A1 with the same property.
If we consider this aspect from a security analysis point of view (in the context of noninterference), the action τ in

A2 could represent an invisible high level action h one wants to hide from a low level observer. In such a probabilistic
timed system, however, as shown above, a scheduler may exploit the probabilistic execution of the action h (τ) to alter
the observation of the passage of time. In this case, the probabilistic and timed features of the system could give rise to a
probabilistic/timed covert channel (an high level activity affects the observable behaviour of the system): since action h (τ)
competes probabilistically with action l, the low level observation of the passage of time could be probabilistically different
in the two automata.

If we replace the probabilistic distribution π in A2 with two distributions π1 and π2 assigning, respectively, probability
1 to each of the two transitions, the two PTAs turn out to be weakly bisimilar. In such a case, in fact, the internal action in
A2 is not any more in competition with the observable action l.

3.4. Removing probability and time from PTAs

Given a PTA A, we call unprob(A) the TA obtained from A by simply removing probabilities from A. This can be done since
we assumed that for each transition of A there is at least a probability distribution which assigns a probability greater than
0 to such a transition (see Definition 12).

Definition 15. Given a PTA A = (Σ, X,Q , q0, Inv, δ,Π), unprob(A) = (Σ, X,Q , q0, Inv, δ).

Example 14. Let A be the PTA in Fig. 8. If we remove probabilities from A the TA unprob(A) can be found in Fig. 5.

Given a PTAA, we call untime(A) the PA obtained as the region automaton ofA, with probability functions chosen according
toΠ . Intuitively, the region automaton is obtained by considering timed regions as states. Note that in the region automaton
there might be a step between regions R and R′ with symbol a also if there is an admissible run s

t
−→ s′′

a
−→ s′ of the PTA

such that t ∈ R>0 and where s ∈ R and s′ ∈ R′. Since time steps are no more visible in the untimed setting, we use the silent
action τ to label all the transitions of the PA untime(A) arising from time steps of the PTA A.

Definition 16. Given a PTA A = (Σ, X,Q , q0, Inv, δ,Π), we define the PA untime(A) = (Σ,Q ×V, (q0, [0]), δ′,Π ′)where
V is the set of equivalence classes of the valuations of A:

– e = ((q, [v]), τ , (q, [v′
])) ∈ δ′ iff v′

= v+ t for some time t ∈ R>0; moreover, there exists πe ∈ Π ′ such that πe(e) = 1;
– e = ((q, [v]), a, (q′, [v′

])) ∈ δ′ iff (q, a, φ, B, q′) ∈ δ, v |H φ and v′
= v[B]; moreover, for all πl ∈ Π , π ′

l ∈ Π ′ such that

π ′

l (e) =

∑
ei∈Adm((q,v),a,(q′,v′)) πl(ei)∑

ej∈Adm((q,v)) πl(ej)
if

∑
ej∈Adm((q,v)) πl(ej) ≠ ∅ and π ′

l (e) = 0 otherwise.

Example 15. In Fig. 11we show the PTA A and its untimed version, the PA untime(A) = (Σ ′,Q ′, u0, δ
′,Π ′). States u0, u1 and

u2 correspond, respectively, to the pairs (q0, [v0]), (q1, [v0]) and (q2, [v0]), where [v0] = {v | v(x) = 0}. States u′

0, u
′

1 and u′

2
correspond, respectively, to the pairs (q0, [v1]), (q1, [v1]) and (q2, [v1]), where [v1] = {v | v(x) > 0}. Again, we omitted the
self-loop transitions labeled with τ that arise from time steps of the PTA that do not change the region.

Note that, since in state u′

0 it holds x > 0, the transition labeled with a from q0 to q2 cannot be executed (it has constraint
x = 0). Such a transition is lost in the PA untime(A) and probabilities are redistributed (actually transition with label b
gets probability 1). Namely, there is a distribution π ′ in Π ′ (obtained by re-normalizing the only probability distribution
of the PTA A) such that π ′((u0, b, u1)) =

2
3 , π

′((u0, a, u2)) =
1
3 and π ′((u′

0, b, u
′

1)) = 1, while for any other transition e
(corresponding to a time step in A), there is a distribution πe ∈ Π such that πe(e) = 1.

Given an execution σ = (q0, v0)
α1

−→ · · ·
αn

−→ (qn, vn) of A, with [σ] we denote the corresponding execution

(q0, [v0])
α′
1

−→ · · ·
α′
n

−→ (qn, [vn]) of untime(A) where α′

i = αi if αi ∈ Σ ∪ {τ } and α′

i = τ if αi ∈ R>0. We also say
that σ is a timed instance of [σ] (written σ ∈ [σ]).

As a consequence of Lemma 4.13 in [3] and Lemma 4.8 in [37], we have the following result.

Lemma 4. Given a PTA A, we have that, for any scheduler F of A, there exists a scheduler F ′ of untime(A) such that, for any
σ ∈ ExecFragF

A , Prob
F
A(σ) = ProbF

′

untime(A)([σ]). Vice versa, for any scheduler F of untime(A), there exists a scheduler F ′ of A such
that, for any [σ] ∈ ExecFragF

untime(A), Prob
F
untime(A)([σ]) = ProbF

′

A (σ
′) for some σ ′

∈ [σ].

R. Lanotte et al. / Theoretical Computer Science 411 (2010) 4291–4322 4305

A untime(A)

✒✑✓✏
✲ q0

✻
b, 2

3

✒✑✓✏
q1

✲a, 1
3

x=0 ✒✑✓✏
q2

✒✑✓✏❄
u0 ✲a, 1

3 ✒✑✓✏
u2

❄

τ

✒✑✓✏
u′

2

❄

τ

✒✑✓✏
u′

0

✛b, 2
3✒✑✓✏

u1

❄

τ

✒✑✓✏
u′

1
✛ b

Fig. 11. Example of untime(A).

The followingproposition states that given a PTA,wemayobtain a LTS by removing time andprobability in two successive
steps, no matter about the order.

Proposition 6. Given a PTA A, unprob(untime(A)) = untime(unprob(A)).

Proof. The proof derives trivially from the construction of the region automaton in the untime operators for PTAs and TAs.
Actually, by definition of the untime operators, the sets of transitions of untime(A) and unprob(untime(A)) are exactly the
same. Now, the LTS obtained from a PTA does not change if we remove probabilities through the unprob operator either
before or after applying the untime construction. Consistency holds since we assumed that for each transition of A there is
at least a probability distribution which assigns to such a transition a probability greater than 0 (see Definition 12). �

The following conservativeness result holds.

Lemma 5. Given PTAs A and A′ such that A ≈ A′, the following statements hold:
1. unprob(A) ≈ unprob(A′);
2. untime(A) ≈ untime(A′).

Proof. For case 1, let us assume A = (Σ, X,Q , q0, Inv, δ,Π), A′
= (Σ ′, X ′,Q ′, q′

0, Inv
′, δ′,Π ′) and Â constructed as in

Definition 14. Since A ≈ A′ for a weak bisimulation R, we have that for all schedulers F and (s, r) ∈ R, there exists a
scheduler F ′ such that for all C ∈ SÂ/R and α ∈ Σ ∪ {τ } ∪ R>0, ProbF

Â
(s, τ ∗ατ ∗,C) = ProbF

′

Â
(r, τ ∗ατ ∗,C). Now, if

ProbF
Â
(s, α, s′) > 0 for some s′ ∈ C there exists a configuration r ′ and a scheduler F ′ such that ProbF

′

Â
(r, τ ∗ατ ∗, r ′) =

ProbF
Â
(s, α, s′) > 0. Therefore if s

α
−→ s′, then there exists r ′ such that r α

H⇒ r ′ and, since s′ and r ′ are in the same

equivalence class, R is also a weak bisimulation on SÂnp , where Ânp is the TA constructed as in Definition 10 starting from
unprob(A) and unprob(A′). The same holds if we exchange the roles of s and r .

For case 2, the implication holds by the construction of the region automaton and by Lemmata 4 and 2. Actually, for
each run of a PTA (or TA), there exists an analogous run for the PA (or LTS) obtained with untime(A), and vice versa. Weak
bisimulations are, therefore, preserved. �

4. Decidability of weak bisimulation for PTAs

In this section we develop an algorithm which computes the classes of the weak bisimulation equivalence and decides
whether two configurations are weakly bisimilar by checking that they are in the same class. To do this, we have to check
the condition of Definition 14.

In particular, we resort to disjoint sets of clocks in order to describe pairs of configurations ((q, v), (q′, v′)) within a
certain equivalence relation. We use X to represent the evaluations of the clocks in X for configuration (q, v), and X to
represent the evaluations for configuration (q′, v′)where X = {x | x ∈ X}.

Example 16. Consider the PTAs in Fig. 12. In the untimed version, the probability of reaching q4 from the state q2 is 1
2 . Now,

in the timed version, we observe that in state q2, when clock x has value smaller than 3, the automaton may execute both
transitionswith probability 1

2 . Otherwise, if clock x has value greater than 3, the transition labeledwith a cannot be executed,
and hence the probability has to be redistributed; in such a case the probability of executing the transition with action a
is 0, whereas the transition labeled with b gets probability 1. Therefore, we need to consider the different cases in which a
subset of transitions are enabled or not.

Moreover, we might consider using the algorithm for the untimed version on the region graphs of the two automata, i.e.
the graph of regions resulting by applying the untime operator. However, this is not a good solution; in fact, if we consider
the clock zone reached in state q1 we have x ≥ 0 and in state q6 we have x ≥ 0. Let us suppose that one wants to compare
the probability of reaching q2 from q1 with the probability of reaching q7 from q6. Now, wemust check the two probabilities
for each time α ∈ R≥0, and these are equal for every time if and only if the value of x in q1 is equal to the value of x in q6.
This means that we cannot consider the clocks separately, but we must have formulae on all the pairs of states.

Hence, we have to consider formulae that express conditions on the value of clocks at state q1 together with the value of
clocks at state q6. As an example the triple (q1, q6, x = x)means that the value of clock x at state q1 is equal to the value of
clock x at state q6. Thus, a set of bisimilar configurations (called class) can be expressed by a set of triples.

4306 R. Lanotte et al. / Theoretical Computer Science 411 (2010) 4291–4322

✲x = 0 ✒✑✓✏
q0 ✲τ

❄
τ

✒✑✓✏
q1 ✲τ

x ≤ 5 ✒✑✓✏
q2 ✏✏✏✏✶

PPPPq

✒✑✓✏
q3

✒✑✓✏
q4

1
2

a
x < 3

1
2 b

✒✑✓✏
q5 ✲τ ✒✑✓✏

q6 ✲τ

x ≤ 5 ✒✑✓✏
q7 ✒✑✓✏

q8✲
1
2 a

❪
1
2 τ

Fig. 12. An example on our methodology.

For deciding our notion of weak bisimulation, we follow the classical approach of refining relations between
configurations [48,33,7,15]. In particular, starting from the initial relation where all the configurations of a PTA are
equivalent, we stepwise specialize relations until we obtain a weak bisimulation.

At each step we refine the set of classes by deleting the relations between configurations s1 and s2 that do not satisfy
the condition that, for all schedulers F , there exists a scheduler F ′ such that ProbFA(s

1, τ ∗α̂τ ∗,C) = ProbF
′

A (s
2, τ ∗α̂τ ∗,C) and

vice versa.
To compute the probabilities ProbFA(s

1, τ ∗α̂τ ∗,C) and ProbF
′

A (s
2, τ ∗α̂τ ∗,C), with C belonging to the current partition,

we construct two PAs A1 and A2. PA Ai has triples (q, q′, ψ) as states (where ψ is a formula on Ψ (X)), while transitions
(computed by means of predecessor operators) reflect the possibility and the probability of performing certain steps from
configurations reached starting from si, for i = 1, 2.

When α ∈ R>0 labels a time step, we require that the unsatisfiability of bisimulation requirements is not caused by the
fact that a time step α cannot be performed. Actually, even if a time step α can be performed from s1 but not from s2, both
A1 and A2 do not have a transition representing that step. This is because, since states of A1 and A2 are triples, steps from s1
are affected by configuration s2, and hence there is no time successor from the triple representing s1 and s2. This does not
hold for transition steps since the guard of a transition triggered from s1 is not affected by the valuation in s2. We solve this
problem by defining an algorithm Clean that refines the classes in such a manner that the unsatisfiability of bisimulation
requirements is not caused by the fact that we cannot perform a step labeled with α ∈ R>0. Intuitively, algorithm Clean
removes the relations between configurations fromwhich it is not possible to perform the same time step to reach a certain
class of bisimilar configurations.

The correctness of the methodology we propose is set up on the following inductive definition of equivalence relations
∼n on SA.

Definition 17. Let A = (Σ, X,Q , q0, Inv, δ,Π) be a PTA. We set ∼0= SA × SA and, for n = 0, 1, . . ., s ∼n+1 s′
iff for all schedulers F there exists a scheduler F ′ such that ∀C ∈ SA/ ∼n and α ∈ Σ ∪ {τ } ∪ R>0 it holds that
ProbFA(s, τ

∗α̂τ ∗,C) = ProbF
′

A (s
′, τ ∗α̂τ ∗,C) and vice versa.

The next lemma allows us to define an algorithm for computing weak bisimulation equivalence classes by following the
technique discussed above.

Lemma 6. Let A = (Σ, X,Q , q0, Inv, δ,Π) be a PTA and s, s′ ∈ SA. Then, s ≈ s′ ⇔ ∀n ≥ 0 s ∼n s′.

Proof. The proof can be adapted from the one in Baier’s habilitation thesis [8] for probabilistic systems. This can be done
since configurations of a PTA can be grouped in a finite set of classes (see Section 2.3).

Let ∼
′
=


n≥0 ∼n. We have to show that ≈=∼

′. Since the approximations ∼n are equivalence relations, it is easy to see
that ∼

′ is an equivalence relation too. By induction on n we can show that ∼0⊇∼1⊇ · · · ⊇≈. Hence, ∼′
⊇≈. In order to

show that ∼
′
⊆≈ we prove that ∼

′ is a weak bisimulation.
Since ∼0⊇∼1⊇ · · · ⊇≈, then, for any n ≥ 0, s ∼n+1 s′ implies s ∼n s′. Therefore, for any n ≥ 0 and for any B ∈ SA/ ∼n,

there exists B′
∈ SA/ ∼n+1, such that B′

⊆ B
Now, for each B ∈ SA/ ∼

′ and for each n ≥ 0, it holds that there exists a unique element Bn ∈ SA/ ∼n with B ⊆ Bn.
Actually ∼

′
=


n≥0 ∼n.

Now, B ⊆ Bn and B ⊆ Bn+1 implies that Bn ∩ Bn+1 ≠ ∅.
But we have proved that for any n ≥ 0 and for any B ∈ SA/ ∼n, there exists B′

∈ SA/ ∼n+1, such that B′
⊆ B, hence the

class Bn contains the class Bn+1, for any n.
Then, B0 = SA ⊇ B1 ⊇ B2 ⊇ · · · and B =


n≥0 Bn.

Claim 1:Wewant to prove that, for all schedulers F of A, if ProbFA(s, τ
∗α̂τ ∗, B) > 0 and B ∈ SA/ ∼

′, then ProbFA(s, τ
∗α̂τ ∗, B) =

infn≥0 ProbFA(s, τ
∗α̂τ ∗, Bn). For short, let us call P[Bn] the probability ProbFA(s, τ

∗α̂τ ∗, Bn). Since B =


n≥0 Bn and Bn ⊇ Bn+1,
we have 1 = P[B0] ≥ P[B1] ≥ · · · ≥ P[Bn]. We put r = infn≥0P[Bn]. Clearly r ≥ P[B]. We suppose, by contradiction, that
r > P[B]. Let ∆ = r − P[B], then ∆ > 0. Since

∑
t∉B P[t] is convergent, then there exists a finite subset M of SA \ B such

that P[N] < ∆ where N = SA \ (B ∪ M). For all n ≥ 0, Bn = B ∪ (N ∩ Bn) ∪ (M ∩ Bn). The sets B, N ∩ Bn and M ∩ Bn are
pairwise disjoint. Hence, P[Bn] = P[B] + P[N ∩ Bn] + P[M ∩ Bn] < P[B] +∆+ P[M ∩ Bn] = r + P[M ∩ Bn]. Since r ≤ P[Bn]

we get M ∩ Bn ≠ ∅. Since Bn ⊇ Bn+1 and M ∩ Bn ≠ ∅, for any n, then there exists t such that t ∈ Bn, for any n. Hence,
t ∈ (


n≥0 Bn) = B. But t ∈ B and t ∈ M , impliesM ∩ B ≠ ∅, giving a contradiction (by definitionM is a subset of S \ B).

R. Lanotte et al. / Theoretical Computer Science 411 (2010) 4291–4322 4307

Claim 2: Now, we want to prove that ∼
′ is a weak bisimulation. Let s ∼

′ s′ and ProbFA(s, τ
∗α̂τ ∗,C) > 0 for some

scheduler F and C ⊆ SA. By Claim 1 it suffices to show that there exists a scheduler F ′ such that ProbFA(s
′, τ ∗α̂τ ∗,C) =

ProbF
′

A (s, τ
∗α̂τ ∗,C), for all n ≥ 1 and C ∈ SA/ ∼n. But this directly derives from the definition of ∼n. In fact, since for all

F and n ≥ 1 s ∼n+1 s′, we have that there exists a scheduler F ′ such that ProbFA(s, τ
∗α̂τ ∗,C) = ProbF

′

A (s
′, τ ∗α̂τ ∗,C) ∀C ∈

SA/ ∼n. �

In the remainder of this section we assume A to be the PTA (Σ, X,Q , q0, Inv, δ,Π).

4.1. Classes

In this section we define the notion of classes of a PTA. A class represents a set of pairs of configurations that belong to
the relation we are considering. Hence, a set of classes G defines a relation ≈G.

Definition 18. A class g of the PTA A is a finite set in Q × Q × ΨCA(X ∪ X). A class g defines the relation ≈g⊆ SA × SA

containing pairs ((q, v), (q′, v′)) such that there exists (q, q′, ψ) ∈ g with v′′
|H ψ , where v′′(x) = v(x) and v′′(x) = v′(x),

for any x ∈ X .
Given a triple (q, q′, ψ), wewill refer to the first component of (q, q′, ψ)whenwe refer to the configurations expressed by

the region (q, ∃X .ψ), and we will refer to the second component of (q, q′, ψ)when we refer to the configurations expressed
by the region (q′, ∃X .ψ).

From now on, without loss of generality, we assume that for all (q, q′, ψ) ∈ g , it holds that ψ ≢ false.
Given two classes g1 and g2, we define the class resulting from the intersection g1 ∩ g2. Namely, g1 ∩ g2 = {(q, q′,

ψ ∧ ψ ′) | (q, q′, ψ) ∈ g1 and (q, q′, ψ ′) ∈ g2 and ψ ∧ ψ ′
≢ false}.

We call atomic constraints, the constraints of the form x ∼ c and x − y ∼ c. Obviously, the negation of an atomic
constraint is expressible as an atomic constraint. As example ¬(x ≤ 5) is equal to x > 5. With ¬g we denote the class
{(q, q′,¬φ) | (q, q′, ψ) ∈ g) s.t. ψ ≢ true and φ is an atomic constraint appearing in ψ}.

Moreover, with ApA(g)we denote the set {(q, q′, ApA(ψ)) | (q, q′, ψ) ∈ g)}.

With Set(A) we denote the set of sets of classes G of A such that, for any g1, g2 ∈ G with g1 ≠ g2, it holds that, for any
(q, q′, ψ) ∈ g1 and (q, q′, ψ ′) ∈ g2 it holds thatψ ∧ψ ′

≡ false. A set of classes G defines the relation ≈G that is the relation
g∈G ≈g .
Now, the number of classes is finite since the number of clock zones is finite (see Proposition 3). Moreover, the number

of clocks is in the order of |X | . Hence, the number of triples (q, q′, ψ) is in the order of the number of clock zones of A.
Example 17. The set G = {(q0, q2, 0 ≤ x ≤ x)} is in Set(A), where A is the PTA of Example 16. The set G defines the relation
≈G such that (q, v) ≈G (q′, v′) iff q = q0, q′

= q2 and v(x) ≤ v′(x).

4.2. The algorithm Clean

We introduce the algorithm CleanA(G) that eliminates the relations between configurations such that the unsatisfiability
of bisimulation requirements is not caused by the fact that we cannot perform the time step α. Intuitively, we use the
algorithm Clean in order to remove the relations between configurations from which it is not possible to perform the same
time step to reach a certain class of bisimilar configurations.

We denote with ψg the formula

∀t ′ ∈ [0, t],


i∈[1,2]

Inv(qi)[X := X + t ′] ∧


(q1,q2,ψ)∈g

ψ[X := Xq1 + t][X := X
q2

+ t]

where t is a new variable representing the time elapsed, and xq1 and xq2 are new clocks, for any state q and clock x ∈ X
(namely, x and x are substituted in ψ with xq1 + t and xq2 + t , respectively).
Definition 19. Given a class g , with precT (g)we denote the class

(q1,q2,ψ)∈g

{(q1, q2, ∃XQ
∪ X

Q
∪ {t}.t > 0 ∧ x = xq1 ∧ x = xq2 ∧ ψg)}

where XQ
= {xq | x ∈ X, q ∈ Q } and X

Q
= {xq | x ∈ X, q ∈ Q }.

The class precT (g) contains the configurations from which g can be reached with the same time step. We consider t > 0
since the scheduler returns time steps inR>0. Actually a time stepwith t = 0 changes neither the location nor the valuation.
Hence, it can be trivially excluded.

The following lemma states that deleting the relations between configurations such that the unsatisfiability of the
bisimulation requirements is not caused by the fact that one cannot perform the time step α, is equivalent to deleting
the relations between configurations from which it is not possible to perform the same time step to reach a certain class of
bisimilar configurations.

4308 R. Lanotte et al. / Theoretical Computer Science 411 (2010) 4291–4322

Lemma 7. Given an equivalence relation ≈, the two following statements are equivalent:

– For any s1 ≈ s2 and α ∈ R>0, if s1
α

−→ s′1, then s2
α

−→ s′2 with s′1 ≈ s′2.
– For any s1 ≈ s2, then, for all schedulers F and F ′, α ∈ R>0 and C ∈ SA/ ≈, ProbFA(s1, τ

∗ατ ∗,C) > 0 iff
ProbF

′

A (s2, τ
∗ατ ∗,C) > 0.

Proof. We prove the two implications:

1. For any s1 ≈ s2 and α ∈ R>0, if s1
α

−→ s′1, then s2
α

−→ s′2 with s′1 ≈ s′2 implies the property that for any s1 ≈ s2, then, for
all schedulers F and F ′, α ∈ R>0 and C ∈ SA/ ≈, ProbFA(s1, τ

∗ατ ∗,C) > 0 iff ProbF
′

A (s2, τ
∗ατ ∗,C) > 0.

Let us suppose by contradiction that there exist two schedulers F and F ′, a time α ∈ R>0 and a C ∈ SA/ ≈,
ProbFA(s1, τ

∗ατ ∗,C) > 0 and ProbF
′

A (s2, τ
∗ατ ∗,C) = 0 or vice versa.

Let us consider the case ProbFA(s1, τ
∗ατ ∗,C) > 0 and ProbF

′

A (s2, τ
∗ατ ∗,C) = 0.

Therefore there exists α ∈ R>0 such that s1
α

−→ s′1 and, for any s′2 such that s′1 ≈ s′2, s2 ̸
α

−→ s′2. This is a contradiction
since, for any α ∈ R>0, s1

α
−→ s′1 iff s2

α
−→ s′2.

The other case is analogous, since ≈ is an equivalence relation, and hence s1 ≈ s2 implies s2 ≈ s1.
2. For any s1 ≈ s2, then, for all schedulers F and F ′, α ∈ R>0 and C ∈ SA/ ≈, ProbFA(s1, τ

∗ατ ∗,C) > 0 iff
ProbF

′

A (s2, τ
∗ατ ∗,C) > 0 implies the property that, for any s1 ≈ s2 and α ∈ R>0, if s1

α
−→ s′1, then s2

α
−→ s′2 with

s′1 ≈ s′2.
By contradiction there exists α ∈ R>0 such that, for any s′1 ≈ s′2 it holds that s1

α
−→ s′1 and s2 ̸

α
−→ s′2.

This means that there exists a scheduler F such that ProbFA(s1, τ
∗ατ ∗, [s′1]) > 0, while for all schedulers F ′ it holds

that ProbF
′

A (s2, τ
∗ατ ∗, [s′2]) = 0. But this is a contradiction since ProbFA(s1, τ

∗ατ ∗,C) > 0 iff ProbF
′

A (s2, τ
∗ατ ∗,C) > 0

for C = [s′1] = [s′2]. �

We give now the algorithm CleanA(G) which refines G by using precT . By Lemma 7, CleanA(G) deletes the relations
between configurations from which it is not possible to perform the same time step to reach a certain class of bisimilar
configurations.

CleanA(G : Set(A)) : Set(A)
g ′

:=


g∈G ¬g

G :=


g∈G g ∩ ¬


(q,q′,ψ)∈g ′ precT ({(q, q′, ψ)})


return G

Class g ′ represents the set of pairs (s, s′) such that s ≉G s′,


(q,q′,ψ)∈g ′ precT ({(q, q′, ψ)})


represents the set of

configurations from which we can reach non bisimilar configurations through a time step. Therefore, ¬


(q,q′,ψ)∈g ′

precT ({(q, q′, ψ)})

represents the set of configurations from which, through any time step, bisimilar configurations are

reached. As a consequence, we refine the relation ≈G by deleting the pairs (s, s′) such that it is not possible to perform the
same time step from s and s′ to reach a certain class.

The following lemma states the correctness of the algorithm CleanA.

Lemma 8. Relation ≈CleanA(G) is the biggest relation enclosed in ≈G such that if s1 ≈CleanA(G) s2 and there exists a scheduler F
such that for any scheduler F ′, α ∈ R>0 and C ∈ SA/ ≈G, it holds that ProbFA(s1, τ

∗ατ ∗,C) > 0 iff ProbF
′

A (s2, τ
∗ατ ∗,C) > 0

and vice versa. Moreover, CleanA(G) is computable in exponential time w.r.t. the size of A and, if ≈G is an equivalence relation,
then ≈CleanA(G) is an equivalence relation.

Proof. Since we refine a triple (q, q′, ψ) with a triple (q, q′, ψ ′) such that ψ ′
⇒ ψ , it is obvious that if s ≈CleanA(G) s

′, then
s1 ≈G s2. Therefore the relation ≈CleanA(G) is enclosed in the relation ≈G.

We prove now that if s1 ≈CleanA(G) s2 and there exists a scheduler F such that for any scheduler F ′, α ∈ R>0 and
C ∈ SA/ ≈CleanA(G), Prob

F
A(s1, τ

∗ατ ∗,C) > 0 iff ProbF
′

A (s2, τ
∗ατ ∗,C) > 0 and vice versa.

By Lemma 7, it is sufficient to prove that for any s1 ≈CleanA(G) s2 and α ∈ R>0, if s1
α

−→ s′1, then s2
α

−→ s′2, for some
s′1 ≈CleanA(G) s

′

2.

Given s1 ≈CleanA(G) s2, let us suppose, by contradiction, that s′1 ≉G s′2, for some s′1 and s′2 such that si
α

−→ s′i , for i = 1, 2.
Since s′1 ≉G s′2, then s′1 ≈g ′ s′2 (recall that g ′

=


g∈G ¬g). Moreover, by Proposition 4 and since α ∈ R>0, we have that

s1 ≈g ′′ s2 where g ′′
=


(q,q′,ψ)∈g ′ precT ({(q, q′, ψ)})


.

R. Lanotte et al. / Theoretical Computer Science 411 (2010) 4291–4322 4309

The equivalence s1 ≈g ′′ s2 implies that s1 ≉¬g ′′ s2, and, since CleanA(G) =


g∈CleanA(G) g ∩ ¬g ′′, we have that
s1 ≉CleanA(G) s2, that is a contradiction.

Finally, ≈CleanA(G) is the biggest relation, namely, we just have to prove that for each relation ≈
′ satisfying the same

requirements of ≈CleanA(G) we have that ≈
′ is contained in ≈CleanA(G).

Let us suppose, by contradiction, that there exists such a relation ≈
′ with ≈

′
⊃≈CleanA(G). As a consequence, there exist s1

and s′1 such that s1 ≈
′ s′1 and s1 ≉CleanA(G) s

′

1.
Now, s1 ≈

′ s′1 implies s1 ≈G s′1, thus s1 ≈G s′1 and s1 ≉CleanA(G) s
′

1. This implies that s1 ≉CleanA(G) s
′

1 is introduced by the

refinement done by CleanA. Therefore, there is some g ′′ such that s1 ≉¬g ′′ s1 where g ′′
=


(q,q′,ψ)∈g ′ precT ({(q, q′, ψ)})


(recall that g ′

=


g∈G ¬g). Since s1 ≉¬g ′′ s1 we have that s1 ≈g ′′ s1. Hence, by Proposition 4, there exists α, s2 and s′2 such

that s1
α

−→ s2 and s′1
α

−→ s′2 and s2 ≈g ′ s′2. As a consequence, since g ′
=


g∈G ¬g , we have that s2 ≉G s′2.

This implies that s1
α

−→ s2 and s′1
α

−→ s′2 and s2 ≉G s′2. Since ≈
′ satisfies the conditions of Lemma 7, it must hold that

s1 ≉
′ s′1, but this is a contradiction since by hypothesis s1 ≈

′ s′1.

The cost of the operator CleanA(G) is the cost of assignments and ∪ and ∩ operators that are polynomial on the size of G.
The size of G is bounded on the size of the regions that are exponential on the size of A. Hence, CleanA(G) is computable in
exponential time on the size on the size of A.

We prove that ≈CleanA(G) is an equivalence relation. Obliviously, since CleanA(G) is a refinement of G, for any g ∈ G there
exists g ′

∈ CleanA(G) such that ≈g ′⊆≈g . We call g ′ as clean(g).
Hence the thesis holds since s1 ≈clean(g) s2 implies s1 ≈g s2 and, by Lemma 7, we have that, for any s1 ≈CleanA(G) s2, F and

F ′, α ∈ R>0 and C ∈ SA/ ≈CleanA(G), Prob
F
A(s1, τ

∗ατ ∗,C) > 0 iff ProbF
′

A (s2, τ
∗ατ ∗,C) > 0.

Actually:

– Reflexivity: wemust prove that s ≈CleanA(G) s. Since≈G is an equivalence relation, we have that s ≈G s, hence there exists
g ∈ G such that s ≈g s. Hence it is sufficient to prove that s ≈clean(g) s. Obviously, by Lemma 7, ProbFA(s, τ

∗ατ ∗,C) > 0
iff ProbF

′

A (s, τ
∗ατ ∗,C) > 0.

– Symmetry: it is sufficient to prove that, for any g , if s1 ≈clean(g) s2, then s2 ≈clean(g) s1. But obviously s1 ≈g s2 and
s2 ≈g s1 and, by Lemma 7, ProbFA(s1, τ

∗ατ ∗,C) > 0 iff ProbF
′

A (s2, τ
∗ατ ∗,C) > 0 implies that ProbFA(s2, τ

∗ατ ∗,C) > 0 iff
ProbF

′

A (s1, τ
∗ατ ∗,C) > 0.

– Transitivity: we must prove that, for any g , if s1 ≈clean(g) s2 and s2 ≈clean(g) s3, then s1 ≈clean(g) s3. But obviously s1 ≈g s2
and s2 ≈g s3, then s1 ≈g s3. Moreover, by Lemma 7, ProbFA(s1, τ

∗ατ ∗,C) > 0 iff ProbF
′

A (s2, τ
∗ατ ∗,C) > 0 and ProbF

′

A (s2,
τ ∗ατ ∗,C) > 0 iff ProbF

′′

A (s3, τ
∗ατ ∗,C) > 0 implying that ProbFA(s1, τ

∗ατ ∗,C) > 0 iff ProbF
′′

A (s3, τ
∗ατ ∗,C) > 0. �

Example 18. Consider the set of classes G = {g1, g2} of Example 16 where

g1 = {(q2, q7, 0 ≤ x < 3 ∧ 0 ≤ x < 3)}

and

g2 = {(q2, q7, x ≥ 3 ∧ x ≥ 3)}.

Since from q2 and q7 only time steps can be performed, we have that, by following Proposition 2, variable t can be deleted,
and hence ¬


(q,q′,ψ)∈g ′ precT ((q, q′, ψ))


= {(q2, q7, (x = x)), (q2, q7, (x ≥ 3 ∧ x ≥ 3))}.

Therefore, we refine G getting the classes {(q2, q7, 0 ≤ x < 3∧ x = x)} and {(q2, q7, x ≥ 3∧ x ≥ 3)} instead of g1 and g2,
respectively. Actually, any time step does not give problems for the class g2, but for the class g1 one must have that x = x in
order to reach bisimilar configurations. As an example, (q2, x = 2.5) ≈G (q7, x = 2.9), but (q2, x = 2.5)

0.2
−→ (q2, x = 2.7),

(q7, x = 2.9)
0.2

−→ (q7, x = 3.1) and (q2, x = 2.7) ≉G (q7, x = 3.1).

4.3. The Cut operator

Now, following the partition/splitter technique (see [48,33]), we need a splitter operator (see also [7,15]). Hence, we
define a cut operator that, given a class, splits it into a set of classes satisfying the requirements of the definition of
weak bisimulation. For this purpose, we construct two PAs by using predecessor operators for computing the probabilities
ProbFA(s, τ

∗α̂τ ∗,C).
For PTAs, the probabilities of each step strongly depend on the enabled transitions. The following proposition ensures

that for any configuration s′ reachable from a given configuration s by a discrete transition step, the values of the clocks in
s′ remain the same as in s or are equal to zero (through clock resets).

4310 R. Lanotte et al. / Theoretical Computer Science 411 (2010) 4291–4322

Proposition 7. For each σ = (q0, v0)
α1

−→ (q1, v1) · · ·
αk

−→ (qk, vk), with αi ∈ Σ ∪ {τ }, it holds that either vi(x) = v0(x) or
vi(x) = 0, for any i ≥ 0 and x ∈ X.

Proof. Since there are no time steps, vi(x) ≠ v0(x) if and only if x is reset and v0(x) > 0. �

Definition 20. Given a class g and a set of transitions E, with prec(g, E) and prec(g, E)we denote, respectively, the classes
(q,a,φ,B,q′)∈E

{(q, q′′, Inv(q) ∧ φ ∧ ∃B.ψ ∧ B = 0 ∧ Inv(q′)) | (q′, q′′, ψ) ∈ g}

and 
(q,a,φ,B,q′)∈E

{(q′′, q, (Inv(q) ∧ φ)[X := X] ∧ (∃B.ψ ∧ B = 0 ∧ (Inv(q′)[X := X]))) | (q′′, q′, ψ) ∈ g}.

Moreover, [g] is the set of triples (q, q′, ψ) such that ψ ∈ ΨCA(X ∪ X), ψ ≢ false and there exists (q, q′, ψ ′) ∈ g with, for
any x ∈ X ∪ X , either ψ ⇒ (ψ ′

∧ x = 0) or ψ ⇒ (ψ ′
∧ x > 0).

The formulae prec(g, E) and prec(g, E) give the sets of configurations fromwhich it is possible to reach, respectively, the
first and the second component by performing a transition in E. The set [g] is the set of triples enclosed in g such that each
variable is either equal to 0 or greater than 0.

Since g expresses a set of configurations, for any configuration (q, v) and (q, v′) such that there exists a finite path from
(q, v) to (q, v′) using symbols inΣ ∪ {τ }, we have that Adm((q, v)) can be different from Adm((q, v′)).

However, by Proposition 7, the set of transitions that canbe taken froma configuration canbedeterministically associated
with a state, if it is known that x > 0 or x = 0, for each clock x. Actually, Adm(q, v) ≠ Adm(q, v′) if and only if v(x) ≠ v′(x),
for some x appearing in a condition of a transition in Adm(q, v) ∪ Adm(q, v′). By Proposition 7, if v(x) ≠ v′(x), for some x
appearing in a condition of a transition in Adm(q, v) ∪ Adm(q, v′), then there exists B ⊆ X such that v(x) ≠ v′(x) iff x ∈ B
and v′(x) = 0.

Hence, Adm(q, v) ≠ Adm(q, v′) if and only if {x | v(x) = 0} ≠ {x | v′(x) = 0}. Therefore, given (q, q′, ψ) ∈ [g] such
that Y = {x ∈ X | ψ ⇒ x = 0}, we define the set F (ψ) as the set of functions f such that, for any state q and set of clocks
B ⊇ Y , it holds that f (q, B) ⊆ δ(q) and the formula

ψ ∧


(q,a,φ,B′,q′)∈δ


B⊆X


(∃B.φ ∧ B = 0 ∧ (X \ B) > 0) ⇔ (q, a, φ, B′, q′) ∈ f (q, B)


(1)

is satisfiable. The set f (q, B) contains the transitions that are enabled in the first component when a configuration, with q as
state and with a valuation where exactly the clocks in B are equal to 0, is reached from ψ . Formula (1) ensures that, for any
state q and set of clocks B, f (q, B) is the set of transitions enabledwhenψ is true. Actually, the formulaφ∧B = 0∧(X \B) > 0
means that φ holds and x is 0 iff x ∈ B. This formula must hold iff the transition is in f (q, B). Symmetrically, we can define
F (ψ) for the second component where we consider Y = {x ∈ X | ψ ⇒ x = 0} instead of Y = {x ∈ X | ψ ⇒ x = 0}.

In the following we may write f (q, B, a) with a ∈ Σ ∪ {τ } to denote the set f (q, B) ∩ δ(a), where δ(a) is the set of
transitions of A with label a. The number of functions in F (ψ) is exponential in |X | and δ.

Note that F (ψ) does not contain necessarily only one function. As an example, if ψ = 0 < x < 10 and we have two
transitions, one guarded with φ1 = 1 ≤ x ≤ 3 and one guarded with φ2 = 2 ≤ x ≤ 6, then we have four cases, both φ1
and φ2 do not hold, only φ1 holds, only φ2 holds, and both φ1 and φ2 hold. The four cases depend on the value of x, which is
a real number in (0, 10).

We can calculate the probability of performing a sequence of steps labeledwith τ ∗α̂τ ∗ by analyzing reachability of states
in the model of PAs. In particular, we can perform this computation without using labels. Hence we consider PAs with an
empty set of labels andwith transitions as pairs (z, z ′), where z and z ′ are the starting state and the target state, respectively.

More precisely, with ProbFA(s, τ
∗α̂τ ∗, ḡ) and ExecFragF

A (s, τ
∗α̂τ ∗, ḡ) we denote ProbFA(s, τ

∗α̂τ ∗,C) and ExecFragF
A (s,

τ ∗α̂τ ∗,C), respectively, where C = {s | ∃s′ ∈ SA.s ≈ḡ s′}.
In order to check whether for any scheduler F there exists a scheduler F ′ such that ProbFA(s1, τ

∗α̂τ ∗, ḡ) = ProbF
′

A (s2,
τ ∗α̂τ ∗, ḡ) and vice versa, we calculate the probability pi to reach ḡ from si by performing τ ∗α̂τ ∗, for i = 1, 2. To this purpose,
we construct two PAs A1 and A2 such that the probability to reach a special state good in the PA Ai is equal to pi, for i = 1, 2.

In the following, when A performs a time step with α ∈ R>0 we consider α = λ, where λ denotes a generic time step.
States of A1 are either quadruples (q, q′, ψ, i) or a state in {wrong, good}. The quadruple (q, q′, ψ, i) represents the

configurations (q, v) and (q′, v′), with (q, v) ≈{(q,q′,ψ)} (q′, v′), that can be crossed to reach two equivalent configurations
with respect to ḡ starting from s1 and s2, respectively. Index i is 1 if α is not performed, i is 2 when α is performed by the
first component and i = 3 when α is performed by both components.

Thewrong state is reached in A1 if a discrete transition step labeled with α′, with α′
∉ {α, τ }, is performed by A.

If α ∈ R>0, then state good is reached in A1 when ḡ is reached in A through a time step α. Otherwise, if α ∈ Σ ∪ {τ },
then state good is reached only if the class ḡ can be reached in A through a discrete transition step α performed by any
configuration reachable from s1 and s2 via τ steps.

R. Lanotte et al. / Theoretical Computer Science 411 (2010) 4291–4322 4311

The probability associated with two states of the PA z = (q1, q2, ψ, i) and z ′
= (q′

1, q2, ψ
′, i′) is equal to the probability

p if from a configuration (q1, v) with v |H ψ ′ there exists a step with probability equal to p leading to the configuration
(q′

1, v
′)with v′

|H ψ ′.
The probability associated with two states of the PA z = (q1, q2, ψ, i) and z ′

= (q1, q′

2, ψ
′, i′) is equal to 1 if from

a configuration (q2, v) with v |H ψ ′ there exists a step with label in {α, τ } to the configuration (q′

2, v
′) with v′

|H ψ ′.
Actually, the probability computed for the first configuration is not affected by the probabilities of the second one.

PA A2 is constructed similarly.

Definition 21. Let α ∈ Σ ∪ {τ , λ}. Let g, g be two classes and f ∈ F (ψ) and f ′
∈ F (ψ), for some ψ . We define

A1(g, g, f , f ′, α), the PA (∅,Q ′, q0, δ′,Π ′) such that:

– Q ′
= Q × Q × ΨCA(X ∪ X)× {1, 2, 3} ∪ {start, good, wrong}. Note that Q ′ is a finite set since the set of clock zones has

finite cardinality by Proposition 3.
– q0 = start .
– δ′ is the set of pairs ((q1, q2, ψ, i), z), for some q1, q2 ∈ Q , i ∈ [1, 3] and ψ ∈ ΨCA(X ∪ X), one of the following

requirements holds:

1. z = (q′

1, q2, ψ
′, i) and (q1, q2, ψ) ∈ ApA(prec(z, e)) ∩ g for some e ∈ f (q1, {x | ψ ⇒ x = 0}, τ), namely a τ step is

performed from q1.
2. z = (q1, q′

2, ψ
′, i) and (q1, q2, ψ) ∈ ApA(prec(z, e)) ∩ g for some e ∈ f ′(q2, {x | ψ ⇒ x = 0}, τ), namely a τ step is

performed from q2.
3. i = 1, α = λ, z = (q1, q2, ψ ′, 3) and (q1, q2, ψ) ∈ ApA(precT ((q1, q2, ψ ′)))∩ g . Namely, z has been reached correctly

by the same time step of both components. Since both the components perform the time step the new index is 3.
4. i = 1, α ∈ Σ ∪ {τ }, z = (q′

1, q2, ψ
′, 2) and (q1, q2, ψ) ∈ ApA(prec(z, e)) ∩ g for some e ∈ f (q1, {x | ψ ⇒ x = 0}, α).

Namely a step labeled with α is performed from q1.
5. i = 2, α ∈ Σ ∪ {τ }, z = (q1, q′

2, ψ
′, 3) and (q1, q2, ψ) ∈ ApA(prec(z, e))∩ g for some e ∈ f ′(q2, {x | ψ ⇒ x = 0}, α).

Namely a step labeled with α is performed from q2.
6. i = 3, z = good and (q1, q2, ψ) ∈ g . Namely, g is correctly reached.
7. z = wrong . This transition simulates the possibility of reaching a configuration through a time stepwith label different

from α (obviously this is always possible) or by a discrete transition step with label inΣ \ {α}.

– Π ′ is the set of distributions π such that, for any (q1, q2, ψ, i) ∈ Q ′, either there exists a transition e = ((q1, q2, ψ, i), z)
derived from points 2 or 3 or 5 or 6 or 7, such that π(e) = 1, or there exists π ′

∈ Π such that, for any transition
((q1, q2, ψ, i), z) derived from points 1 or 4 or 7, it holds that

π((q1, q2, ψ, i), z) =

−
e∈E

π ′(e)−
e∈f (q1,{x | ψ⇒x=0})

π ′(e)

where E is one of the following sets:
• E = {e ∈ f (q1, {x | ψ ⇒ x = 0}, τ) | (q1, q2, ψ) ∈ ApA(prec(z, e))}, if ((q1, q2, ψ, i), z) is a transition derived

from 1;
• E = {e ∈ f (q1, {x | ψ ⇒ x = 0}, α) | (q1, q2, ψ) ∈ ApA(prec(z, e))}, if ((q1, q2, ψ, i), z) is a transition derived

from 4;
• E =


a∈Σ\{α}

f (q1, {x | ψ ⇒ x = 0}, a), if ((q1, q2, ψ, i), z) is a transition derived from 7.

The PA A2(g, g, f , f ′, α) can be defined symmetrically.

The PAs Ai(g, g, f , f ′, α)may have an exponential number of states, but they can be constructed by using amore efficient
technique based on backward symbolic analysis thanks to the prec operator and the theory of regions and DBMs [12,26,36].

The following lemma states that it is possible to compute the probability of reaching with τ ∗α̂τ ∗ the class ḡ from the
configurations s and s′ with s ≈z s′ by computing the probabilities of reaching the state good of A1 and A2 from z ∈ g , where
Ai

= Ai(g, ḡ, f , f ′, α) for i = 1, 2.

Lemma 9. Let G be such that CleanA(G) = G and ≈g is an equivalence relation for any g ∈ G. Let g, ḡ ∈ G, and (q1, v1) and
(q2, v2) be two configurations such that (q1, v1) ≈{(q1,q2,ψ)} (q2, v2)with (q1, q2, ψ) ∈ [g]. Let α ∈ Σ ∪{τ }∪ R>0 and α′

= α

if α ∈ Σ ∪{τ }, and α′
= λ if α ∈ R>0. For any i = 1, 2 and scheduler F of A there exists a scheduler F ′ of Ai

= Ai(g, ḡ, f , f ′, α′),
for some f ∈ F (ψ) and f ′

∈ F (ψ), such that ProbFA((qi, vi), τ
∗α̂τ ∗, ḡ) = ProbF

′

Ai ((q1, q2, ψ, 1), good), and vice versa.

4312 R. Lanotte et al. / Theoretical Computer Science 411 (2010) 4291–4322

Proof. By Propositions 4 and 7 we have that, for any α ∈ Σ ∪ {τ } ∪ R>0 and scheduler F , if s = (q, v)
α

−→ s′ = (q′, v′)
is a step of A, then for any state z = (q, q′′, ψ, i) such that v |H ψ , there exists a step σ = (q, q′′, ψ, i) −→ (q′, q′′, ψ ′, i′)
generated by the set of transitions f (q, {x | v(x) = 0}, a)with v′

|H ψ , and a scheduler F ′ of A1 such that

PF
A1(σ) = PF ′

A (s
a

−→ s). (2)

Similarly for the vice versa and A2.
Moreover, we note that:

– the steps triggered by transition e of the second component do not influence the probability of paths of A1 since, for any
distribution π of A1, we have that π(e) > 0 implies π(e) = 1;

– the steps triggered by transition e of the first component do not influence the probability of paths of A2 since, for any
distribution π of A2, we have that π(e) > 0 implies π(e) = 1;

– the good state is reached only from states of A1 and A2 with index equal to 3 and hence the good state is reached only
after a sequence of symbols in τ ∗ατ ∗ of both components.

Hence, if α ∈ Σ ∪ {τ }, then there exists a surjective function ζ from the executions in ExecFragA performing words
in τ ∗ατ ∗ to ExecFragAi such that, for any scheduler F of A, there exists a scheduler Fi for Ai such that ProbFA({σ

′
∈

ExecFragF
A | ζ (σ ′) = σ }) = ProbFiAi(σ), for any i = 1, 2 and σ ∈ ExecFragFi

Ai where σ reads a string in τ ∗ατ ∗.
Therefore, for any i = 1, 2 and scheduler F of A there exists a scheduler Fi of Ai such that ProbFA((qi, vi), τ

∗ατ ∗, ḡ) =

ProbFiAi((q1, q2, ψ, 1), good). Similarly we can prove the other direction.

On the other hand, if α ∈ R>0, then α′
= λ. Hence, the proof is more complex with respect to the case α ∈ Σ ∪{τ } since

λmay represent, in A1 and A2, two different times.
Hence we consider the case in which ExecFragF ′

A ((q2, v2), τ
∗ατ ∗, ḡ), for α ∈ R>0, is empty and the case in which it

is not.

1. If ExecFragF
A ((q1, v1), τ

∗ατ ∗, ḡ) is empty, then we have that there exists a scheduler F ′ such that ExecFragF ′

A ((q2, v2),
τ ∗ατ ∗, ḡ) is empty and vice versa. Actually, as proved for the case α ∈ Σ ∪ {τ }, since precT ensures that the two
components take the same time step, and, since ≈g is an equivalence relation for any g ∈ G, there exists a surjective
function ζ from the executions in ExecFragA performing words in τ ∗ατ ∗ to ExecFragAi such that, for any scheduler F of
A, there exists a scheduler Fi for Ai such that ProbFA({σ

′
∈ ExecFragF

A | ζ (σ ′) = σ }) = ProbFiAi(σ), for any σ ∈ ExecFragFi
Ai

and i = 1, 2, if and only if it holds that ExecFragF
A ((q1, v1), τ

∗ατ ∗, ḡ) ≠ ∅ or ExecFragF
A ((q2, v2), τ

∗ατ ∗, ḡ) ≠ ∅. In fact,
if either ExecFragF

A ((q1, v1), τ
∗ατ ∗, ḡ) = ∅ or ExecFragF

A ((q2, v2), τ
∗ατ ∗, ḡ) = ∅, then A1 and A2 cannot reach the state

good, and hence ProbFA((qi, vi), τ
∗ατ ∗, ḡ) could be different from the probability of reaching the state good of Ai w.r.t.

scheduler Fi, for i = 1, 2.
But, since CleanA(G) = G, by Lemma 8, it holds that, if there exists a scheduler F of A such that for any scheduler F ′ of

A′, ProbFA((q1, v1), τ
∗ατ ∗, ḡ) > 0 iff ProbF

′

A ((q2, v2), τ
∗ατ ∗, ḡ) > 0. Hence, ExecFragF

A ((q1, v1), τ
∗ατ ∗, ḡ) is not empty iff

ExecFragF ′

A ((q2, v2), τ
∗ατ ∗, ḡ) is not empty.

Hence, as proved for α ∈ Σ ∪ {τ }, it holds that for any i = 1, 2 and scheduler F of A there exists a scheduler Fi of Ai

such that ProbFA((qi, vi), τ
∗ατ ∗, ḡ) = ProbFiAi((q1, q2, ψ, 1), good) = 0, and vice versa.

2. If ExecFragF
A ((q1, v1), τ

∗ατ ∗, ḡ) is not empty, then, as proved for 1, we have that there exists a scheduler F ′ such that
ExecFragF ′

A ((q2, v2), τ
∗ατ ∗, ḡ) is not empty. Hence, as proved for α ∈ Σ∪{τ }, it holds that for any i = 1, 2 and scheduler

F of A there exists a scheduler Fi of Ai such that ProbFA((qi, vi), τ
∗ατ ∗, ḡ) = ProbFiAi((q1, q2, ψ, 1), good) > 0, and vice

versa. �

Example 19. Let us assume the state (q2, q7, 0 ≤ x < 3 ∧ x = x) ∈ g and the class g of the PTA in Fig. 12 such that
g = {(q3, q8, 0 ≤ x < 3 ∧ x = x), (q8, q3, 0 ≤ x < 3 ∧ x = x), (q3, q3, x = x), (q8, q8, x = x)} . We note that ≈g is an
equivalence relation. Let f be the function such that f (q, B) = δ(q).

We construct A1(g, g, f , f , a) by considering ((q2, q7, 0 ≤ x < 3 ∧ x = x), 1) as the initial state.
We describe probabilities assigned to the transitions starting from state z = ((q2, q7, 0 ≤ x < 3 ∧ x = x), 1). The

probability distribution π satisfies one of the following requirements:

– π(z, (q2, q7, 0 ≤ x < 3 ∧ x = x, 2)) = π(z, wrong) = 0.5 (representing the steps of the first component labeled with
a or b).

– π(z, wrong) = 1.
– π(z, z) = 1 (representing the τ step of the second component).

R. Lanotte et al. / Theoretical Computer Science 411 (2010) 4291–4322 4313

We describe now the probabilities assigned to the transitions starting from the state z = (q3, q7, 0 ≤ x < 3 ∧ x = x, 2).
The probability distribution π satisfies one of the following requirements:

– π(z, (q3, q8, 0 ≤ x < 3 ∧ x = x, 3)) = 1 (representing the step of the second component labeled with a).
– π(z, wrong) = 1.
– π(z, z) = 1 (representing the τ step of the second component).

Finally, for the state (q3, q8, 0 ≤ x < 3 ∧ x = x, 3) we have only one transition to the state good with probability equal
to 1.

With CutA(g, ḡ)we denote the set {g1, . . . , gn} ∈ Set(A) such that, [g] ⊃


i∈[1,n][gi], and for any α ∈ Σ ∪ {τ , λ} it holds
that (q1, q2, ψ), (q′

1, q
′

2, ψ
′) ∈ [gi], for some i = 1, . . . , n, iff for any f ∈ F (ψ), f ′

∈ F (ψ ′) and scheduler F there exists a
scheduler F ′ such that ProbF

A1
((q1, q2, ψ), good) = ProbF

′

A2
((q′

1, q
′

2, ψ
′), good), where Aj

= Aj(ḡ, f , f ′, α)with j = 1, 2.

Example 20. Let us assume the classes g1 and g2 of Example 19. We have that CutA(g1, g2) = {{(q2, q2, 0 ≤ x < 3 ∧ x =

x)}, {(q7, q7, 0 ≤ x < 3 ∧ x = x)}}.

Note that to compute the probabilities ProbFAi(z, good) it is sufficient to compute only once the automata Ai
=

Ai(g, ḡ, f , f ′, α), for i = 1, 2. Since the number of clock zones is exponential w.r.t. the size of A, we have that automata
Ai

= Ai(g, ḡ, f , f ′, α), for i = 1, 2, have an exponential number of states with respect to the size of A. By Proposition 1, we
have that ProbFAi(z, good) is computable in exponential time on the size of Ai (in polynomial time if Ai has no τ transitions).
The next corollary follows.

Corollary 1. For any g, ḡ , CutA(g, ḡ) is computable in double exponential time w.r.t. the size of A. If A has no τ transitions,
CutA(g, ḡ) is computable in exponential time w.r.t. the size of A.

Proof. To compute CutA(g, ḡ) we must construct once Ai
= Ai(g, ḡ, f , f ′, α), for i = 1, 2, and we must check when

ProbF
A1
((q1, q2, ψ), good) = ProbF

′

A2
((q′

1, q
′

2, ψ
′), good).

Now, the numbers of (q1, q2, ψ) and (q′

1, q
′

2, ψ
′) are at most exponential on the size of A since they are bounded on the

number of clock zones. Hence, we must compute ProbF
A1
(z, good), for at most an exponential number on the size of A of s.

Therefore, the complexity is equal to 2|A|
× I where I is the cost to compute the value ProbFA1(z, good).

We recall that to compute the value of ProbFAi(z, good) it is sufficient to construct only once the automata Ai
=

Ai(g, ḡ, f , f ′, α), for i = 1, 2. Since the number of clock zones is exponential w.r.t. the size of A, we have that automata
Ai

= Ai(ḡ, f , f ′, α), for i = 1, 2, have an exponential number of states with respect to the size of A. By Proposition 1, we
have that ProbFAi(z, good) is computable in exponential time on the size of Ai (in polynomial time if Ai has no τ transitions).

Therefore, we have that the complexity is 2|A|
× 22|A|

and 2|A|
× 2|A| if A has no τ transitions. �

4.4. The algorithm

We can now define the algorithm Classes(A) that returns a set in Set(A) giving the configurations that are bisimilar. The
algorithm refines the classes by using the triples returned by the algorithm Clean and the Cut operator until the fixpoint is
reached. The algorithm startswith the class


q,q′∈Q {(q, q′, X ≥ 0∧X ≥ 0)} (namely, the class containing all configurations).

The refinement is done by splitting according to CutA(g, g ′). The ‘‘for each’’ command enumerates the pairs g, g ′ in G at the
moment in which the first cycle is processed. Hence, the command G := (G \ {g})∪ G′′ does not influence the execution of
the ‘‘for each’’ command.

Classes(A : PTA) : Set(A)
G :=


q,q′∈Q {(q, q′, X ≥ 0 ∧ X ≥ 0)}

repeat
G′

:= G
G := CleanA(G)
for each g, g ′

∈ G
G′′

:= CutA(g, g ′)
if G′′

≠ {g} then G := (G \ {g}) ∪ G′′

until (G == G′)
return G

We have the following theorem stating the correctness of the algorithm. This implies the decidability of weak
bisimulation for PTAs.

Theorem 2. For any configuration s, s′ ∈ SA, s ≈A s′ if and only if s ≈Classes(A) s′. Moreover, Classes(A) is computable in double
exponential time w.r.t. the size of A. If A has no τ transitions, then Classes(A) is computable in exponential time w.r.t. the size of A.

4314 R. Lanotte et al. / Theoretical Computer Science 411 (2010) 4291–4322

Proof. By Lemma 6, it is sufficient to prove that s ≈Class(A) s′ ⇔ ∀n ≥ 0 s ∼n s′. LetG1, . . . ,Gn, . . . be the values of variable
G at each step of the algorithm. We prove by induction that s ≈Gi s

′
⇔ ∀n ∈ {0, . . . , i}.s ∼n s′.

The base case is obvious since G0 :=


q,q′∈Q {(q, q′, X ≥ 0 ∧ X ≥ 0)}.
By induction we have that s ≈Gi s

′
⇔ ∀n ∈ {0, . . . , i}.s ∼n s′. Therefore ≈g is an equivalence relation, for any g ∈ Gi.

Hence, by Lemmas 8 and 9, we have that s ≈Gi+1 s′ ⇔ ∀n ∈ {0, . . . , i + 1}.s ∼n s′.
The fixpoint is computable after a finite number of steps since the number of formulae is finite and, at each step of the

algorithm, the set G is updated with a set of classes included in the previous set of classes. The number of iterations is
bounded by the number of clock zones. Actually, at each step, our algorithm refines the classes and partitions some of them
as the classical algorithm for weak bisimulation on finite state machines. In such a case the algorithm is polynomial on the
number of states, whereas in our case, the states are the possible set of regions that are exponential on the size of A.

Hence, the cost of the algorithm is given by the formula 2|A|
× I , where I is the cost of each iteration.

The cost I of each iteration is given by I1 + I2 × I3 where:

– I1 is the cost of CleanA(G) plus the costs of assignments and boolean check outside the command for each, that is
exponential time on the size of A by Lemma 8 and since the size of a class is bounded by the number of regions.

– I2 is equal to the number of iterations of the command for each. Since the size of G is bounded by the number of clock
zones, I2 is exponential w.r.t. the size of A.

– I3 is the cost of each iteration of I2. This cost depends on the cost of CutA plus the costs of assignments and boolean
check inside the command for each. Hence I3 is double exponential time w.r.t. the size of A because of the CutA operator
(see Corollary 1). Note that if A has no τ transitions, then the CutA operator is exponential time (see Corollary 1), and
hence I3 is exponential time w.r.t. the size of A.

Therefore the complexity is of the order 2|A|
× (2|A|

+ 2|A|
× 22|A|

). Hence, ClassA(G) is computable in double exponential
time w.r.t. the size of A. If A has no τ transitions, then Class(A) is computable in exponential time w.r.t. the size of A since
the CutA operator costs exponential time w.r.t. A. �

5. Discussion

In this section we discuss two important topics, namely non-zeno runs and classical definition of PTA without
normalization (see [35]).

5.1. Non-zeno schedulers

A scheduler F is non-zeno if for each execution σ in ExecFragF
A , the sum of the times occurring in σ diverges. The general

notion of scheduler we gave defines both zeno and non-zeno schedulers.
Weak bisimulation implies weak bisimulation restricted to non-zeno schedulers. Let us formalise our conjecture as

follows.
Consider two configurations s and s′ such that s ≈A s′ (recall that ≈A denotes the weak bisimilarity w.r.t. general

scheduler).
For any F such that F is a non-zeno scheduler, we construct a non-zeno scheduler F ′ such that, for all C and α, it holds

that

ProbFA(s, τ
∗α̂τ ∗,C) = ProbF

′

A (s
′, τ ∗α̂τ ∗,C).

This obviously implies the weak bisimilarity restricted to non-zeno schedulers.
Now since s ≈A s′, there exists a scheduler F ′′ such that, for all C and α, it holds that

ProbFA(s, τ
∗α̂τ ∗,C) = ProbF

′′

A (s
′, τ ∗α̂τ ∗,C).

We define F ′ in the same manner of F ′′ for the execution fragments performing a string that is a proper prefix of τ ∗α̂τ ∗.
Therefore F ′ is now defined for the execution fragments starting from s′ that perform a string of the form τ ∗α̂τ ∗ and such

that the last configuration is in C, for some C and α. We call this set of execution fragments E1(C, α).
Note that this part ensures that

ProbFA(s, τ
∗α̂τ ∗,C) = ProbF

′′

A (s
′, τ ∗α̂τ ∗,C),

for all C and α.
Now, we can iterate this step. Actually, for anyC and α, let s be a configuration inC reached from s by performing a string

in τ ∗α̂τ ∗. For any σ ∈ E1(C, α)we have that s, last(σ) ∈ C, and this means that s ≈ last(σ).
Hence, there exists F ′′′ such that

ProbFA(s, τ
∗α̂τ ∗,C) = ProbF

′′′

A (last(σ), τ ∗α̂τ ∗,C).

R. Lanotte et al. / Theoretical Computer Science 411 (2010) 4291–4322 4315

By repeating the first part of the construction, we can define F ′′ for the executions σ1σ2 such that σ1 ∈ E1(C, α) and σ2
performs a string of the form τ ∗α̂τ ∗ and such that the last configuration is in C, for some C and α.

Hence, by iterating, we have defined F ′ such that

ProbFA(s, τ
∗α̂τ ∗,C) = ProbF

′

A (s
′, τ ∗α̂τ ∗,C).

Moreover, F ′ assigns the same sequence of times assigned by F , hence is non-zeno.
Vice versa, weak bisimulation restricted to non-zeno schedulers does not imply weak bisimulation. Actually, if we

consider a state from which the only exiting transition is a loop with condition x ≤ c , where x is a clock not reset by
the loop, a run with a suffix composed by that loop is obviously a zeno run. If two configurations are not weakly bisimilar
because of that loop, the two configurationswill beweakly bisimilar in a non-zeno scheduler setting. Actually, if we consider
a non-zeno scheduler, that state will never be reached.

We believe that the algorithm we propose could be modified for considering non-zeno schedulers; it is sufficient to
consider only clock zones from which at least a non-zeno run can be performed.

5.2. Normalization

As alreadymentioned, our definition of PTAs requires a run-time re-normalization of probabilities when time constraints
prevent the execution of some transitions. Situations of this kindmay arisewhenever an automaton returns to a certain state
at different times and some of the transitions available from that state are prevented.

As we will show in the next example, run-time re-normalization of probabilities allows us to depict a dynamical
reallocation of probabilities when several resources are available to a system while others are prevented due to timing
constraints.

We also show that re-normalization, on the one hand, allows us to relax the condition of admissible target states used
in [35] and, on the other hand, gives a more succinct description of systems.

Example 21. Let us consider a system that can allocate n mutual exclusive resources. Execution of action ai models the
system acquiring the ith resource (ri), while execution of action bi represents the system releasing resource ri.

Before the system can acquire a resource, the resource must be initialized, and we suppose that a resource initializes
itself after a time amount of length c has elapsed. Hence, a resource cannot be acquired if either a time c has not elapsed
from its last release or if a time c has not elapsed from the beginning of the initialization procedure.

Thus, at a certain instant of time only a subset of the n resources are available. Assuming the system chooses one of the
n resources with uniform probability distribution, if k resources are available at a certain instant of time, re-normalization
assures that the system chooses one of them with a probability equal to 1

k .
This system can be modeled by a PTA with n + 1 states {q, q1, . . . , qn} and n clocks {x1, . . . , xn}. At state q the system

may acquire a resource, in state qi the system is using resource ri. Clocks xi are used to check the initialization times for
resources ri.

We have just two kinds of transitions:

– transitions acquiring a resource have the form (q, ai, xi ≥ ci, {}, qi), for all i ∈ [1, n];
– transitions releasing a resource have the form (qi, bi, true, {xi}, q), for all i ∈ [1, n].

We consider invariants equal to true, and, finally, we have only one probability distribution π such that π(q, ai, xi ≥

ci, {}, qi) =
1
n and π(qi, bi, true, {xi}, q) = 1, for all i ∈ [1, n].

In [35] a different definition of PTAs is given. There is no normalization of probabilities and a finite non empty discrete
probability distribution on Q × 2X is associated with each state. Moreover, each discrete probability has an enabling
condition. The definition does not consider symbols, but it could be easily extended to consider actions labeling transitions.
Moreover, in [35] there are some requirements on invariants. More precisely, it is required that:

– if in a configuration a certain amount of time violates the invariant, before the violation at least an enabling condition is
satisfied, and

– it is never possible to perform a discrete step to a state for which the invariant is not satisfied.

These requirements could be artificial, hence we have chosen to consider infinite and finite paths.
Now, if we extend the definition of [35] by introducing actions, we do some succinctness considerations.
We can simulate (in the sense of strong bisimulation) the definition of [35]. Given a PTA defined as in [35], we can

construct a PTA with our definition in polynomial size. Actually, it is sufficient to add, for each discrete probability π
associated with state q and with enabling condition φ, a set of transitions of the form (q, a, φ, B, q′), for any q′ and B such
that π(q′, B) > 0. Moreover we add a distribution function π ′ such that π ′(q, a, φ, B, q′) = π(q′, B), for any q′ and B such
that π(q′, B) > 0. Note that the requirements on the invariants of [35] mean that the model translated in our definition has
only infinite paths.

It is worth noticing that, if we consider Example 21, the minimal PTA following the definition of [35] is of exponential
size w.r.t. our modelization. Actually, the PTA must consider all possible subsets in {1, . . . , n} of possible ready resources

4316 R. Lanotte et al. / Theoretical Computer Science 411 (2010) 4291–4322

Fig. 13. The dining cryptographers.

by using at least 2n distribution functions (showing that the minimal PTA has an exponential size). Note that invariants
equal to true do not give any problems of simulation. This proves that our definition is exponentially more succinct than
the definition of [35]. Moreover, Example 21 shows that an interesting practical problem could cause this growth up. Notice
that this discussion depends neither on the uniform distribution nor on the amount of time c (that can be differentiable for
each resource).

6. An application of weak bisimulation for PTAs

Security is one of the features of a system that one frequently needs to guarantee. Consider, for example, a two level
system scheme in which one does not want interference between confidential data of the high level and the low level
behaviour observed by an attacker who could infer confidential information (exploiting, for example, a covert channel).

Analyzing the behaviour of a system, aspects of time and/or probability could be exploited to undermine security.
Intuitively, a system which in a nondeterministic setting is considered to be secure, in a richer framework, where the
duration of certain actions, or the probability distribution of the possible events, is known, may reveal information leakages.

Aldini et al. [1], for example, observe that an attack could be done in the following way. Assume that a secret 1-bit value
can be communicated to the unauthorized user among randomly created low-level noise, and that both secret value and
random low-level noise belong to the same domain. The high behaviour does not alter the set of possible low outcomes
which are always the same with or without the high-level interaction. However, for a fixed value of the high input, an
attacker observing the frequency of the low results deriving from repeated executions of the system could infer (with a
certain probability) which one is directly communicated by the high user.

Besides, a timing attack is a side channel attack in which the attacker attempts to compromise a cryptosystem by
analyzing the time taken to execute cryptographic algorithms such as encryption, decryption, hashing, etc. (see, for
example, [34,14]). The attack exploits the fact that every operation in a computer takes time to execute, hence information
may leak from a system throughmeasurement of the time it takes to respond to certain queries. Howmuch such information
can help an intruder depends onmany variables: the cryptosystem design, the CPU running the system, the used algorithms,
the timing attack countermeasures, the accuracy of the timing measurements, etc.

In this sectionwe introduce Chaum’s dining cryptographers protocol, wemodel the principles with PTAs, andwe capture
a timing attack with our notion of weak bisimulation.

6.1. The dining cryptographers protocol

The dining cryptographers protocol, introduced by Chaum in [19], is a method for anonymous communication which
offers untraceability of both the sender and the recipient. We recall Chaum’s introduction to the dining cryptographers
problem.

Three cryptographers are sitting down to dinner at their favorite three-star restaurant. Their waiter informs them that
arrangements have been made with the maitre d’hotel for the bill to be paid anonymously. One of the cryptographers might
be paying for the dinner, or it might have been NSA (US National Security Agency). The three cryptographers respect each other’s
right to make an anonymous payment, but they wonder if NSA is paying. They resolve their uncertainty fairly by carrying out the
following protocol.

Each cryptographer flips an unbiased coin behind his menu, between him and the cryptographer on his right, so that only the
two of them can see the outcome. Each cryptographer then states aloud whether the two coins he can see – the one he flipped
and the one his left-hand neighbor flipped – fell on the same side or on different sides. If one of the cryptographers is the payer,
he states the opposite of what he sees. An odd number of differences uttered at the table indicates that a cryptographer is paying;
an even number indicates that NSA is paying (assuming that the dinner was paid for only once). Yet if a cryptographer is paying,
neither of the other two learns anything from the utterances about which cryptographer it is.

R. Lanotte et al. / Theoretical Computer Science 411 (2010) 4291–4322 4317

Example 22. Consider the situation depicted in Fig. 13, and suppose NSA is paying the bill. In this case cryptographer A
(who can see his own coin and C ’s coin, both showing heads) states that the two coins fell on the same side. Cryptographers
B and C , however, see a head and a tail, hence they state the coins they can see fell on different sides. Since the number of
cryptographers who state the coins are different is even, the protocol correctly reveals NSA is paying.

In case cryptographer A payed the bill he would state that the two coins he can see are different. Hence, the number of
cryptographers stating the coins are different becomes odd, revealing that the bill was paid by one of the cryptographers.

It is easy to see that the protocol works correctly also if either B or C is paying.

The method can be improved in order to anonymously communicate general messages as follows. Instead of just
throwing a coin, every cryptographer picks a random number in private and shows it to the cryptographer to the right.
Then, each cryptographer computes the difference between his own number and the number he was shown by his left
neighbor, adding a message if he wants to transmit one. Each cryptographer publicly announces the result. The published
numbers are summed, and, if the sum is 0, nomessagewas sent. If the sum is a validmessage, one cryptographer transmitted
amessage. If the sum is invalid, more than one cryptographer tried to transmit a message; they just wait a random time and
try again.

Recipient anonymity is quite simple: Everybody receives the message at the same time (when the announced values are
summed up), so the message could be meant for anybody. Sender anonymity holds because no cryptographer knows the
number of the person to his right. Therefore, each cryptographer (other than himself) appears to be equally likely to be the
one who added the message.

Example 23. Consider again the situation depicted in Fig. 13, but, instead of flipping a coin, assume each cryptographer
picks a random number. Let nA, nB and nC be the random numbers extracted by cryptographers A, B and C respectively.
Cryptographer C , moreover, wants to anonymously transmit the messagem. We have the following situation:

– cryptographer A computes and announces: nA − nC ;
– cryptographer B computes and announces: nB − nA;
– cryptographer C computes and announces: nC − nB + m;
– the announced values are summed up resulting in messagem.

In a purely untimed setting this protocol correctly preserves anonymity of both the sender and the receiver, however
it is subject to a very simple timing attack. Actually, even if cryptographers are known to be excellent in mathematics, it
takes them some time to perform the computations needed by the protocol. Now, while cryptographers non transmitting
messages just perform a single subtraction, the cryptographer who wants to transmit a message needs to perform a
subtraction and a summation. Hence, by observing the time that elapses before announcing the result of the computation,
the cryptographers may be able to detect the sender of the message.

6.2. The PTA model of the protocol

As a toy example, we represent the dining cryptographers protocol within the PTA model and we analyze it by using our
notion of weak bisimulation. Namely, we define an anonymity property in terms of behavioural equivalence by resorting to
our notion of weak bisimulation.

Actually, we are able to model the timing attack presented in Example 23. Now, since the timing attack can be detected
only by observing action durations, and since the protocol we are modeling is intrinsically probabilistic, a framework is
needed where both time and probability are taken into account.

We consider the simpler case introduced in Example 22, but, keeping in mind the timing attack shown in Example 23,
we assume that each cryptographer takes some time to check whether the two coins are the same or not, and, in case he
is paying, he also takes some time to compute the negation of what he sees. We give and compare the PTAs modeling the
behaviour of a cryptographer when he is the one paying the bill or not.

In Fig. 14 we depict the PTA model of a paying cryptographer (APC). The coin tossing phase of the protocol is represented
by the four initial transitions leading, each with probability 1

4 and label τ , to states qbb′ , with b, b′
∈ {h, t}. Intuitively, b′

represents the result of the coin tossed by the modeled cryptographer, while b represents the result of the coin tossed by
the person to his left. Since coins are unbiased, the probability distribution over states qbb′ can be assumed to be uniform.
Notice that we are also assuming the coin tossing phase to last, at least, a fixed amount of time tT . In order to check whether
the two coins are equal or different, in state qbb′ the cryptographer computes the XOR between the two coins, and after a
time tX can reach either state qD, if the coins are different, or state qE if the two coins are equal. Since the cryptographer we
are modeling is the one who is paying the bill, he should announce the contrary of what he sees. Hence, he performs a NOT
operation with time duration at least tN . The only visible actions are the announcements equal or different performed from
states qD̄ and qĒ , respectively, and leading to the final state qF .

In Fig. 15 we show the simpler PTA model of a non paying cryptographer (ANPC), where the transitions modeling the
negations in the paying cryptographer behaviour are omitted.

Probable innocence is a notion of anonymity introduced by Reiter and Rubin in [51].While different formal definitions can
be found in the literature (see [17] for details), probable innocence intuitively states that an agent appears no more likely to
be the culprit than not to be.

4318 R. Lanotte et al. / Theoretical Computer Science 411 (2010) 4291–4322

✲✒✑✓✏
q0

✲x≥tT , x:=0

τ , 1
4

✒✑✓✏
qht

✲x≥tT , x:=0

τ , 1
4

✒✑✓✏
qth

✲
x≥tT , x:=0

τ , 1
4 ✒✑✓✏

qhh

✲
x≥tT , x:=0

τ , 1
4 ✒✑✓✏

qtt

❄

τ

x≥tX , x:=0

✻
τ

x≥tX , x:=0
✒✑✓✏
qD

❄

τ

x≥tX , x:=0

✻
τ

x≥tX , x:=0
✒✑✓✏
qE

✲✒✑✓✏
τ

x≥tN
qD̄

✲✒✑✓✏
τ

x≥tN qĒ

❄
equal

✻different
✒✑✓✏
qF

Fig. 14. APC : paying cryptographer.

✲✒✑✓✏
r0

✲y≥tT , y:=0

τ , 1
4

✒✑✓✏
rht

✲y≥tT , y:=0

τ , 1
4

✒✑✓✏
rth

✲
y≥tT , y:=0

τ , 1
4 ✒✑✓✏

rhh

✲
y≥tT , y:=0

τ , 1
4 ✒✑✓✏

rtt

❄

τ

y≥tX , y:=0

✻
τ

y≥tX , y:=0
✒✑✓✏
rD

❄

τ

y≥tX , y:=0

✻
τ

y≥tX , y:=0
✒✑✓✏
rE

different

❄

equal

✻
✒✑✓✏
rF

Fig. 15. ANPC : non paying cryptographer.

Thus, if the protocol preserves probable innocence, the behaviour of a cryptographer when he is paying the bill should
not be distinguishable from the behaviour of the cryptographer when he is not paying the bill. In terms of our notion of
weak bisimulation, we should require that:

APC ≈ ANPC .

Now, it is easy to see that the two automata we are considering are not weakly bisimilar. Intuitively, while automaton
APC performs an observable announcement equal or different only after a time tT + tX + tN has elapsed, automaton ANPC can
perform such announcements after a time tT + tX .

Namely, while there exists a scheduler F such that (r0, y = 0)
tT

−→ (r0, y = tT)
τ

−→ (rhh, y = 0)
tX

−→ (rhh, y = tX)
τ

−→

(rE, y = 0)
equal
−→ (rF , y = 0) is a valid run for ANPC , there is no analogous run in APC for any scheduler.

Such a timing attack can be avoided by synchronizing the announcements of all cryptographers. This, in turn, can be
achieved by introducing a timeout in the last announcement. Actually, we might require the non paying cryptographer to
wait in state rD or rE for the paying cryptographer (if any) to perform all his computation. This can be modeled in ANPC by
adding the condition y ≥ tN in the final transitions reaching state rF . In such away, each cryptographer announces his results
at a time greater than tT + tX + tN whether he is paying or not.

We denote with A′

NPC the automaton modeling the cryptographer modified as just explained above, and we can prove
that in this case APC ≈ A′

NPC , thus satisfying the anonymity property.
Namely, there exists a weak bisimulation relation R with classes defined as follows.

– C1 = (q0, r0, x = y < tT),
– C2 = (q0, r0, x = y ≥ tT),
– C3 = (qht , qth, x = y < tX) ∪ (qht , rhh, x = y < tX) ∪ (rhh, rtt , x = y < tX),
– C4 = (qhh, qtt , x = y < tX) ∪ (qhh, rht , x = y < tX) ∪ (rht , rth, x = y < tX),
– C5 = (qht , qth, x = y ≥ tX) ∪ (qht , rhh, x = y ≥ tX) ∪ (rhh, rtt , x = y ≥ tX),

R. Lanotte et al. / Theoretical Computer Science 411 (2010) 4291–4322 4319

✲✒✑✓✏
u0

✻
τ , 1

2

z≥tT , z:=0

✒✑✓✏
uD

❄

τ , 1
2

z≥tT , z:=0

✒✑✓✏
uE

✲
τ

z≥tX , z:=0 ✒✑✓✏
u′

D

✲
τ

z≥tX , z:=0 ✒✑✓✏
u′

E

❄

different

z≥tN

✻
equal

z≥tN

✒✑✓✏
uF

Fig. 16. AC : the reduced cryptographer.

– C6 = (qhh, qtt , x = y ≥ tX) ∪ (qhh, rht , x = y ≥ tX) ∪ (rht , rth, x = y ≥ tX),
– C7 = (qD, rE, x = y < tN),
– C8 = (qE, rD, x = y < tN),
– C9 = (qD, qD̄, x = y ≥ tN) ∪ (qD, rE, x = y ≥ tN),
– C10 = (qE, qĒ, x = y ≥ tN) ∪ (qE, rD, x = y ≥ tN),
– C11 = (qF , rF , x = y ≥ tN).

For simplicity we omitted triples generated from commutativity and transitivity within each class Ci. Namely, if
(q, r, ψ), (q′, r ′, ψ) ∈ Ci, then also (r, q, ψ), (q, r ′, ψ), . . . ∈ Ci. Note that (qF , rF , x = y ≥ tN) ∈ C11. Hence, C11 contains
the final states of A′

PC and A′

NPC . Actually, any configuration in C11 is terminal.
Now, since R is a weak bisimulation on SÂ, and since the initial configurations of A′

PC and A′

NPC are in the same class we
have that the two automata are weakly bisimilar.

Finally, we would like to show the use of weak bisimulation as a state space reduction technique. Looking at the classes
of R one can notice that for any configuration in C2 we can reach, through a τ transition, class C3 or C4 with probability
1
2 . Such a consideration immediately suggests how to reduce the state space of APC and A′

NPC . In fact, we have that the two
automata are both bisimilar to the reduced automaton AC in Fig. 16.

7. Related works

A preliminary version of this paper has appeared in [38]. The notion of bisimulation has already been introduced and
studied for real-time models (e.g. in [57,20,47,5,4]) and probabilistic models (see [7,8,15,22,1]).

On the one hand, simulation and bisimulation were shown to be decidable for finite timed transition systems by Asarin
et al. [6] and Cerans [20], respectively. In the latter paper, bisimulations are defined in terms of the uncountable unfolded
version of the given timed transition systems, and the decision mechanisms produce relations over nontrivial regional
constructions.

On the other hand, Baier and Hermanns [7] introduced a notion of weak bisimulation for fully probabilistic systems, and
gave an algorithm to decide it with a time complexity cubic in the number of states of the fully probabilistic system.

In [49] algorithms for deciding weak bisimulation for Labeled Concurrent Markov chains are proposed. In [15] the
problem of deciding weak bisimulation in the context of probabilistic nondeterministic automata is studied. Our work is
close to this last one for the context and the algorithm used, but time features introduced more complex problems to be
solved (see Section 4).

There is also somework on Stochastic Process Algebraswhere probability and timing are combined. In [28],minimization
algorithms based on behavioural equivalences for stochastic process algebras are discussed. Some examples of such
equivalence relations are strong equivalence [29], strong (and weak) Markovian bisimilarity [27], and extended Markovian
bisimilarity [10].

Among the papers on bisimulation (or simulation) relations based on automata models, we still could cite some works.
In [45], Lynch and Vaandrager present a variety of simulation proof techniques for a general automaton based model for

timed systems. They also showhow some results for untimed automata can be carried over to the setting of TimedAutomata.
As regards Probabilistic Automata we should cite Segala’s thesis [53], in which the common semantics for labeled

transition systems is extended to the probabilistic framework. A compositional trace semantics is defined where a trace is
replaced by a probability distribution over traces. The classical bisimulation and simulation relations are extended according

4320 R. Lanotte et al. / Theoretical Computer Science 411 (2010) 4291–4322

to such a trace semantics both in their strong andweak versions. Furthermore, probabilistic forward simulations are defined,
where a state is related to a probability distribution over states.

In Stoelinga’s thesis [56], a new notion of bisimulation relation, called delay bisimulation, is introduced for Probabilistic
Automata. While this relation abstracts away from internal moves only in a limited way, there is a gain in the efficiency
of the algorithms that automatically compute the bisimilar states. Namely, delay bisimulation is shown to be decidable in
polynomial time and space.

Jensen and Gregersen [31,32] present a model which is similar to Probabilistic Timed Automata but obtained as a
generalization of reactive systems [43]. They also present a specification formalism in terms of a real timed probabilistic
logic and amodel checkingmethod for verificationwith respect to the logic. However, differently from Segala’s probabilistic
automata, their model cannot have nondeterministic choice between transitions labeled with the same action.

Finally, in [55] probabilistic timed simulation and bisimulation relations for Probabilistic Timed Automata are studied. An
EXPTIME algorithm for deciding whether two Probabilistic Timed Automata are probabilistically timed similar or bisimilar
is presented together with a a logical characterization of probabilistic timed bisimulation.

On the interpretation of timed steps. In [57,44], Wang and Larsen introduce strong and weak bisimulation equivalences for a
real time process calculus obtained by extending Milner’s CCS [46] with delays. Our notion of weak bisimulation for PTAs
differs from the mentioned one. In our framework, a weak transition t

H⇒ is given by a sequence of internal moves followed
by a single time transition of duration t followedby a sequence of internalmoves. In [57] both timedelays and internalmoves
are interchangeable, the observable resulting after a series of time delays and internal moves is just the time delay obtained
summing up the different timed steps: a weak timed transition consists of a sequence of steps (either internal or timed
steps) such that the sum of the different time steps is t . Thus, the main difference is that our notion of weak bisimulation is
weak onlywith respect to internal moves, while the notion of weak bisimulation in [57] isweakwith respect to both internal
and timed steps.

In [57] also a notion of strong bisimulation is given (which is similar to our notion when abstracting from internal
moves). In a sense, we relax this equivalence by introducing internal invisible moves, which then lead to the definition
of our intermediateweak bisimulation.

As a consequence, we are treating as visible consequent timed steps. This becomes actually relevant when consequent
timed steps are interleaved with invisible τ actions which might change a time invariant by leading to a new state with
different time constraints, or the probability of observing the passage of time (see Example 13). Such an assumption makes
finer the classes of our weak bisimulation relation but allows us to take into account the fact that the scheduler is invoked
again after a timed step.While no assumption about the scheduler is needed in [57] (since their model is purely possibilistic,
nondeterminism could be treated in the classical way), in this paper we used schedulers to combine probabilities and
nondeterminism. Such an invocation would actually make distinguishable, to the eyes of a malicious scheduler, a system
which can perform a single timed step of length t from a system which can perform two timed steps (maybe interleaved
by some internal move) with lengths t1 and t2 such that t1 = t2, and so alter its observable behaviour (see [16,18]
for examples on how malicious schedulers may collaborate with an attacker allowing him to distinguish two bisimilar
processes). Moreover, notice that in our framework the scheduler also decides the amount of time to pass. We believe that,
for example in the context of security analysis, our stricter notion of bisimulation is more suitable than the one presented
in [57].

8. Conclusions

We have considered a model of Probabilistic Timed Automata and we have presented a notion of weak bisimulation in
order to compare automata behaviour. We propose an algorithm based on symbolic representation that allows to decide
weak bisimulation with a complexity congruent with the algorithm given for the untimed version. We have applied such a
notion in the context of security analysis by modeling a timing attack on a protocol where both time and probability play a
role. Therefore, our framework can be used, for example, to prevent possible attacks based on statistical or timing analysis.

While the notion of weak bisimulation we introduced in this paper is quite strict, a notion of approximate weak
bisimulation could be extremely useful when analyzing performance or security aspects of probabilistic systems.

In order to introduce a quantitative measure for insecure behavior (hence, to estimate the probability that a certain
insecure behavior arises), onemay resort to an approximate notion of weak bisimulation for deciding if two systems behave
almost in the same way, namely, to assess bisimilarity of automata for which the difference between their probabilistic
behaviour is within a small distance.

In [13,22,23], for example, metrics are introduced in order to quantify the similarity of the behaviour of probabilistic
transition systems that are not strictly bisimilar. In [1] the authors introduce an enriched notion of weak probabilistic
bisimulation, which is able to tolerate fluctuations making the security conditions less restrictive and relating systems
that may have largely different possible behaviour under the condition that such behaviour is observable with a negligible
probability. It would be interesting to extend also our notion of weak bisimulation with an approximate one.

As another possible improvement of this work, one may consider reasoning about the compositionality of PTAs, thus
allowing for the analysis of more complex systems. A lot of work has been done on probabilistic parallel composition

R. Lanotte et al. / Theoretical Computer Science 411 (2010) 4291–4322 4321

operators (see [53,21,54]). Hence, it would be interesting to study the application of parallel composition operators within
the model of PTAs, and verify, for example, whether weak bisimulation is a congruence with respect to these constructs.

A more practical direction may consist in the development of tools for the automatic verification of weak bisimulation
for PTAs or for the state space reduction of PTAs. This latter point could improve the verification of PTAs through model
checkers for PTAs (see, for example, PRISM [50,36]).

References

[1] A. Aldini, M. Bravetti, R. Gorrieri, A process-algebraic approach for the analysis of probabilistic non-interference, Journal of Computer Security 12
(2004) 191–245.

[2] R. Alur, C. Courcoubetis, D.L. Dill, Verifying automata specifications of probabilistic real-time systems, in: Real-Time: Theory in Practice, in: Springer
LNCS, vol. 600, 1992, pp. 28–44.

[3] R. Alur, D.L. Dill, A theory of timed automata, Theoretical Computer Science 126 (1994) 183–235.
[4] J.H. Andersen, K.J. Kristoffersen, K.G. Larsen, J. Niedermann, Automatic synthesis of real time systems, in: Proc. of ICALP’95, in: Springer LNCS, vol. 944,

1995, pp. 535–546.
[5] H.H. Andersen, M. Mendler, An asynchronous process algebra with multiple clocks, in: Proc. of ESOP’94, in: Springer LNCS, vol. 788, 1994.
[6] E. Asarin, O. Maler, A. Pnueli, On discretization of delays in timed automata and digital circuits, in: Proc. of CONCUR’98, in: Springer LNCS, vol. 1466,

1998, pp. 470–484.
[7] C. Baier, H. Hermanns, Weak bisimulation for fully probabilistic processes, in: Proc. of CAV’97, in: Springer LNCS, vol. 1254, 1997, pp. 119–130.
[8] C. Baier, On algorithmic verification methods for probabilistic systems, Habilitation Thesis, Univ. Mannheim, 1998.
[9] R.E. Bellman, Dynamic Programming, Princeton University Press, 1957.

[10] M. Bernardo, R. Gorrieri, A tutorial on EMPA: a theory of concurrent processes with nondeterminism, priorities, probabilities and time, Theoretical
Computer Science 202 (1998) 1–54.

[11] D. Beauquier, On probabilistic timed automata, Theoretical Computer Science 292 (2003) 65–84.
[12] P. Bouyer, Forward analysis of updatable timed automata, Formal Methods in System Design 24 (2004) 281–320.
[13] F. van Breugel, J. Worrel, Towards quantitative verification of probabilistic systems (extended abstract), in: Proc. of 28th Int. Colloquim on Automata,

Languages and Programming, in: Springer LNCS, vol. 2076, 2001, pp. 421–432.
[14] D. Brumley, D. Boneh, Remote timing attacks are practical, The International Journal of Computer and Telecommunications Networking 48 (2005)

701–716.
[15] S. Cattani, R. Segala, Decision algorithm for probabilistic bisimulation, in: Proc. of CONCUR’02, in: Springer LNCS, vol. 2421, 2002, pp. 371–385.
[16] K. Chatzikokolakis, G. Norman, D. Parker, Bisimulation for demonic schedulers, in: Proc. of FOSSACS’09, in: Springer LNCS, vol. 5504, 2009, pp. 318–332.
[17] K. Chatzikokolakis, C. Palamidessi, Probable innocence revisited, Theoretical Computer Science 367 (2006) 123–138.
[18] K. Chatzikokolakis, C. Palamidessi, Making random choices invisible to the scheduler, in: Proc. of CONCUR’07, in: Springer LNCS, vol. 4703, 2007,

pp. 42–58.
[19] D. Chaum, The dining cryptographers problem: unconditional sender and recipient untraceability, Journal of Cryptology 1 (1988) 65–75.
[20] K. Cerans, Decidability of bisimulation equivalences for parallel timer processes, in: Proc. of CAV’92, in: Springer LNCS, vol. 663, 1992, pp. 302–315.
[21] P.R. D’Argenio, H. Hermanns, J.-P. Katoen, On generative parallel composition, in: Proc. of PROBMIV’98, in: Elsevier ENTCS, vol. 22, 1998, pp. 30–54.
[22] J. Desharnais, V. Gupta, R. Jagadeesan, P. Panangaden, The metric analogue of weak bisimulation for probabilistic processes, in: Proc. of 17th

Symposium on Logic in Computer Science, IEEE CS Press, 2002.
[23] J. Desharnis, V. Gupta, R. Jagadeesan, P. Panangaden, Metrics for labelled Markov processes, Theoretical Computer Science 318 (2004) 323–354.
[24] R. Focardi, R. Gorrieri, A classification of security properties, Journal of Computer Security 3 (1995) 5–33.
[25] P.R. Halmos, Measure Theory, Springer-Verlag, 1950.
[26] T.A. Henzinger, X. Nicollin, J. Sifakis, S. Yovine, Symbolic model checking for real-time systems, Information and Computation 111 (1994) 193–244.
[27] H. Hermanns, U. Herzog, V. Mertsiotakis, Stochastic process algebras — between Lotos and Markov chains, Computer Networks and ISDN Systems 30

(1998) 901–924.
[28] H. Hermanns,M. Stegle, Bisimulation algorithms for stochastic process algebras and their BDD-based implementation, in: Proc. of ARTS’99, in: Springer

LNCS, vol. 1601, 1999, pp. 244–264.
[29] J. Hillston, A Compositional Approach to Performance Modelling, Cambridge University Press, 1996.
[30] H. Howard, Dynamic Programming and Markov Processes, MIT Press, 1960.
[31] H.E. Jensen, H. Gregersen, Formal design of reliable real time systems, Master’s Thesis, Aalborg University, 1995.
[32] H.E. Jensen, Model checking probabilistic real time systems, in: Proc. of the 7th Nordic Work. on Progr. Theory, Institute of Technology, 1996,

pp. 247–261.
[33] P.C. Kanellakis, S.A. Smolka, CCS expressions, finite state processes, and three problems of equivalence, Information and Computation 86 (1990) 43–68.
[34] P.C. Kocher, Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems, in: Proc. of CRYPTO 1996, in: Springer LNCS, vol. 1109,

1996, pp. 104–113.
[35] M. Kwiatkowska, G. Norman, R. Segala, J. Sproston, Automatic verification of real-time systems with discrete probability distribution, Theoretical

Computer Science 282 (2002) 101–150.
[36] M. Kwiatkowska, G. Norman, J. Sproston, Symbolic model checking for probabilistic timed automata, in: Proc. of FORMATS/FTRTFT2004, in: Springer

LNCS, vol. 3253, 2004, pp. 293–308.
[37] R. Lanotte, D. Beauquier, A decidable probability logic for timed probabilistic systems, CoRR, cs.LO/0411100, 2004.
[38] R. Lanotte, A. Maggiolo-Schettini, A. Troina, Weak bisimulation for probabilistic timed automata and applications to security, in: Proc. of SEFM’03,

IEEE CS Press, 2003, pp. 34–43.
[39] R. Lanotte, A. Maggiolo-Schettini, A. Troina, A classification of time and/or probability dependent security properties, in: Proc. of QAPL’05, in: ENTCS,

vol. 153(2), Elsevier, 2005, pp. 177–193.
[40] R. Lanotte, A. Maggiolo-Schettini, A. Troina, Reachability results for timed automata with unbounded data structures, Acta Informatica 47 (2010)

279–311.
[41] R. Lanotte, A.Maggiolo-Schettini, P.Milazzo, A. Troina, Design and verification of long-running transactions in a timed framework, Science of Computer

Programming 73 (2008) 76–94.
[42] R. Lanotte, A. Maggiolo-Schettini, A. Troina, Time and probability-based information flow analysis, IEEE Transactions on Software Engineering 36

(2010) 719–734.
[43] K.G. Larsen, A. Skou, Bisimulation through probabilistic testing, Information and Computation 94 (1991) 1–28.
[44] K.G. Larsen, Y. Wang, Time abstracted bisimulation: implicit specifications and decidability, Information and Computation 134 (1997) 75–101.
[45] N.A. Lynch, F.W. Vaandrager, Forward and backward simulations, II: timing-based systems, Information and Computation 128 (1996) 1–25.
[46] R. Milner, Communication and Concurrency, Prentice Hall, 1989.
[47] X. Nicollin, J. Sifakis, S. Yovine, From ATP to timed graphs and hybrid systems, Acta Informatica 30 (1993) 181–202.
[48] R. Paige, R.E. Tarjan, Three partition refinement algorithms, SIAM Journal on Computing 16 (1987) 973–989.
[49] A. Philippou, I. Lee, O. Sokolsky, Weak bisimulation for probabilistic systems, in: Proc. CONCUR’00, in: Springer LNCS, vol. 1877, 2000, pp. 334–349.
[50] PRISM Model Checker. Web site: http://www.cs.bham.ac.uk/dxp/prism.

http://www.cs.bham.ac.uk/dxp/prism

4322 R. Lanotte et al. / Theoretical Computer Science 411 (2010) 4291–4322

[51] M.K. Reiter, A.D. Rubin, Crowds: anonimity for web transactions, ACM Transactions on Information and System Security 1 (1998) 66–92.
[52] P. Ryan, S. Schneider, Process algebra and non-interference, in: Proc. of CSFW’99, IEEE CS Press, 1999, pp. 214–227.
[53] R. Segala, Modeling and verification of randomized distributed real-time systems, Ph.D. Thesis, MIT, Laboratory for Computer Science, 1995.
[54] A. Sokolova, E.P. de Vink, Probabilistic automata: system types, parallel composition and comparison, in: Validation of Stochastic Systems, in: Springer

LNCS, vol. 2925, 2004, pp. 1–43.
[55] J. Sproston, A. Troina, Simulation and bisimulation for probabilistic timed automata, in: Proc. of FORMATS’10, in: Springer LNCS, vol. 6246, 2010,

pp. 213–227.
[56] M. Stoelinga, Alea jacta est: verification of probabilistic, real-time and parametric systems, Ph.D. Thesis, University of Nijmegen, the Netherlands,

2002.
[57] Y. Wang, Real-time behaviour of asynchronous agents, in: Proc. of CONCUR’90, in: Springer LNCS, vol. 458, 1990.

	Weak bisimulation for Probabilistic Timed Automata
	Introduction
	Summary

	Preliminaries
	The possibilistic model
	The probabilistic model
	The timed model

	Probabilistic Timed Automata
	Semantics of Probabilistic Timed Automata
	Regions of PTAs
	Behavioural equivalence
	Removing probability and time from PTAs

	Decidability of weak bisimulation for PTAs
	Classes
	The algorithm Clean
	The Cut operator
	The algorithm

	Discussion
	Non-zeno schedulers
	Normalization

	An application of weak bisimulation for PTAs
	The dining cryptographers protocol
	The PTA model of the protocol

	Related works
	Conclusions
	References

