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Abstract. ATL is a temporal logic geared towards the specification and verification of
properties in multi-agents systems. It allows to reason on the existence of strategies for
coalitions of agents in order to enforce a given property. In this paper, we first precisely
characterize the complexity of ATL model-checking over Alternating Transition Systems
and Concurrent Game Structures when the number of agents is not fixed. We prove that it
is ∆P

2- and ∆P
3-complete, depending on the underlying multi-agent model (ATS and CGS

resp.). We also consider the same problems for some extensions of ATL. We then consider
expressiveness issues. We show how ATS and CGS are related and provide translations
between these models w.r.t. alternating bisimulation. We also prove that the standard
definition of ATL (built on modalities “Next”, “Always” and “Until”) cannot express the
duals of its modalities: it is necessary to explicitely add the modality “Release”.

1. Introduction

Model checking. Temporal logics were proposed for the specification of reactive systems
almost thirty years ago [CE81, Pnu77, QS82]. They have been widely studied and successfully
used in many situations, especially for model checking —the automatic verification that
a finite-state model of a system satisfies a temporal logic specification. Two flavors of
temporal logics have mainly been studied: linear-time temporal logics, e.g. LTL [Pnu77],
which expresses properties on the possible executions of the model; and branching-time
temporal logics, such as CTL [CE81, QS82], which can express requirements on states (which
may have several possible futures) of the model.

2000 ACM Subject Classification: F.1.1,F.3.1.
Key words and phrases: multi-agent systems, temporal logic, model checking.
This article is a long version of [LMO07].

This author is sponsored by a PhD grant from Region Île-de-France.
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Alternating-time temporal logic. Over the last ten years, a new flavor of temporal logics
has been defined: alternating-time temporal logics (ATL) [AHK97]. ATL is a fundamental
logic for verifying properties in synchronous multi-agent systems, in which several agents
can concurrently act upon the behavior of the system. This is particularly interesting for
modeling control problems. In that setting, it is not only interesting to know if something
can arrive or will arrive, as can be expressed in CTL or LTL, but rather if some agent(s) can
control the evolution of the system in order to enforce a given property.

The logic ATL can precisely express this kind of properties, and can for instance state
that “there is a strategy for a coalition A of agents in order to eventually reach an accepting
state, whatever the other agents do”. ATL can be seen as an extension of CTL; its formulae
are built on atomic propositions and boolean combinators, and (following the seminal
papers [AHK97, AHK98, AHK02]) on modalities 〈〈A〉〉Xϕ (coalition A has a strategy to
immediately enter a state satisfying ϕ), 〈〈A〉〉Gϕ (coalition A can force the system to always
satisfy ϕ) and 〈〈A〉〉ϕUψ (coalition A has a strategy to enforce ϕUψ).

Multi-agent models. While linear- and branching-time temporal logics are interpreted on
Kripke structure, alternating-time temporal logics are interpreted on models that incorporate
the notion of multiple agents. Two kinds of synchronous multi-agent models have been
proposed for ATL in the literature. First Alternating Transition Systems (ATSs)[AHK98]
have been defined: in any location of an ATS, each agent chooses one move, i.e., a subset of
locations (the list of possible moves is defined explicitly in the model) in which she would
like the execution to go to. When all the agents have made their choice, the intersection of
their choices is required to contain one single location, in which the execution enters. In
the second family of models, called Concurrent Game Structures (CGSs) [AHK02], each of
the n agents has a finite number of possible moves (numbered with integers), and, in each
location, an n-ary transition function indicates the state to which the execution goes.

Our contributions. First we precisely characterize the complexity of the model checking
problem. The original works about ATL provide model-checking algorithms in time O(m · l),
where m is the number of transitions in the model, and l is the size of the formula [AHK98,
AHK02], thus in PTIME. However, contrary to Kripke structures, the number of transitions
in a CGS or in an ATS is not quadratic in the number of states [AHK02], and might even be
exponential in the number of agents. PTIME-completeness thus only holds for ATS when the
number of agents is bounded, and it is shown in [JD05, JD06] that the problem is strictly1

harder otherwise, namely NP-hard on ATS and ΣP
2 -hard on CGSs where the transition

function is encoded as a boolean function. We prove that it is in fact ∆P
2 -complete and

∆P
3 -complete, resp. We also precisely characterize the complexity of model-checking classical

extensions of ATL, depending on the underlying family of models.
Then we address expressiveness questions. First we show how ATSs and CGSs are

related by providing translations between these models. Moreover we consider expressiveness
questions about ATL modalities. While in LTL and CTL, the dual of “Until” modality can be
expressed as a disjunction of “always” and “until”, we prove that it is not the case in ATL. In
other words, ATL, as defined in [AHK97, AHK98, AHK02], is not as expressive as one could

1We adopt the classical hypothesis that the polynomial-time hierarchy does not collapse, and that
PTIME 6= NP. We refer to [Pap94] for the definitions about complexity classes, especially about oracle Turing
machines and the polynomial-time hierarchy.
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expect (while the dual modalities clearly do not increase the complexity of the verification
problems).

Related works. In [AHK98, AHK02], ATL has been defined and studied over ATSs
and CGSs. In [HRS02], expressiveness issues are considered for ATL∗ and ATL. Com-
plexity of satisfiability is addressed in [GvD06, WLWW06]. Complexity results about model
checking (for ATL, ATL+, ATL∗) can be found in [AHK02, Sch04]. Regarding control- and
game theory, many papers have focused on this wide area; we refer to [Wal04] for a survey,
and to its numerous references for a complete overview.

Plan of the paper. Section 2 contains the formal definitions needed in the sequel. Section 3
deals with the model-checking questions and contains algorithms and complexity analysis
for ATSs and CGSs. Section 4 contains our expressiveness results: we first prove that ATSs
and CGSs have the same expressive power w.r.t. alternating bisimulation (i.e., any CGS can
be translated into an equivalent ATS, and vice-versa). We then present our expressiveness
results concerning ATL modalities.

2. Definitions

2.1. Concurrent Game Structures. Concurrent game structures are a multi-player ex-
tension of classical Kripke structures [AHK02]. Their definition is as follows:

Definition 2.1. A Concurrent Game Structure (CGS for short) C is a 6-tuple (Agt,Loc,
AP,Lab,Mov,Edg) where:

• Agt = {A1, ..., Ak} is a finite set of agents (or players);
• Loc and AP are two finite sets of locations and atomic propositions, resp.;
• Lab : Loc→ 2AP is a function labeling each location by the set of atomic propositions

that hold for that location;
• Mov : Loc × Agt → P(N) r {∅} defines the (finite) set of possible moves of each

agent in each location.
• Edg : Loc×Nk → Loc, where k = |Agt|, is a (partial) function defining the transition

table. With each location and each set of moves of the agents, it associates the
resulting location.

The intended behaviour is as follows [AHK02]: in a location `, each player Ai chooses
one possible move mAi in Mov(`, Ai) and the next location is given by Edg(`,mA1 , ...,mAk

).
We write Next(`) for the set of all possible successor locations from `, and Next(`, Aj ,m),
with m ∈ Mov(`, Aj), for the restriction of Next(`) to locations reachable from ` when
player Aj makes the move m.

The way the transition table Edg is encoded has not been made precise in the original
definition. Following the remarks of [JD05], we propose two possible encodings:

Definition 2.2. • An explicit CGS is a CGS where the transition table is defined
explicitly.
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• An implicit CGS is a CGS where, in each location `, the transition function is defined
by a finite sequence ((ϕ0, `0), ..., (ϕn, `n)), where `i ∈ Loc is a location, and ϕi is a
boolean combination of propositions Aj = c that evaluate to true iff agent Aj chooses
move c. The transition table is then defined as follows: Edg(`,mA1 , ...,mAk

) = `j
iff j is the lowest index s.t. ϕj evaluates to true when players A1 to Ak choose
moves mA1 to mAk

. We require that the last boolean formula ϕn be >, so that no
agent can enforce a deadlock.

Besides the theoretical aspect, the implicit description of CGSs may reveal useful in
practice, as it allows to not explicitly describe the full transition table.

The size |C| of a CGS C is defined as |Loc|+ |Edg|. For explicit CGSs, |Edg| is the size
of the transition table. For implicit CGSs, |Edg| is the sum of the sizes of the formulas used
for the definition of Edg.

2.2. Alternating Transition Systems. In the original works about ATL [AHK97], the
logic was interpreted on ATSs, which are transition systems slightly different from CGSs:

Definition 2.3. An Alternating Transition System (ATS for short) A is a 5-tuple (Agt,Loc,
AP,Lab,Mov) where:

• Agt, Loc, AP and Lab have the same meaning as in CGSs;
• Mov : Loc× Agt→ P(P(Loc)) associate with each location ` and each agent a the

set of possible moves, each move being a subset of Loc. For each location `, it is
required that, for any Qi ∈ Mov(`, Ai),

⋂
i≤kQi be a singleton.

The intuition is as follows: in a location `, once all the agents have chosen their moves
(i.e., a subset of locations), the execution goes to the (only) state that belongs to all the sets
chosen by the players. Again Next(`) (resp. Next(`, Aj ,m)) denotes the set of all possible
successor locations (resp. the set of possible successor locations when player Aj chooses the
move m).

The size of an ATS is |Loc|+ |Mov| where |Mov| is the sum of the number of locations
in each possible move of each agent in each location.

We prove in Section 4.1 that CGSs and ATSs have the same expressiveness (w.r.t. alter-
nating bisimilarity [AHKV98]).

2.3. Coalition, strategy, outcomes of a strategy. A coalition is a subset of agents.
In multi-agent systems, a coalition A plays against its opponent coalition Agt rA as if they
were two single players. We thus extend Mov and Next to coalitions:

• Given A ⊆ Agt and ` ∈ Loc, Mov(`, A) denotes the possible moves for the coalition A
from `. Such a move m is composed of a single move for every agent of the coalition,

that is m
def
= (ma)a∈A. Then, given a move m′ ∈ Mov(`,Agt\A), we use m ⊕ m′

to denote the corresponding complete move (one for each agent). In ATSs, such a
move m⊕m′ corresponds to the unique resulting location; in CGSs, it is given by
Edg(`,m⊕m′).
• Next is extended to coalitions in a natural way: given m = (ma)a∈A ∈ Mov(`, A), we

let Next(`, A,m) denote the restriction of Next(`) to locations reachable from ` when
every player Aj ∈ A makes the move mAj .
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Let S be a CGS or an ATS. A computation of S is an infinite sequence ρ = `0`1 · · ·
of locations such that for any i, `i+1 ∈ Next(`i). We write ρ[i] for the i + 1-st location `i.
A strategy for a player Ai ∈ Agt is a function fAi that maps any finite prefix of a computation
to a possible move for Ai, i.e., satisfying fAi(`0 · · · `m) ∈ Mov(`m, Ai). A strategy is state-
based (or memoryless) if it only depends on the current state (i.e., fAi(`0 · · · `m) = fAi(`m)).

A strategy induces a set of computations from ` —called the outcomes of fAi from `
and denoted2 OutS(`, fAi)— that player Ai can enforce: `0`1 · · · ∈ OutS(`, fAi) iff ` = `0 and
for any i we have `i+1 ∈ Next(`i, Ai, fAi(`0 · · · `i)). Given a coalition A ⊆ Agt, a strategy
for A is a tuple FA containing one strategy for each player in A: FA = {fAj |Aj ∈ A}.
The outcomes of FA from a location ` contains the computations enforced by the strategies
in FA: `0`1 · · · ∈ OutS(`, FA) iff ` = `0 and for any i, `i+1 ∈ Next(`i, A, (fa(`0, · · · , `i))a∈A).
The set of strategies for A is denoted2 StratS(A). Finally, note that F∅ is empty and
OutS(`,∅) represents the set of all computations from `.

2.4. The logic ATL. We now define the logic ATL, whose purpose is to express controllability
properties on CGSs and ATSs. Our definition is slightly different from the one proposed
in [AHK02]. This difference will be explained and argued in Section 4.2.

Definition 2.4. The syntax of ATL is defined by the following grammar:

ATL 3 ϕs, ψs ::= > | P | ¬ϕs | ϕs ∨ ψs | 〈〈A〉〉ϕp
ϕp ::= ¬ϕp | Xϕs | ϕs Uψs

where P ranges over the set AP and A over the subsets of Agt.

Given a formula ϕ ∈ ATL, the size of ϕ, denoted by |ϕ|, is the size of the tree representing
that formula. The DAG-size of ϕ is the size of the directed acyclic graph representing that
formula (i.e., sharing common subformulas).

In addition, we use standard abbreviations such as >, ⊥, F , etc. ATL formulae are
interpreted over states of a game structure S. The semantics of the main operators is defined
as follows2:

` |=S 〈〈A〉〉ϕp iff ∃FA ∈ Strat(A). ∀ρ ∈ Out(`, FA). ρ |=S ϕp,
ρ |=S Xϕs iff ρ[1] |=S ϕs,

ρ |=S ϕs Uψs iff ∃i. ρ[i] |=S ψs and ∀0 ≤ j < i. ρ[j] |=S ϕs.
It is well-known that, for the logic ATL, it is sufficient to restrict to state-based strategies (i.e.,
〈〈A〉〉ϕp is satisfied iff there is a state-based strategy all of whose outcomes satisfy ϕp) [AHK02,
Sch04].

Note that 〈〈∅〉〉ϕp corresponds to the CTL formula Aϕp (i.e., universal quantification
over all computations issued from the current state), while 〈〈Agt〉〉ϕp corresponds to existential
quantification Eϕp. However, ¬ 〈〈A〉〉ϕp is generally not equivalent to 〈〈AgtrA〉〉 ¬ϕp [AHK02,
GvD06]: indeed the absence of a strategy for a coalition A to ensure ϕ does not entail
the existence of a strategy for the coalition Agt\A to ensure ¬ϕ. For instance, Fig. 1
displays a (graphical representation of a) 2-player CGS for which, in `0, both ¬ 〈〈A1〉〉X p
and ¬ 〈〈A2〉〉 ¬X p hold. In such a representation, a transition is labeled with 〈m1,m2〉 when
it corresponds to move m1 of player A1 and to move m2 of player A2. Fig. 2 represents an
“equivalent” ATS with the same property.

2We might omit to mention S when it is clear from the context.
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`0

p
`1

¬p
`′1

¬p
`′2

p
`2

〈1,1〉

〈1,2〉〈2,1〉

〈2,2〉

Figure 1: A CGS that is not determined.

Loc = {`0, `1, `2, `′1, `′2}

Mov(`0, A1) = {{`1, `′1}, {`2, `′2}}
Mov(`0, A2) = {{`1, `′2}, {`2, `′1}}

with

{
Lab(`1) = Lab(`2) = {p}
Lab(`′1) = Lab(`′2) = ∅

Figure 2: An ATS that is not determined.

3. Complexity of ATL model-checking

In this section, we establish the precise complexity of ATL model-checking. This issue
has already been addressed in the seminal papers about ATL, on both ATSs [AHK98]
and CGSs [AHK02]. The time complexity is shown to be in O(m · l), where m is the
number of transitions and l is the size of the formula. The authors then claim that the
model-checking problem is in PTIME (and obviously, PTIME-complete, since it is already
for CTL). In fact this only holds for explicit CGSs. In ATSs, the number of transitions might
be exponential in the size of the system (more precisely, in the number of agents). This
problem —the exponential blow-up of the number of transitions to handle in the verification
algorithm— also occurs for implicit CGSs: the standard algorithms running in O(m · l)
require exponential time.

Basically, the algorithm for model-checking ATL is similar to that for CTL: it consists
in recursively computing fixpoints, based e.g. on the following equivalence:

〈〈A〉〉 pU q ≡ µZ.(q ∨ (p ∧ 〈〈A〉〉XZ)) (3.1)

The difference with CTL is that we have to deal with the modality 〈〈A〉〉X —corresponding
to the pre-image of a set of states for some coalition— instead of the standard modality EX .
In control theory, 〈〈A〉〉X corresponds to the controllable predecessors of a set of states for a
coalition: CPre(A,S), with A ⊆ Agt and S ⊆ Loc, is defined as follows:

CPre(A,S)
def
= {` ∈ Loc | ∃mA ∈ Mov(`, A) s.t. Next(`, A,mA) ⊆ S}

The crucial point of the model-checking algorithm is the computation of the set CPre(A,S).
In the sequel, we establish the exact complexity of computing CPre (more precisely,

given A ⊂ Agt, S ⊆ Loc, and ` ∈ Loc, the complexity of deciding whether ` ∈ CPre(A,S)),
and of ATL model-checking for our three kinds of multi-agent systems.

3.1. Model checking ATL on explicit CGSs. As already mentionned, the precise com-
plexity of ATL model-checking over explicit CGSs was established in [AHK02]:

Theorem 3.1. ATL model-checking over explicit CGSs is PTIME-complete.

To our knowledge, the precise complexity of computing CPre in explicit CGSs has never
been considered. The best upper bound is PTIME, which is sufficient for deriving the PTIME
complexity of ATL model-checking.

In fact, given a location `, a set of locations S and a coalition A, deciding whether
` ∈ CPre(A,S) has complexity much lower than PTIME:

Proposition 3.2. Computing CPre in explicit CGSs is in AC0.
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Proof. We begin with precisely defining how the input is encoded as a sequence of bits:

• the first |Agt| bits define the coalition: the i-th bit is a 1 iff agent Ai belongs to A;
• the following |Loc| bits of input define the set S;
• for the sake of simplicity, we assume that all the agents have the same number

of moves in `. We write p for that number, which we assume is at least 2. The
transition table Edg(`) is then given as a sequence of pk sets of log(|Loc|) bits.

As a first step, it is rather easy to modify the input in order to have the following form:

• first the k bits defining the coalition;
• then, a sequence of pk bits defining whether the resulting state belongs to S.

This is achieved by pk copies of the same AC0 circuit.
We now have to build a circuit that will “compute” whether coalition A has a strategy

for ending up in S. Since circuits must only depend on the size of the input, we cannot
design a circuit for coalition A. Instead, we build one circuit for each possible coalition
(their number is exponential in the number of agents, but polynomial in the size of the input,
provided that p ≥ 2), and then select the result corresponding to coalition A.

Thus, for each possible coalition B, we build one circuit whose final node will evaluate
to 1 iff ` ∈ CPre(B,S). This is achieved by an unbounded fan-in circuit of depth 2: at the

first level, we put p|B| AND-nodes, representing each of the p|B| possible moves for coalition B.
Each of those nodes is linked to pk−|B| bits of the transition table, corresponding to the set
of possible pk−|B| moves of the opponents. At the second level, an OR-node is linked to all
the nodes at depth 1.

Clearly enough, the OR-node at depth 2 evaluates to true iff coalition B has a strategy
to reach S. Moreover, there are

(
k
l

)
coalitions of size l, each of which is handled by a circuit

of pl + 1 nodes. The resulting circuit thus has (p+ 1)k + 2k nodes, which is polynomial in
the size of the input. This circuit is thus an AC0 circuit.

It simply remains to return the result corresponding to the coalition A. This is easily
achieved in AC0. �

3.2. Model checking ATL on implicit CGSs. Assuming that the transitions issued
from ` are given —in the transition table— by the sequence ((ϕ0, `0), (ϕ1, `1), . . . , (ϕn, `n)),
we have: ` ∈ CPre(A,S) iff there exists mA ∈ Mov(`, A), s.t. there is no mĀ ∈ Mov(`,Agt\A)
and `i ∈ Loc\S s.t.3 ϕi[mA ⊕mĀ] ≡ > and ϕj [mA ⊕mĀ] ≡ ⊥ for any j < i. Thus we look
for a move mA ∈ Mov(`, A) s.t. for all mĀ ∈ Mov(`, Ā), the negation of

∨
`i∈Loc\S(ϕi[mA] ∧∧

j<i ¬ϕj [mA]) holds.

This problem corresponds to an instance of the ΣP
2 -complete problem EQSAT2:

EQSAT2:

Input:: two families of variables X = {x1, ..., xn} and Y = {y1, ..., yn}, a boolean
formula ϕ on the set of variables X ∪ Y .

Output:: True iff ∃X. ∀Y. ϕ.

And indeed, as a direct corollary of [JD05, Lemma 1], we have:

3Given m = (ma)a∈A for A ⊆ Agt, ϕ[m] denotes the formula where every proposition ”Aj = c” with
Aj ∈ A is replaced by > if mAj = c, and by ⊥ otherwise. If A = Agt, ϕ[m] is boolean expression.
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Proposition 3.3. Computing CPre in implicit CGSs is ΣP
2 -complete.

Proof. The membership in ΣP
2 follows directly the above remarks. A ΣP

2 procedure is
explicitly described in Algorithm 1.

Procedure co-strategy(q, (ϕi, `i)i, (ma)a∈A, S)

//checks if the opponents have a co-strategy to (ma)a∈A to avoid S

begin
foreach ā ∈ Ā do

mā ← guess(q, ā);

i← 0;
while ¬ϕi(ma,mā) do

i← i+ 1;

if `i /∈ S then
return yes;

else
return no;

end

Procedure CPre(A, S) begin
W ← ∅;
foreach q ∈ C do

foreach a ∈ A do
ma ← guess(q, a);

if not co-strategy(q, (ϕi, `i)i, (ma)a∈A, S) then
W ←W ∪ {q};

return W ;
end

Algorithm 1: Computing CPre on implicit CGS.

Concerning hardness in ΣP
2 , we directly use the construction of [JD05, Lemma 1]: from

an instance ∃X. ∀Y. ϕ of EQSAT2, one consider an implicit CGS with three states q1, q>
and q⊥, and 2n agents A1, ..., An, B1, ..., Bn, each having two possible choices in q1 and only
one choice in q> and q⊥. The transitions out of q> and q⊥ are self-loops. The transitions

from q1 are given by: δ(q1) = ((ϕ[xj ← (Aj
?
= 1), yj ← (Bj ?

= 1)], q>)(>, q⊥)).
Then clearly, q1 belongs to CPre({A1, ..., An}, {q>}) iff there exists a valuation for

variables in X s.t. ϕ is true whatever B-agents choose for Y . �

The complexity of ATL model checking over implicit CGS is higher: the proof of ΣP
2 -

hardness of CPre(A,S) can easily be adapted to prove ΠP
2 -hardness. Indeed consider the

dual (thus ΠP
2 -complete) problem AQSAT2, in which, with the same input, the output is the

value of ∀X. ∃Y. ϕ. Then it suffices to consider the same implicit CGS, and the formula
¬ 〈〈A1, ..., An〉〉X¬q>. It states that there is no strategy for players A1 to An to avoid q>:
whatever their choice, players B1 to Bn can enforce ϕ.

This contradicts the claim in [JD05] that model checking ATL would be ΣP
2 -complete.

In fact there is a flaw in their algorithm about the way it handles negation (and indeed
their result holds only for the positive fragment of ATL [JD08]): games played on CGSs
(and ATSs) are generally not determined, and the fact that a player has no strategy to
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enforce ϕ does not imply that the other players have a strategy to enforce ¬ϕ. It rather
means that the other players have a co-strategy to enforce ¬ϕ (by a co-strategy, we mean a
way to react to each move of their opponents [GvD06]).

Still, using the expression of ATL modalities as fixpoint formulas (see Eq. (3.1)), we can
compute the set of states satisfying an ATL formula by a polynomial number of computations
of CPre, which yields a ∆P

3 algorithm:

Proposition 3.4. Model checking ATL on implicit CGSs is in ∆P
3 .

Note that, since the algorithm consists in labeling the locations with the subformulae it
satisfies, that complexity holds even if we consider the DAG-size of the formula.

To prove hardness in ∆P
3 , we introduce the following ∆P

3 -complete problem [LMS01,
Sch04].

SNSAT2:

Input:: m families of variables Xi = {x1
i , ..., x

n
i }, m families of variables Yi =

{y1
i , ..., y

n
i }, m variables zi, m boolean formulae ϕi, with ϕi involving variables

in Xi ∪ Yi ∪ {z1, ..., zi−1}.
Output:: The value of zm, defined by

z1
def
= ∃X1. ∀Y1. ϕ1(X1, Y1)

z2
def
= ∃X2. ∀Y2. ϕ2(z1, X2, Y2)

. . .

zm
def
= ∃Xm. ∀Ym. ϕm(z1, ..., zm−1, Xm, Ym)

And we have:

Proposition 3.5. Model checking ATL on implicit CGSs is ∆P
3 -hard.

Proof. We pick an instance I of SNSAT2, and reduce it to an instance of the ATL model-
checking problem. Note that such an instance uniquely defines the values of variables zi.
We write vI : {z1, ..., zm} → {>,⊥} for this valuation. Also, when vI(zi) = >, there exists a

witnessing valuation for variables in Xi. We extend vI to {z1, ..., zm} ∪
⋃
iXi, with vI(x

j
i )

being a witnessing valuation if vI(zi) = >.

We now define an implicit CGS C as follows: it contains mn agents Aji (one for each xji ),

mn agents Bj
i (one for each yji ), m agents Ci (one for each zi), and one extra agent D.

The structure is made of m states qi, m states qi, m states si, and two states q> and q⊥.
There are three atomic propositions: s> and s⊥, that label the states q> and q⊥ resp., and
an atomic proposition s labeling states si. The other states carry no label.

Except for D, the agents represent booleans, and thus always have two possible choices
(0 and 1). Agent D always has m choices (0 to m− 1). The transition relation is defined as
follows: for each i,

δ(qi) = ((>, si));
δ(si) = ((>, qi));
δ(q>) = ((>, q>));

δ(q⊥) = ((>, q⊥));

δ(qi) =



((D
?
= 0) ∧ ϕi[xji ← (Aji

?
= 1),

yji ← (Bj
i

?
= 1), zk ← (Ck

?
= 1)], q>)

((D
?
= 0), q⊥)

((D
?
= k) ∧ (Ck

?
= 1), qk) for each k < i

((D
?
= k) ∧ (Ck

?
= 0), qk) for each k < i

(>, q>)
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Intuitively, from state qi, the boolean agents chose a valuation for the variable they represent,
and agent D can either choose to check if the valuation really witnesses ϕi (by choosing
move 0), or “challenge” player Ck, with move k < i.

The ATL formula is built recursively as follows:

ψ0
def
= >

ψk+1
def
= 〈〈AC〉〉 (¬s) U (q> ∨ EX (s ∧ EX¬ψk))

where AC stands for the coalition {A1
1, ..., A

n
m, C1, ..., Cm}.

Let fI(A) be the state-based strategy for agent A ∈ AC that consists in playing according
to the valuation vI (i.e. move 0 if the variable associated with A evaluates to 0 in vI , and
move 1 otherwise). The following lemma completes the proof of Proposition 3.5:

Lemma 3.6. For any i ≤ m and k ≥ i, the following three statements are equivalent:

(a) C, qi |= ψk;
(b) the strategies fI witness the fact that C, qi |= ψk;
(c) variable zi evaluates to > in vI .

Proof. Clearly, (b) implies (a). We prove that (a) implies (c) and that (c) implies (b) by
induction on i.

First assume that q1 |= ψj , for some j ≥ 1. Since only q> and q⊥ are reachable from q1,

we have q1 |= 〈〈AC〉〉X q>. We are (almost) in the same case as in the ΣP
2 reduction of [JD05]:

there is a valuation of the variables x1
1 to xn1 s.t., whatever players D and B1

1 to Bn
m decide,

the run will end up in q>. This holds in particular if player D chooses move 0: for any
valuation of the variables y1

1 to yn1 , ψ1(X1, Y1) holds true, and z1 evaluates to true in vI .
Secondly, if z1 evaluates to true, then vI(x

1
1), ..., vI(x

n
1 ) are such that, whatever the

value of y1
1 to yn1 , ψ1 holds true. If players A1

1 to An1 play according to fI , then players D
and B1

1 to Bn
1 cannot avoid state q>, and q1 |= 〈〈AC〉〉X q>, thus also ψk when k ≥ 1.

We now assume the result holds up to index i ≥ 1, and prove that it also holds at
step i+1. Assume qi+1 |= ψk+1, with k ≥ i. There exists a strategy witnessing ψk+1, i.e., s.t.
all the outcomes following this strategy satisfy (¬s) U (q> ∨ EX (s ∧ EX¬ψk)). Depending
on the move of player D in state qi+1, we get several informations: first, if player D plays
move l, with 1 ≤ l ≤ i, the play goes to state ql or ql, depending on the choice of player Cl.

• if player Cl chose move 0, the run ends up in ql. Since the only way out of that
state is to enter state sl, labeled by s, we get that ql |= EX (s ∧ EX¬ψk), i.e., that
ql |= ¬ψk. By i.h., we get that zl evaluates to false in our instance of SNSAT2.
• if player Cl chose move 1, the run goes to ql. In that state, players in AC can keep on

applying their strategy, which ensures that ql |= ψk+1, and, by i.h., that zl evaluates
to true in I.

Thus, the strategy for AC to enforce ψk+1 in qi+1 requires players C1 to Ci to play according
to vI and the validity of these choices can be verified by the “opponent” D.

Now, if player D chooses move 0, all the possible outcomes will necessarily immediately
go to q> (since ψk+1 holds, and since q⊥ 6|= EX (s ∧ EX¬ψk)). We immediately get that
players B1

i+1 to Bn
i+1 cannot make ψi+1 false, hence that zi+1 evaluates to true in I.

Secondly, if zi+1 evaluates to true, assume players in AC play according to fI , and
consider the possible moves of player D:
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• if player D chooses move 0, since zi+1 evaluates to true and since players C1 to Ci
and A1

i+1 to Ani+1 have played according vI , there is no way for player B1
i+1 to Bn

i+1
to avoid state q>.
• if player D chooses some move l between 1 and i, the execution will go into state ql

or ql, depending on the move of Cl.
– if Cl played move 0, i.e., if zl evaluates to false in vI , the execution goes to

state ql, and we know by i.h. that ql |= ¬ψk. Thus ql |= EX (s∧ EX¬ψk), and
the strategy still fulfills the requirement.

– if Cl played move 1, i.e., if zl evaluates to true, then the execution ends up in
state ql, in which, by i.h., the strategy fI enforces ψk+1.

• if player D plays some move l with l > i, the execution goes directly to q>, and the
formula is fulfilled. �

With Proposition 3.4, this implies:

Theorem 3.7. Model checking ATL on implicit CGSs is ∆P
3 -complete.

3.3. Model checking ATL on ATSs. For ATSs also, computing CPre (and thus model-
checking ATL) cannot be achieved in PTIME. A direct corollary of [JD05, Lemma 4] is:

Proposition 3.8. Computing CPre in ATSs is NP-complete.

Proof. Algorithm 2 shows how to compute CPre in NP in ATSs: it amounts to guessing a
move for each player in the coalition, and to check whether the resulting possible next states
are all in S.

Procedure CPre(A, S) begin
W ← ∅;
foreach q ∈ C do

foreach a ∈ A do
//Guess a move for player a from a state q
ma ← guess(q, a);

if
⋂
a∈A

ma ⊆ S then

W ←W ∪ {q};
return W ;

end
Algorithm 2: Computing CPre for ATS

Again, NP-hardness follows from [JD05, Lemma 4]. We propose here a slightly different
proof, that will be a first step to the ∆P

2 -hardness proof below.
The proof is a direct reduction from 3SAT: let I = (S1, ..., Sn) be an instance of 3SAT

over variables X = {x1, ..., xm}. We assume that Sj = αj,1sj,1∨αj,2sj,2∨αj,3sj,3 where sj,k ∈
X and αj,k ∈ {0, 1} indicates whether variable sj,k is taken negatively (0) or positively (1).
We assume without loss of generality that no clauses contain both one proposition and its
negation.

With such an instance, we associate the following ATS A. It contains 8n+ 1 states: one
state q, and, for each clause Sj , eight states qj,0 to qj,7. Intuitively, the state qj,k corresponds
to a clause Bj,k = k1s

j,1 ∨ k2s
j,2 ∨ k3s

j,3, where k1k2k3 corresponds to the binary notation



12 F. LAROUSSINIE, N. MARKEY, AND G. OREIBY

for k. There is only one atomic proposition α in our ATS: a state qj,k is labeled with α iff it
does not correspond to clause Sj . By construction, for each j, only one of the states qj,0

to qj,7 is not labeled with α.
There are m+ 1 players, where m is the number of variables that appear in I. With

each xi is associated a player Ai. The extra player is named D. Only the transitions from q
are relevant for this reduction. We may assume that the other states only carry a self-loop.
In q, player Ai decides the value of xi. She can thus choose between two sets of next states,
namely the states corresponding to clauses that are not made true by her choice:

{qj,k | ∀l ≤ 3. sj,l 6= xi or αi,l = 0} if xi = >

{qj,k | ∀l ≤ 3. sj,l 6= xi or αi,l = 1} if xi = ⊥

Last, player D has n choices, namely {q1,0, ..., q1,7} to {qn,0, ..., qn,7}.
We first prove the singleton requirement for ATSs’ transitions: the intersections of the

choices of the agents must be a singleton. Once players A1 to Am have chosen their moves,
all the variables have been assigned a value. Under that valuation, for each j ≤ n, exactly
one clause among Bj,0 to Bj,7 evaluates to false (thanks to our requirement that a literal
cannot appear together with its negation in the same clause). Intersecting with the choice
of player D, we end up with one single state (corresponding to the only clause, among those
chosen by D, that evaluates to false).

Now, let ϕ = 〈〈A1, ..., Am〉〉Xα. That q |= ϕ indicates that players A1 to Am can choose
a valuation for x1 to xm s.t. player D will not be able to find a clause of the original instance
(i.e., not labeled with α) that evaluates to false (i.e., that is not made true by any of the
choices of the players A1 to Am). In that case, the instance is satisfiable. Conversely, if the
instance is satisfiable, it suffices for the players A1 to Am to play according to a satisfying
valuation of variables x1 to xm. Since this valuation makes all the original clauses true, it
yields a strategy that only leads to states labeled with α. �

As in the case of implicit CGSs, we combine the fixpoint expressions of ATL modalities
together with the NP algorithm for computing CPre. This yield a ∆P

2 algorithm for full ATL:

Proposition 3.9. Model checking ATL over ATSs is in ∆P
2 .

This turns out to be optimal:

Proposition 3.10. Model checking ATL on ATSs is ∆P
2 -hard.

Proof. The proof is by a reduction of the ∆P
2 -complete problem SNSAT [LMS01]:

SNSAT:

Input:: p families of variables Xr = {x1
r , ..., x

m
r }, p variables zr, p boolean formulae

ϕr in 3-CNF, with ϕr involving variables in Xr ∪ {z1, ..., zr−1}.
Output:: The value of zp, defined by

z1
def
= ∃X1. ϕ1(X1)

z2
def
= ∃X2. ϕ2(z1, X2)

z3
def
= ∃X3. ϕ3(z1, , z2, X3)

. . .

zp
def
= ∃Xp. ϕp(z1, ..., zp−1, Xp)
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Let I be an instance of SNSAT, where we assume that each ϕr is made of n clauses

S1
r to Snr , with Sjr = αj,1r sj,1r ∨ αj,2r sj,2r ∨ αj,3r sj,3r . Again, such an instance uniquely defines a

valuation vI for variables z1 to zr, that can be extended to the whole set of variables by
choosing a witnessing valuation for x1

r to xnr when zr evaluates to true.
We now describe the ATS A: it contains (8n+ 3)p states:

• p states qr and p states qr,
• p states sr,

• and for each formula ϕr, for each clause Sjr of ϕr, eight states qj,0r , ..., qj,7r , as in the
previous reduction.

States sr are labelled with the atomic proposition s, and states qj,kr that do not correspond

to clause Sjr are labeled with α.
There is one player Ajr for each variable xjr, one player Cr for each zr, plus one extra

player D. As regards transitions, there are self-loops on each state qj,kr , single transitions
from each qr to the corresponding sr, and from each sr to the corresponding qr. From
state qr,

• player Ajr will choose the value of variable xjr, by selecting one of the following two
sets of states:

{qg,kr | ∀l ≤ 3. sg,lr 6= xjr or αg,lr = 0} ∪ {qt, qt | t < r} if xjr = >

{qg,kr | ∀l ≤ 3. sg,lr 6= xjr or αg,lr = 1} ∪ {qt, qt | t < r} if xjr = ⊥

Both choices also allow to go to one of the states qt or qt. In qr, players Ajt with
t 6= r have one single choice, which is the whole set of states.

• player Ct also chooses for the value of the variable it represents. As for players Ajr,
this choice will be expressed by choosing between two sets of states corresponding
to clauses that are not made true. But as in the proof of Prop. 3.5, players Ct will
also offer the possibility to “verify” their choice, by going either to state qt or qt.
Formally, this yields two sets of states:

{qg,kr | ∀l ≤ 3. sg,lr 6= zt or αg,lr = 0} ∪ {qu, qu | u 6= t} ∪ {qt} if zt = >

{qg,kr | ∀l ≤ 3. sg,lr 6= zt or αg,lr = 1} ∪ {qu, qu | u 6= t} ∪ {qt} if zt = ⊥
• Last, player D chooses either to challenge a player Ct, with t < r, by choosing the

set {qt, qt}, or to check that a clause Sjr is fulfilled, by choosing {qj,0r , ..., qj,7r }.
Let us first prove that any choices of all the players yields exactly one state. It is obvious

except for states qr. For a state qr, let us first restrict to the choices of all the players Ajr
and Cr, then:

• if we only consider states q1,0
r to qn,7r , the same argument as in the previous proof

ensures that precisely on state per clause is chosen,
• if we consider states qt and qt, the choices of players Bt ensure that exactly one state

has been chosen in each pair {qt, qt}, for each t < r.

Clearly, the choice of player D will select exactly one of the remaining states.

Now, we build the ATL formula. It is a recursive formula (very similar to the one
used in the proof of Prop. 3.5), defined by ψ0 = > and (again writing AC for the set of
players {A1

1, ..., A
m
p , C1, ..., Cp}):

ψr+1
def
= 〈〈AC〉〉 (¬s) U (α ∨ EX (s ∧ EX¬ψr)).
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Then, writing fI for the state-based strategy associated to vI :

Lemma 3.11. For any r ≤ p and t ≥ r, the following statements are equivalent:

(a) qr |= ψt;
(b) the strategies fI witness the fact that qr |= ψt;
(c) variable zr evaluates to true in vI .

Proof. We prove by induction on r that (a) implies (c) and that (c) implies (b), the last
implication being obvious. For r = 1, since no s-state is reachable, it amounts to the previous
proof of NP-hardness.

Assume the result holds up to index r. Then, if qr+1 |= ψt+1 for some t ≥ r, we pick a
strategy for coalition AC witnessing this property. Again, we consider the different possible
choices available to player D:

• if player D chooses to go to one of qu and qu, with u < r + 1: the execution ends up
in qu if player Cu chose to set zu to true. But in that case, formula ψt+1 still holds
in qu, which yields by i.h. that zu really evaluates to true in vI . Conversely, the
execution ends up in qu if player Cu set zu to false. In that case, we get that qu |= ¬ψt,
with t ≥ u, which entails by i.h. that zu evaluates to false.

This first case entails that player C1 to Cr chose the correct value for variables z1

to zr.
• if player D chooses a set of eight states corresponding to a clause Sjr+1, then the

strategy of other players ensures that the execution will reach a state labeled with α.
As in the previous reduction, this indicates that the corresponding clause has been
made true by the choices of the other players.

Putting all together, this proves that variable zr+1 evaluates to true.
Now, if variable zr+1 evaluates to true, Assume the players in AC play according to

valuation fI . Then

• if player D chooses to go to a set of states that correspond to a clause of ϕr+1, he
will necessarily end up in a state that is labeled with α, since the clause is made true
by the valuation we selected.
• if player D chooses to go to one of qu or qu, for some u, then he will challenge

player Bu to prove that his choice was correct. By i.h., and since player Bu played
according to fI , formula (¬s) U (α ∨ EX (s ∧ EX¬ψt+1)) will be satisfied, for
any t ≥ u. �

We end up with the precise complexity of ATL model-checking on ATSs:

Theorem 3.12. Model checking ATL on ATSs is ∆P
2 -complete.

3.4. Beyond ATL. As for classical branching-time temporal logics, we can consider several
extensions of ATL by allowing more possibilities in the way of combining quantifiers over
strategies and temporal modalities. We define ATL? [AHK02] as follows:

Definition 3.13. The syntax of ATL? is defined by the following grammar:

ATL? 3 ϕs, ψs ::= > | P | ¬ϕs | ϕs ∨ ψs | 〈〈A〉〉ϕp
ϕp, ψp ::= ϕs | ¬ϕp | ϕp ∨ ψp | Xϕp | ϕp Uψp

where P and A range over AP and 2Agt, resp.
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The size and DAG-size of an ATL? formula are defined in the same way as for ATL.
ATL? formulae are interpreted over states of a game structure S, the semantics of the main
modalities is as follows (if ρ = `0 `1 . . ., we write ρi for the i+ 1-st suffix, starting from `i):

` |=S 〈〈A〉〉ϕp iff ∃FA ∈ Strat(A). ∀ρ ∈ Out(`, FA). ρ |=S ϕp,
ρ |=S ϕs iff ρ[0] |=S ϕs

ρ |=S Xϕp iff ρ1 |=S ϕp,
ρ |=S ϕp Uψp iff ρi |=S ψp and ∀0 ≤ j < i. ρj |=S ϕp

ATL is the fragment of ATL? where each modality U or X has to be preceded by a
strategy quantifier 〈〈A〉〉 . Several other fragments of ATL? are also classically defined:

• ATL+ is the restriction of ATL? where a strategy quantifier 〈〈A〉〉 has to be inserted
between two embedded temporal modalities U or X but boolean combination are
allowed.
• EATL extends ATL by allowing the operators 〈〈A〉〉G F (often denoted as 〈〈A〉〉

∞
F )

and 〈〈A〉〉F G (often written 〈〈A〉〉
∞
G ). They are especially useful to express fairness

properties.

For instance,

〈〈A〉〉
(
FP1 ∧ FP2 ∧ P3 UP4

)
is in ATL+,

〈〈A〉〉F
(
P1 ∧ 〈〈A′〉〉

∞
FP2

)
is in EATL,

〈〈A〉〉
(
FP1 ∧ P2 U (P3 ∧ FP4)

)
is in ATL? .

�4

3.4.1. Model checking ATL+. First note that ATL+ extends ATL and allows to express proper-
ties with more succinct formulae [Wil99, AI01] but these two logics have the same expressive
power: every ATL+ formula can be translated into an equivalent ATL formula [HRS02].

The complexity of model checking ATL+ over ATSs has been settled ∆P
3 -complete

in [Sch04]. But the ∆P
3 -hardness proof of [Sch04] is in LOGSPACE only w.r.t. the DAG-size

of the formula. Below, we prove that model checking ATL+ is ∆P
3 -complete (with the classical

definition of the size of a formula) for our three kinds of game structures.

Proposition 3.14. Model checking ATL+ can be achieved in ∆P
3 on implicit CGSs.

Proof. A ∆P
3 algorithm is given in [Sch04] for explicit CGSs. We extend it to handle

implicit CGSs: for each subformula of the form 〈〈A〉〉ϕ, guess (state-based) strategies for
players in A. In each state, the choices of each player in A can be replaced in the transition
functions. We then want to compute the set of states where the CTL+ formula Aϕ holds.
This can be achieved in ∆P

2 [CES86, LMS01], but requires to first compute the possible
transitions in the remaining structure, i.e., to check which of the transition formulae are
satisfiable. This is done by a polynomial number of independent calls to an NP oracle, and
thus does not increase the complexity of the algorithm. �

Proposition 3.15. Model checking ATL+ on turn-based two-player explicit CGSs is ∆P
3 -hard.

Proof. This reduction is a quite straightforward extension of the one presented in [LMS01]
for CTL+. In particular, it is quite different from the previous reductions, since the boolean
formulae are now encoded in the ATL+ formula, and not in the model.

4Erratum (added 2015/10/05): Prop. 3.14 and Theorem 3.17 are wrong (and so are the corresponding
claims in [Sch04]). While ATL+ can indeed be translated into ATL, it is not the case that it admits state-based
strategies, which is the key of the algorithm. Model checking ATL+ is actually PSPACE-complete, as shown
in [Wang, Schewe, Huang. An Extension of ATL with Strategy Interaction. ACM ToPLaS 37(3:9), 2015].
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We encode an instance I of SNSAT2, keeping the notations used in the proofs of Prop. 3.5
(for the SNSAT2 problem) and 3.10 (for clause numbering). Fig. 3 depicts the turn-based
two-player CGS C associated to I. States s1 to sm are labeled by atomic proposition s,

zp

zp

zp−1

zp−1

z1

z1

sp sp−1 s1

x11

x11

x21

x21

xnm

xnm

y11

y11

y21

y21

ynm

ynm

controlled by player A controlled by player B

Figure 3: The CGS C

states z1 to zm are labeled by atomic proposition z, and the other states are labeled by their
name as shown on Fig. 3.

The ATL+ formula is built recursively, with ψ0 = > and

ψk+1 = 〈〈A〉〉 [G¬s ∧G (z→ EX (s ∧ EX¬ψk)) ∧
∧
w≤p

[(F zw)→
∧
j≤n

∨
k≤3

F lj,kw ]]

where lj,kw = v when sj,kw = v and αj,kw = 1, and lj,kw = v when sj,kw = v and αj,kw = 0. We then
have:

Lemma 3.16. For any r ≤ p and t ≥ r, the following statements are equivalent:

(a) zr |= ψt;
(b) the strategies fI witness the fact that qr |= ψt;
(c) variable zr evaluates to true in vI .

When r = 1, since no s- or z-state is reachable from z1, the fact that z1 |= ψt, with t ≥ 1,

is equivalent to z1 |= 〈〈A〉〉
∧
j

∨
k F lj,k1 . This in turn is equivalent to the fact that z1 evaluates

to true in I.
We now turn to the inductive case. If zr+1 |= ψt+1 with t ≥ r, consider a strategy for A

s.t. all the outcomes satisfy the property, and pick one of those outcomes, say ρ. Since it
cannot run into any s-state, it defines a valuation vρ for variables z1 to zr+1 and x1

1 to xnm in
the obvious way. Each time the outcome runs in some zu-state, it satisfies EX (s ∧ EXψt).
Each time it runs in some zu-state, the suffix of the outcome witnesses formula ψt+1 in zu.
Both cases entail, thanks to the i.h., that vρ(zu) = vI(zu) for any u < r + 1. Now, the

subformula
∧
w[(F zw)→

∧
j≤n

∨
k≤3 F lj,kw , when w = r + 1, entails that ϕr+1 is indeed

satisfied whatever the values of the yjr+1’s, i.e., that zr+1 evaluates to true in I.
Conversely, if zr evaluates to true, then strategy fI clearly witnesses the fact that ψt

holds in state zr. �

As an immediate corollary, we end up with:

Theorem 3.17. Model checking ATL+ is ∆P
3 -complete on ATSs as well as on explicit CGSs

and implicit CGSs.



ON THE EXPRESSIVENESS AND COMPLEXITY OF ATL 17

3.4.2. Model checking EATL. In the classical branching-time temporal logics, adding the
modality E

∞
F to CTL increases its expressive power (see [Eme90]), this is also true when

considering alternating-time temporal logics, as we will see in Section 4.2.2.
From the theoretical-complexity point of view, there is no difference between ATL and

EATL:

Theorem 3.18. Model checking EATL is:

• PTIME-complete over explicit CGSs;
• ∆P

2 -complete over ATSs;
• ∆P

3 -complete over implicit CGSs.

Proof. We extend the model-checking algorithm for ATL. This is again achieved by expressing
modalities 〈〈A〉〉

∞
F and 〈〈A〉〉

∞
G as fixpoint formulas [dAHM01]:

〈〈A〉〉
∞
F p ≡ νy.µx. ( 〈〈A〉〉X (x) ∨ (p ∧ 〈〈A〉〉X (y)))

〈〈A〉〉
∞
G p ≡ µy.νx. ( 〈〈A〉〉X (x) ∧ (p ∨ 〈〈A〉〉X (y)))

Computing these fixpoints can again be achieved by a polynomial number of computa-
tions of CPre.

Hardness directly follows from the hardness of ATL model checking. �

3.4.3. ATL? model-checking. When considering ATL? model checking, the complexity is the
same for explicit CGS, implicit CGS and ATS since it mainly comes from the formula to be
checked:

Theorem 3.19. Model checking ATL? is 2EXPTIME-complete on ATSs as well as on
explicit CGSs and implicit CGSs.

Proof. We extend the algorithm of [AHK02]. This algorithm recursively labels each location
with the subformulae it satisfies. Formulas 〈〈A〉〉ψ, with ψ ∈ LTL, are handled by building a
deterministic Rabin tree automaton Aψ for ψ, and a Büchi tree automaton AC,A recognizing
trees corresponding to the sets of outcomes of each possible strategy of coalition A in the
structure C. We refer to [AHK02] for more details on the whole proof, and only focus on
the construction of AC,A.

The states of AC,A are the states of C. From location `, there are as many transitions as
the number of possible joint moves m = (mAi)Ai∈A of coalition A. Each transition is a set
of states that should appear at the next level of the tree. Formally, given p ∈ 2AP,

δ(`, p) = {Next(`, A,m) | m = (mAi)Ai∈A with ∀Ai ∈ A. mAi ∈ Mov(`, Ai)}
when p = Lab(`), and δ(`, p) = ∅ otherwise.

For explicit CGSs, this transition function is easily computed in polynomial time.
For ATSs and implicit CGSs, the transition function is computed by enumerating the
(exponential) set of joint moves of coalition A (computing Next(`, A,m) is polynomial once
the joint move is fixed).

Computing AC,A can thus be achieved in exponential time. Testing the emptiness of the
product automaton then requires doubly-exponential time. The whole algorithm thus runs
in 2EXPTIME. The lower bound directly follows from the lower bound for explicit CGSs.

�
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Let us finally mention that our results could easily be lifted to Alternating-time µ-
calculus (AMC) [AHK02]: the PTIME algorithm proposed in [AHK02] for explicit CGSs,
which again consists in a polynomial number of computations of CPre, is readily adapted
to ATSs and implicit CGSs: as a result, model checking the alternation-free fragment has
the same complexities as model checking ATL, and model checking the whole AMC is in
EXPTIME for our three kinds of models.

4. Expressiveness

We have seen that the ability of quantifying over the possible strategies of the agents
increases the complexity of model checking and makes the analysis more difficult.

We now turn to expressivity issues. We first focus on translations between our different
models (explicit CGS, implicit CGS and ATS). We then consider the expressiveness of “Until”
and “Always” modalities, proving that they cannot express the dual of “Until”.

4.1. Comparing the expressiveness of CGSs and ATSs. We prove in this section that
CGSs and ATSs are closely related: they can model the same concurrent games. In order to
make this statement formal, we use the following definition:

Definition 4.1 ([AHKV98]). Let A and B be two models of concurrent games (either ATSs
or CGSs) over the same set Agt of agents. Let R ⊆ LocA × LocB be a (non-empty) relation
between states of A and states of B. That relation is an alternating bisimulation when, for
any (`, `′) ∈ R, the following conditions hold:

• LabA(`) = LabB(`′);
• for any coalition A ⊆ Agt, we have

∀m : A→ MovA(`, A). ∃m′ : A→ MovB(`′, A).

∀q′ ∈ Next(`′, A,m′). ∃q ∈ Next(`, A,m). (q, q′) ∈ R.
• symmetrically, for any coalition A ⊆ Agt, we have

∀m′ : A→ MovB(`′, A). ∃m : A→ MovA(`, A).

∀q ∈ Next(`, A,m). ∃q′ ∈ Next(`′, A,m′). (q, q′) ∈ R.
where Next(`, A,m) is the set of locations that are reachable from ` when each player Ai ∈ A
plays m(Ai).

Two models are said to be alternating-bisimilar if there exists an alternating bisimulation
involving all of their locations.

With this equivalence in mind, ATSs and CGSs (both implicit and explicit ones) have
the same expressive power5:

Theorem 4.2. (1) Any explicit CGS can be translated into an alternating-bisimilar
implicit one in linear time;

(2) Any implicit CGS can be translated into an alternating-bisimilar explicit one in
exponential time;

(3) Any explicit CGS can be translated into an alternating-bisimilar ATS in cubic time;

5The translations between ATSs and explicit CGSs was already mentionned in [GJ04].
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(4) Any ATS can be translated into an alternating-bisimilar explicit CGS in exponential
time;

(5) Any implicit CGS can be translated into an alternating-bisimilar ATS in exponential
time;

(6) Any ATS can be translated into an alternating-bisimilar implicit CGS in quadratic
time;

Figure 4 summarizes those results. From our complexity results (and the assumption
that the polynomial-time hierarchy does not collapse), the costs of the above translations is
optimal.

ATS

explicit CGS implicit CGS

(4
) ex

pon
en

tia
l

(3
) cu

bic

(6) quadratic

(5) exponential(1) linear

(2) exponential

Figure 4: Costs of translations between the three models

Proof. Points 1, 2, and 4 are reasonnably easy.
For point 6, it suffices to write, for each possible next location, the conjunction (on each

agent) of the disjunction of the choices that contain that next location. For instance, if we
have MovA(`0, A1) = {{`1, `2}, {`1, `3}} and MovA(`0, A2) = {{`2, `3}, {`1}} in the ATS A,
then each player will have two choices in the associated CGS B, and

EdgB(`0) =

 (A1 = 1 ∨A1 = 2) ∧ (A2 = 2), `1
(A1 = 1) ∧ (A2 = 1), `2
(A1 = 2) ∧ (A2 = 1), `3


Formally, let A = (Agt,LocA,AP,LabA,MovA) be an ATS. We then define B =

(Agt,LocB,AP,LabB,MovB,EdgB) as follows:

• LocB = LocA, LabB = LabA;
• MovB : `×Ai → [1, |MovA(`, Ai)|];
• EdgB is a function mapping each location ` to the sequence ((ϕ`′ , `

′))`′∈LocA (the
order is not important here, as the formulas will be mutually exclusive) with

ϕ`′ =
∧

Ai∈Agt

( ∨
`′ appears in the j-th

set of MovA(`,Ai)

Ai
?
= j

)

Computing EdgB requires quadratic time (more precisely O(|LocA| × |MovA|)). It is now
easy to prove that the identity Id ⊆ LocA × LocB is an alternating bisimulation, since there
is a direct correspondance between the choices in both structures.

We now explain how to transform an explicit CGS into an ATS, showing point 3.
Let A = (Agt,LocA,AP,LabA,MovA,EdgA) be an explicit CGS. We define the ATS B =
(Agt,LocB,AP,LabB,MovB) as follows (see Figure 5 for more intuition on the construction):
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• LocB ⊆ LocA × LocA × Nk, where k = |Agt|, with (`, `′,mA1 , . . . ,mAk
) ∈ LocB iff

` = EdgA(`′,mA1 , . . . ,mAk
);

• LabB(`, `′,mA1 , . . . ,mAk
) = LabA(`);

• From a location q = (`, `′,mA1 , . . . ,mAk
), player Aj has |MovA(`, Aj)| possible

moves:

MovB(q, Aj) =
{{

(`′′, `,m′A1
, . . . ,m′Aj

= i, . . . ,m′Ak
) | m′An

∈ MovA(`, An)

and `′′ = EdgA(`,mA1 , . . . ,mAj = i, . . . ,mAk
)
}
| i ∈ MovA(`, Aj)

}
This ATS is built in time O(|LocA|2 · |EdgA|). It remains to show alternating bisimilarity
between those structures. We define the relation

R = {(`, (`, `′,mA1 , . . . ,mAk
)) | ` ∈ LocA, (`, `′,mA1 , . . . ,mAk

)) ∈ LocB}.
It is now only a matter of bravery to prove that R is an alternating bisimulation between A
and B.

Point 5 is now immediate (through explicit CGSs), but it could also be proved in a
similar way as point 3. �

Let us mention that our translations are optimal (up to a polynomial): our exponential
translations cannot be achieved in polynomial time because of our complexity results for
ATL model-checking. Note that it does not mean that the resulting structures must have
exponential size.

b

a

d

c

〈3.1〉
〈2.2〉,〈2.3〉

〈1.1〉
〈1.2〉
〈1.3〉
〈2.1〉

〈3.2〉
〈3.3〉

Moves from location A:

Player 1
move 1: {ba,1,1, da,1,2, da,1,3}
move 2: {ca,2,2, ca,2,3, da,2,1}
move 3: {aa,3,1, da,3,2, da,3,3}

Player 2
move 1: {aa,3,1, ba,1,1, da,2,1}
move 2: {ca,2,2, da,1,2, da,3,2}
move 3: {ca,2,3, da,1,3, da,3,3}

Figure 5: Converting an explicit CGS into an ATS

4.2. Some remarks on the expressiveness of ATL.

4.2.1. 〈〈A〉〉 R cannot be expressed with 〈〈A〉〉 U and 〈〈A〉〉G . In the original papers defin-
ing ATL [AHK97, AHK02], the syntax of that logic was slightly different from the one we
used in this paper: following classical definitions of the syntax of CTL, it was defined as:

ATLorig 3 ϕs, ψs ::= > | p | ¬ϕs | ϕs ∨ ψs | 〈〈A〉〉ϕp
ϕp ::= Xϕs | Gϕs | ϕs Uψs.

Duality is a fundamental concept in modal and temporal logics: for instance, the dual

of modality U, often denoted by R and read release, is defined by pR q
def≡ ¬((¬p) U (¬q)).
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Dual modalities allow, for instance, to put negations inner inside the formula, which is often
an important property when manipulating formulas.

In LTL, modality R can be expressed using only U and G:

pR q ≡ G q ∨ qU (p ∧ q). (4.1)

In the same way, it is well known that CTL can be defined using only modalities EX, EG
and EU, and that we have

EpR q ≡ EG q ∨ EqU (p ∧ q) ApR q ≡ ¬E(¬p) U (¬q).
It is easily seen that, in the case of ATL, it is not the case that 〈〈A〉〉 pR q is equivalent

to 〈〈A〉〉G q ∨ 〈〈A〉〉 qU (p∧ q): it could be the case that part of the outcomes satisfy G q and
the other ones satisfy qU (p ∧ q). In fact, we prove that ATLorig is strictly less expressive
than ATL:

Theorem 4.3. There is no ATLorig formula equivalent to Φ = 〈〈A〉〉 (aR b).

The proof of Theorem 4.3 is based on techniques similar to those used for proving
expressiveness results for temporal logics like CTL or ECTL [Eme90]: we build two families
of models (si)i∈N and (s′i)i∈N s.t. (1) si 6|= Φ, (2) s′i |= Φ for any i, and (3) si and s′i satisfy
the same ATLorig formula of size less than i. Theorem 4.3 is a direct consequence of the
existence of such families of models. In order to simplify the presentation, the theorem is
proved for formula6 Φ = 〈〈A〉〉 (bR (a ∨ b)).

The models are described by one single inductive CGS7 C, involving two players. It is
depicted on Fig. 6. A label 〈α, β〉 on a transition indicates that this transition corresponds

a
ai

a
si−1

a
ai−1

a
s1

a
a1

bbi bb1

a
si

a
s′i

a
s′i−1

a
s′1

¬a,¬b
s0〈3,1〉 〈3,1〉 〈3,1〉

〈3,1〉,〈4,2〉 〈3,1〉,〈4,2〉 〈3,1〉,〈4,2〉

〈2,2〉
〈2,3〉

〈2,2〉
〈2,3〉

〈2,2〉
〈2,3〉

〈2,2〉
〈2,3〉
〈4,3〉

〈2,2〉
〈2,3〉
〈4,3〉

〈2,2〉
〈2,3〉
〈4,3〉

〈1,1〉 〈1,1〉

〈1,1〉

〈4,1〉

〈1,1〉

〈4,1〉

〈1,2〉,〈1,3〉
〈2,1〉,〈3,2〉,〈3,3〉

〈1,2〉,〈1,3〉
〈2,1〉,〈3,2〉,〈3,3〉

〈1,2〉,〈1,3〉,〈2,1〉,〈3,2〉,〈3,3〉

〈1,2〉,〈1,3〉,〈2,1〉,〈3,2〉,〈3,3〉

Figure 6: The CGS C, with states si and s′i on the left

to move α of player A1 and to move β of player A2. In that CGS, states si and s′i only differ
in that player A1 has a fourth possible move in s′i. This ensures that, from state s′i (for
any i), player A1 has a strategy (namely, he should always play 4) for enforcing aW b. But

6This formula can also be written 〈〈A〉〉 aW b, where W is the “weak until” modality.
7Given the translation from CGS to ATS (see Section 4.1), the result also holds for ATSs.
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this is not the case from state si: by induction on i, one can prove si 6|= 〈〈A1〉〉 aW b. The
base case is trivial. Now assume the property holds for i: from si+1, any strategy for A1

starts with a move in {1, 2, 3} and for any of these choices, player A2 can choose a move (2, 1
and 2 resp.) that enforce the next state to be si where by i.h. A1 has no strategy for aW b.

We now prove that si and s′i satisfy the same “small” formulae. First, we have the
following equivalences:

Lemma 4.4. For any i > 0, for any ψ ∈ ATLorig with |ψ| ≤ i:
bi |= ψ iff bi+1 |= ψ (4.2)

si |= ψ iff si+1 |= ψ (4.3)

s′i |= ψ iff s′i+1 |= ψ (4.4)

Proof. The proof proceeds by induction on i, and on the structure of the formula ψ.

Base case: i = 1. Since we require that |ψ| ≤ i, ψ can only be an atomic proposition. The
result is then obvious.

Induction step. We assume the result holds up to some i − 1 ≥ 1, and prove that it then
still holds for i. Let ψ s.t. |ψ| ≤ i. We now proceed by structural induction on ψ:

• The result is again obvious for atomic propositions, as well as for boolean combinations
of subformulae.
• Otherwise, the “root” combinator of ψ is a modality. If it is a CTL modality, the

results are quite straightforward. Also, since there is only one transition from bi, any
ATLorig modality can be expressed as a CTL modality in that state, and (4.2) follows.
• If ψ = 〈〈A1〉〉Xψ1: Assume si |= ψ. Then, depending on the strategy, either bi

and si−1, or ai and si−1, or si and si−1, should satisfy ψ1. By i.h., this propagates
to the next level, and the same strategy can be mimicked from si+1.

The converse is similar (hence (4.3)), as well as the proof for (4.4).
• If ψ = 〈〈A1〉〉Gψ1: If si |= ψ, then si, thus si+1, satisfy ψ1. Playing move 3 is a

strategy for player A1 to enforce Gψ1 from si+1, since the game will either stay
in si+1 or go to si, where player A has a winning strategy.

The converse is immediate, as player A1 cannot avoid si when playing from si+1.
Hence (4.3) for 〈〈A1〉〉G -formulae.

If s′i |= ψ, then both s′i and s′i+1 satisfy ψ1. Also, player A1 cannot avoid the play
to go in location si−1. Thus, si−1 |= ψ1 —and by i.h., so does si— and si |= ψ, as
above. Now, following the same strategy in s′i+1 as the winning strategy of s′i clearly
enforces Gψ1. The converse is similar: it suffices to mimic, from s′i, the strategy
witnessing the fact that s′i+1 |= ψ. This proves (4.4), and concludes this case.
• If ψ = 〈〈A1〉〉ψ1 Uψ2: If si |= ψ, then either ψ2 or ψ1 holds in si, thus in si+1. The

former case is trivial. In the latter, player A1 can mimic the winning strategy in si+1:
the game will end up in si, with intermediary states satisfying ψ1 (or ψ2), and he
can then apply the original strategy.

The converse is obvious, since from si+1, player A1 cannot avoid location si, from
which he must also have a winning strategy.

If s′i |= ψ, omitting the trivial case where s′i satisfies ψ2, we have that si−1 |= ψ.
Also, a (state-based) strategy in s′i witnessing ψ necessary consists in playing move 1
or 2. Thus ai and bi satisfy ψ, and the same strategy (move 1 or 2, resp.) enforces Gψ1
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from si. It is now easy to see that the same strategy is correct from s′i+1. Conversely,
apart from trivial cases, the strategy can again only consist in playing moves 1 or 2.
In both cases, the game could end up in si, and then in si−1. Thus si−1 |= ψ, and
the same strategy as in s′i+1 can be applied in s′i to witness ψ.
• The proofs for 〈〈A2〉〉Xψ1, 〈〈A2〉〉Gψ1, and 〈〈A2〉〉ψ1 Uψ2 are very similar to the

previous ones. �

Lemma 4.5. ∀i > 0, ∀ψ ∈ ATLorig with |ψ| ≤ i: si |= ψ iff s′i |= ψ.

Proof. The proof proceeds by induction on i, and on the structure of the formula ψ. The
case i = 1 is trivial, since s1 and s′1 carry the same atomic propositions. For the induction
step, dealing with CTL modalities (〈〈∅〉〉 and 〈〈A1, A2〉〉) is also straightforward, then we just
consider 〈〈A1〉〉- and 〈〈A2〉〉-modalities.

First we consider 〈〈A1〉〉-modalities. It is well-known that we can restrict to state-based
strategies in this setting. If player A1 has a strategy in si to enforce something, then he can
follow the same strategy from s′i. Conversely, if player A1 has a strategy in s′i to enforce some
property, two cases may arise: either the strategy consists in playing move 1, 2 or 3, and it
can be mimicked from si. Or the strategy consists in playing move 4 and we distinguish
three cases:

• ψ = 〈〈A1〉〉Xψ1: that move 4 is a winning strategy entails that s′i, ai and bi must
satisfy ψ1. Then si (by i.h. on the formula) and si−1 (by Lemma 4.4) both satisfy ψ1.
Playing move 1 (or 3) in si ensures that the next state will satisfy ψ1.
• ψ = 〈〈A1〉〉Gψ1: by playing move 4, the game could end up in si−1 (via bi), and in ai

and s′i. Thus si−1 |= ψ, and in particular ψ1. By i.h., si |= ψ1, and playing move 1
(or 3) in si, and then mimicking the original strategy (from s′i), enforces Gψ1.
• ψ = 〈〈A1〉〉ψ1 Uψ2: a strategy starting with move 4 implies s′i |= ψ2 (the game could

stay in s′i for ever). Then si |= ψ2 by i.h., and the result follows.

We now turn to 〈〈A2〉〉 -modalities: clearly if 〈〈A2〉〉ψ1 holds in s′i, it also holds in si.
Conversely, if player A2 has a (state-based) strategy to enforce some property in si: If it
consists in playing moves 1 or 3, then the same strategy also works in s′i. Now if the strategy
starts with move 2, then playing move 3 in s′i has the same effect, and thus enforces the
same property. �

Remark 4.6. ATLorig and ATL have the same distinguishing power as the fragment of ATL
involving only the 〈〈 · 〉〉X modality (see [AHKV98, proof of Th. 6]). This means that we
cannot exhibit two models M and M ′ s.t. (1) M |= Φ, (2) M ′ 6|= Φ, and (3) M and M ′

satisfy the same ATLorig formula.

Remark 4.7. In [AHK02], a restriction of CGS —the turn-based CGSs— is considered.
In any location of these models (named TB-CGS hereafter), only one player has several
moves (the other players have only one possible choice). Such models have the property
of determinedness: given a set of players A, either there is a strategy for A to win some
objective Φ, or there is a strategy for other players (Agt\A) to enforce ¬Φ. In such systems,
modality R can be expressed as follows: 〈〈A〉〉ϕRψ ≡TB-CGS ¬ 〈〈Agt\A〉〉 (¬ϕ) U (¬ψ).

4.2.2. 〈〈A〉〉
∞
G and 〈〈A〉〉

∞
F cannot be expressed in ATL. It is well known that ECTL formulae

of the form E
∞
FP (and its dual A

∞
GP ) cannot be expressed in CTL [Eme90]. On the other
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hand, the following equivalences hold:

E
∞
GP ≡ EF EGP A

∞
FP ≡ AG AFP.

The situation is again different in ATL: neither 〈〈A〉〉
∞
F nor 〈〈A〉〉

∞
G are expressible

in ATL. Indeed, assume that 〈〈A〉〉
∞
F could be expressed by the ATL formula Φ. This holds in

particular in 1-player games (i.e., Kripke structures). In the case where coalition A contains
the only player, we would end up with a CTL equivalent of E

∞
F , which is known not to exist.

A similar argument applies for 〈〈A〉〉
∞
G .

5. Conclusion

In this paper, we considered the basic questions of expressiveness and complexity of ATL.
We precisely characterized the complexity of ATL, ATL+, EATL and ATL? model-checking,
on both ATSs and CGSs, when the number of agents is not fixed. These results complete
the previously known results about these formalisms (and corrects some of them). It is
interesting to see that their complexity classes (∆P

2 or ∆P
3 ) are unusual in the area of model-

checking. We also showed that ATL, as originaly defined in [AHK97, AHK98, AHK02], is
not as expressive as it could be expected, and we argue that the modality “Release” should
be added in its definition.
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