Cutting Through Regular Post Embedding Problems

P. Karandikat and Ph. Schnoebelén

1 Chennai Mathematical Institute
2 LSV, ENS Cachan, CNRS

Abstract. The Regular Post Embedding Problem extended with partial (co)di-
rectness is shown decidable. This extends to universal and/or cowetisigns.

It is also shown that combining directness and codirectness in Postdeinge
problems leads to undecidability.

1 Introduction

The Regular Post Embedding Problem(PEP for short, named by analogy with Post’s
Correspondence Problem) is the problem of deciding, gime@nmorphisms on words
u,v:* — ' and a regular language € Reg(%), whether there i© € R such that
u(o) is a (scattered) subword Bfo). Thesubwordordering, also calledmbeddingis

denoted =" u(o) C v(0) & u(o) can be obtained by erasing some letters frgo),
possibly all of them, possibly none. Equivalenf¥P is the question whether a rational
relation, or a transductio, C I'* x I'* intersects non-vacuously the subword relation,
hence is a special case of the intersection problem for tti@na relations.

This problem is new and quite remarkable: it is decidableb[®]surprisingly hard
since it is not primitive-recursive and not even multipgeursive. In fact, it is at level
Fu (and not below) in the Fast-Growing Hierarchy [8, 12].

A variant problem,PEPg;, asks for the existence dfirect solutions, i.e., solu-
tionso € R such thaw(t) C v(t) for every prefixt of 0. The two problems are inter-
reducible [4], hence have the same complexity: decidgtmfiPEP entails decidability
of PEPgir, while hardness dPEP;; entails hardness fdtEP.

Our contribution. We introducePEPP™! or “PEP with partial directness”, a new
problem that generalizes boBEP and PEPgj,, and prove its decidability. The proof
combines two ideas. Firstly, by Higman’s Lemma, a long sotutnust eventually con-
tain “comparablé so-called cutting points, from which one deduces that that®n

is not minimal (or unique, or ...). Secondly, the above notié “eventually, that
comes from Higman’s Lemma, can be turned into an effectiyeeupound thanks to a
Length Function Theorem. The cutting technique descrilbed@was first used in [7]
for reducing3”PEP to PEP. In this paper we use it to obtain a decidability proof for
PEPP2 that is not only more general but also more direct than thieegroofs for
PEP or PEPg;. It also immediately provides arf,w complexity upper bound. We also

* Supported by ARCUS 2008-11 Tle de France-Inde and Grant ANBSI(12-001. The first
author was partially funded by Tata Consultancy Services.

2 P. Karandikar and Ph. Schnoebelen

show the decidability of universal and/or counting versioi the extende@EP 2"

problem, and explain how our attempts at further genetadisamost notably by con-
sidering the combination of directness and codirectneassiime instance, lead to un-
decidability.

Applications to channel machine®eyond the tantalizing decidability questions, our
interest iNPEP and its variants comes from their close connection with fiarmel
machines [11], a family of computational models that arerdre¢tool in several areas
of program and system verification (see [5] and the referetieerein). HerePEP and

its variants provide abstract versions of verification peats for channel machines [4],
bringing greater clarity and versatility in both decidéliland undecidability (more
generally, hardness) proofs.

Beyond providing a uniform and simpler proof for the decitigbof PEP and
PEPg;, our motivation for considerin@EPgﬁma' is that it allows solving the decid-
ability of UCST, i.e., unidirectional channel systems fwitne reliable and one lossy
channellextended with the possibility of testing the contents ofinkés[10]. We recall
thatPEP was introduced for UCS, unidirectional channel systemsrevtests on chan-
nels are not supported [4, 3], and thE Py corresponds to LCS, i.e., lossy channel
systems, for which verification is decidable using techagjfrom WSTS theory [1, 9,

5]. The following figure illustrates the resulting situatio
" decidability via

UCST~ PEPRAMAl o cuttings (this papen)
%, " decidabiiity by
%@ : WSTS theory [1, 9]
& """" .

Outline of the paper.Section 2 recalls basic notations and definitions. In paldic

it explains the Length Function Theorem for Higman’s Lemanad lists basic results
where the subword relation interacts with concatenationkfactorization. Section 3
contains our main result, a direct decidability proof &P, a problem subsuming
both PEP and PEPg;r. Section 4 builds on this result and shows the decidability o
counting problems oRPEP}2"". Section 5 further shows the decidability of universal
variants of these questions. Section 6 contains our unaledity results for extensions
of PEPR2™. Proofs omitted for lack of space can be found in the full imrof this

paper, available at arxiv.org/abs/1109.1691.

2 Basic notation and definitions

Words. Concatenation of words is denoted multiplicatively, wattlenoting the empty
word. If sis a prefix of a word, s~1t denotes the unique wosisuch that = s<, and
s~ is not defined i is not a prefix ot. Similarly, whensis a suffix oft, ts~* is t with

. ~ def . .
the s suffix removed. For a word = ag...an_ 1, X = an_1...ag is the mirrored word.

Cutting Through Regular Post Embedding Problems 3

The mirror of a languag® is Iid:”{i | x € R}. We writesC t whens is a subword
(subsequence) of

Lemma 2.1 (Subwords and concatenation}or all words yz s,t:

.IfyzC st thenyE s or zC t.

. IfyzC st and Z_ t and x is the longest suffix of y such thatxt, then yx1 C s.

. IfyzC st and ZZ t and x is the shortest prefix of z such thatzC t, then yxC s.
. IfyzC st and Z_ t and x is the longest prefix of t such thatzt, then yC sx.

. IfyzC st and ZZ t and x is the shortest suffix of s such that xt, then yC sx L.
. If sxC yt and tC s, then s y¥t for all k > 1.

. IfxsCty and tC s, then %sC tyX for all k > 1.

~No o~ wNPRE

With a languagéR one associates a congruence (wrt concatenation) givesnlpy

t & Vx,y(xsye R < xty € R) and called the syntactic congruence (also, the syntactic
monoid). This congruence has finite index if (and onlyRfis regular. For regular, let
ng denote this indexagr < m™ whenR is recognized by arstate complete DFA.

Higman’s Lemma.lt is well-known that for words over a finite alphabét,is a well-
quasi-ordering, that is, any infinite sequence of woeds,Xs, ... contains an infinite
increasing subsequengg C X, T X, T ---. This result is called Higman’s Lemma.

Forn € N, we say that a sequence (finite or infinite) of words+good if it has
an increasing subsequence of lengtft is n-bad otherwise. Higman’'s Lemma tells us
that every infinite sequencerisgood for everyn. Hence every-bad sequence is finite.

It is often said that Higman's Lemma is “non-effective” sinit does not give any
explicit information on the maximal length of bad sequen€&amnsequently, when one
uses Higman’s Lemma to prove that an algorithm terminatesneaningful upper-
bound on the algorithm’s running time is derived from thegfréiowever, complexity
upper-bound can be derived if the complexity of the seque(aranore precisely of the
process that generates bad sequences) is taken into acEbarihterested reader can
consult [12] for more details. Here we only need the simplession of these results,
i.e., the statement that the maximal length of bad sequéscesnputable.

A sequence of wordsy, ..., X is k-controlled(k € N) if |x| < ikforalli=1,...,I.

Length Function Theorem. There exists a computable functiont M® — N such that
any n-bad k-controlled sequences of word$ inhas length at most th,k, |I"|). Fur-
thermore, H is monotonic in all three arguments.

Thus, a sequence with more thidiin, k, |I'|) words isn-good or is nok-controlled. We
refer to [12] for the complexity oH. Here it is enough to know th&t is computable.

3 DecidingPEPR2"™ or PEP with partial directness

We introducePEng:ma', a problem generalizing bothEP and PEPgj,, and show its

decidability. This is proved by showing that ifREP52"@ instance has a solution, then

it has a solution whose length is bounded by a computabldifumof the input. This
proof is simpler and more direct than the proof (REP only) based on blockers [2].

4 P. Karandikar and Ph. Schnoebelen

Definition 3.1. PEPF2"@ is the problem of deciding, given morphisms us* —
and regular languages R € Reg(Z), whether there is € R such that (o) C v(o) and
u(t) C v(1) for all prefixest of o belonging to R(in which caseo is calleda solutior).

PEPP2@ js the variant problem of deciding whether therevis: R such that (o) C

v(0) and 1) C v(1) for all suffixes oft of ¢ that belong to R

Both PEP andPEPg;, are special cases BEPF2"™?, obtained by takin@k = @ andR’ =

5* respectively. ObviousiPEPR and PEPPA@ are two equivalent presentations,

codir . -
modulo mirroring, of a same problem. GiverP&P 2" (or PEPP21@) instance, we

let Ky &' masecs |u(a)| denote theexpansion factoof u and say that € =* is long if
|o| > 2H(nrnr + 1,Ky, |T]), otherwise it isshort (recall thatH (n,k, |I|) was defined
with the Length Function Theorem). In this section we prove:

Theorem 3.2. A PEPR"@ or PEPP2 1@ instance has a solution if, and only if, it has a

short solution. This entails th&EPF" and PEPP2@ are decidable.

Decidability is an obvious consequence since the maxinmagtkefor short solutions
is computable, and since it is easy to check whether a caedida a solution. Fur-
thermore, one derives an upper bound on the complexiBES!2"® since the Length
FunctionH is bounded inFw [12].

For the proof of Theorem 3.2, we find it easier to reason on tuérect version.
Pick an arbitrar)PEPEg('}i'f" instance(Z,I",u,v,R,R) and a solutioro. Write N = ||
for its length,a[0,i) andali,N) for, respectively, its prefix of lengthand its suffix of
lengthN —i. Two indiced, j € [0,N] arecongruentf ofi,N) ~g d[j,N) anda[i,N) ~g
o[j,N). Wheno is fixed, as in the rest of this section, we use shorthandinatatike
Uo; andy; j to denote the images, henéo|0,i)) andv(ali, j)), of factors ofo.

We prove two “cutting lemmas” giving sufficient conditiore f'cutting” a solution
o = 0]0,N) along certain indicea < b, yielding a shorter solutioo’ = c[0,a)c[b,N).
Here the following notation is useful. We associate, witergwsuffixt of o', a corre-
sponding suffix, denote§(t), of a: if T is a suffix ofalb,N), thenS(t) %1, otherwise,
T = ofi,a)o[b,N) for somei < aand we letS(1) d:Efcy[i, N). In particularS(0’) = o.

An indexi € [0,N] is said to beblueif u; y C vi N, it is red otherwise. In particular,
N is blue trivially, O is blue since is a solution, andlis blue wheneveo|i,N) € R.. If
i is a blue index, lek; € ' be the longest suffix afip; such thatju; y C vi y and call it
theleft marginati.

Lemma 3.3 (Cutting lemma for blue indices).Let a< b be two congruent and blue
indices. If |, C Iy, thend’ = ¢[0,a)c[b,N) is a solution (shorter thaw).

Proof. Clearlyo’ € Rsinceo € Randa andb are congruent. Also, for all suffixesof
o,91)eRiff teR.

We claim that, for any suffix of o', if u(S(t)) C v(S(t)) thenu(t) C v(1). This is
obvious whert = §(1), so we assunte# (1), i.e.,1 =oli,a)o[b,N) andS(t) = a[i,N)
for somei < a. Assumeu(S(1)) C v(S(1)), i.e.,uin C v; N. Now at least one afi 5 and
la is a suffix of the other, which gives two casesuilf, is a suffix ofl,, then

U(T) = Ui alpN C lapn T lpupn & Vo n T V(T) .

Cutting Through Regular Post Embedding Problems 5

Otherwise,uj 4 = Xl for somex (see Fig. 1). Them; n T vi N rewrites aslj agUan =

V(0) : Voi Via Vab VoN
. . ’ 4
(rightmost embedding) A , ;
A 4 ,/ P .7 4 |
it ! 7 -7 .7 / I
/ - v / |
u(o): | | x [la] [1o | |
| Uoji | Uia | Uab | UpN |
0 i a b N

Fig. 1. Schematics for Lemma 3.3, with C |,

XlaUan E Viavan. Now, and sincdj is the longest suffix for whicHauan T Van,
Lemma 2.1.2 entails C v; 5. Combining withl, C I, (assumption of the Lemma) gives:

U(T) = U alp N = Xlalp N T Vi albUp N & Vi aVon = V(T) .

This shows that’ is a solution (which completes the proof) since we can infej C
v(1) for any suffixt € R (or for 1 = ¢’) from the corresponding(S(t)) C v(S(1)). O

If i is a red index, let; € I'* be the shortest prefix af y such thairfluin CViN
(equivalentlyu; y C rivi) and call it theright marginati.

Lemma 3.4 (Cutting lemma for red indices).Let a< b be two congruent and red
indices. If p C ra, theno’ = ¢[0,a)o[b,N) is a solution (shorter thaw).

Proof. Write upy under the fornrpx so thatx C v, n. We proceed as for Lemma 3.3
and show that(S(1)) C v(S(1)) implies u(t) C v(t) for all suffixest of o’. Assume
u(S(t)) C v(S(1)) for somet. The only interesting case is whan# S(1) andt =
oli,a)o[b,N) for somei < a (see Fig. 2).

v(o): Vo, Via Vab Vo.N
: ; x 3 !
(rightmost embedding) N . AT }
/! ! L |
7 \ |
u(o): | | | fa | [| X |
| Uo,i | Uia | Uab | UpN |
0 i a b N

Fig. 2. Schematics for Lemma 3.4, wit T ry

Fromui n = Ui alan C Vi aVaN = Vi N, 1.€.,U(S(T)) T V(S(T)), anduan I Van (Since
ais a red index), the definition af, entailsu; ara C Vj o (Lemma 2.1.3). Then

U(T) = Ui aUpN = Ui albX = U afaVbn E ViaVhn = V(T) . O

6 P. Karandikar and Ph. Schnoebelen

We now conclude the proof of Theorem 3.2. lggt< g2 < --- < gn, be the blue
indices ing, letby < by < --- < by, be the red indices, and look at the corresponding
sequenceflq)i—1,...N, Of left margins andry,)i—1,... n, Of right margins.

Lemma3.5. |lg| < (i—1)xKyforalli=1,...,N, and|ry | < (N2—i+1) x Ky for all
i =1,...,No. In other words, the sequence on left margins andé&versedgequence of
right margins are k-controlled.

.....

Now, let Ne def NrNr + 1 andL d:efH(Nc, Ky, |T']) and assum&l > 2L. SinceN; + Nz =
N + 1, eitheroc has at least + 1 blue indices and, by definition df andH, there
existNc blue indicesay < ap < -+ < an, With lg; E 15, T -+ Cla, Or o has at least
L+ 1 red indices and there exilst red indicesa) < a, < --- < af\,c with Taf. cC...C
Fa, Elay (since it is the reversed sequence of right margins thatngraited). Out of
N; = 1+ nrng indices, two must be congruent, fulfilling the assumptioinsesmnma 3.3
or Lemma 3.4. Therefore is not the shortest solution, proving Theorem 3.2.

4 Counting the number of solutions

We consider two counting questiorPEPR is the question whether REPR2™

instance has infinitely many solutions (a decision problemt)ile #PEPF2"® is the
problem of computing the number of solutions of the instaf@ceumber inNN U {e}).
For technical convenience, we often deal with the (equintpleodirected versions,
3mPEPpartial and #DEPpartial

codir codir
For an instancéZ, ", u,v,R R), we letK, d:‘Efma&ez |v(a)| and define

LEH(meng + LK M), L EH (@l 1] ™ Vg 4 1,Ku [T

We say that a solutioo € Z* is long if |o] > 2L andvery longif |a| > 2L’ (note that
“long” is slightly different from “not short” from Section)3In this section we prove:

Theorem 4.1. For a PEPR™@ or pEPPA@ jnstance, the following are equivalent:
(a). It has infinitely many solutions.
(b). It has a long solution.

(c). It has a solution that is long but not very long.
From this, it will be easy to count the number of solutions:

Corollary 4.2. 3=PEPR™ and3»PEPP2 1 are decidable#PEPY2"™ and#PEPPAA!
are computable.

Proof. Decidability for the decision problems is clear sincandL’ are computable.
For actually counting the solutions, we check whether thalmer of solutions is
finite or not using the decision problems. If infinite, we aomd. If finite, we first com-

pute an upper bound on the length of the longest solutiontifeme buiIdPEng’:rtial

(resp.PEPP21eY instances wher® is replaced byR~ =M (which is regular wherR
is) for increasing values d¥l € N. When eventually is large enough, the instance is
negative and this can be detected (by Theorem 3.2). Once wwe H#rat there are no

solutions longer thaiM, counting solutions is done by finite enumeration. ad

Cutting Through Regular Post Embedding Problems 7

We now prove Theorem 4.1. First observe that if the instarmsealong solution, it
has a solution witR replaced byRN>>2-. This language has a DFA withk(2L + 1)
states, thus the associated congruence has index at(mg@8t + 1))@+, From
Theorem 3.2, the instance has a solution which is long buterytiong. Hence (b) and
(c) are equivalent.

It remains to show (b) implies (a) since obviously (a) impl{p). For this we fix an
arbitraryPEPP21@ instance(=, I, u,v, R, R') and consider a solution, of lengthN. We
develop two so-called “iteration lemmas” that are simiathe cutting lemmas from
Section 3, with the difference that they expanuhstead of reducing it.

As before, an indeke [0,N] is said to bélueif u; n C vi n, andred otherwise. With
blue and red indices we associate words analogous tly'shendr;’s from Section 3,
however now they are factors @fc), notu(o) (hence the different definition fdr).
The terms “left margin” and “right margin” will be reused ledor these factors.

We start with blue indices. For a blue indiex [0, N], lets be the longest prefix of
vin such thau y C s{lvi,N (equivalentlysui n C vi n) and call it theright marginati.

Lemma 4.3. Suppose & b are two blue indices withysC s5. Then for all k> 1,
Sa(Uap)¥ T (Vap)“sp.

Proof. suan C Van €xpands asSaUa p)Up N T VapVh,N- Sinceup y C Vo N, Lemma 2.1.4
yieldssaUa p T VapS. One concludes with Lemma 2.1.6, ussd_ Sa. |

Lemma 4.4 (lteration lemma for blue indices).Let a< b be two congruent and blue
indices. If § C s,, then for every k> 1, o’ = 6[0,a).0[a, b)X.a[b,N) is a solution.

Now to red indices. For a red indéx [0,N], lett; be the shortest suffix af; such
thatu N C tjvi n. This is called thdeft marginati. Thus, for a blugj such thatj <,
ujn C vj N impliesu;iti C vj i by Lemma 2.1.5.

Lemma 4.5 (lteration lemma for red indices).Let a< b be two congruent and red
indices. Ift, C ty,, then for every k> 1, o’ = 6]0,a).0]a, b)¥.a[b,N) is a solution.
We now conclude the proof of Theorem 4.1. We first prove thaPBPP 12 instance
has infinitely many solutions iff it has a long solution. Odwsly, only the right-to-left
implication has to be proven.

Suppose there afé; blue indices iro, sayg; < g2 < --- < gn;; andNo red indices,
sayb; < by <+ < by,

Lemma4.6. |sy| < (N1 —i+1) xKyforalli=1,...,Ng, and |ty | < (i—1) x K for
alli =1....Ny. That is, thereversedsequence of right margins and the sequence of
left margins are k-controlled.

Assume that is a long solution of length > 2L + 1. At leastL + 1 indices among
[0,N] are blue, or at least+ 1 are red. We apply one of the two above claims, and from
eithersgNl,...,sgl (if N> L+1) Orty,,....thy, (if N2 > L+ 1) we get an increasing
subsequence of lengtikng + 1. Among these there must be two congruent indices.
Then we get infinitely many solutions by Lemma 4.4 or Lemma 4.5

8 P. Karandikar and Ph. Schnoebelen

5 Universal variants of PEPRA™!

We consider universal variants BEP}2"" (or ratherPEPP2e!
pPatial s the question

mity). Formally, given instance§,I",u,v,R R) as usualyPEP;
whethereveryo € Ris a solution, i.e., satisfies botl{o) C v(o) andu(t) C v(t) for
all suffixest that belong taR. Similarly, ¥*PEPP is the question whether “almost

codir
all’, i.e., all but finitely many o in R are solutions, and-#PEPP21? is the associated
counting problem that asks how maaye R are not solutions.

The special case¢PEP andV°PEP (whereR = &) have been shown decidable
in [7] where it appears that, at least for Post Embeddinyearsal questions are simpler
than existential ones. We now observe tHREPS andv*PEPR" are easy to solve
too: partial codirectness constraints can be eliminatadesuniversal quantifications

commute with conjunctions (and since the codirectnessti@nsis universal itself).

for the sake of unifor-

Lemma 5.1. VPEnggtiif" andePEPgsgﬁif' many-one reduce t¢°PEP.

Corollary 5.2. VYPEPPA@ andy=pEPPAT gre decidable#—PEPPY ™ is computable.

codir codir codir

We now prove Lemma 5.1. FirstPEPP2 1 easily reduces toPEPPA1?: add an

extra letterz to ¥ with u(z) = v(z) = € and replac&®k andR’ with Rz* andR'.z*. Hence
the second half of the lemma entails its first half by tramgjtiof reductions.

For reducingv=PEPP214! it is easier to start with the negation of our question:

3”0 € R: (u(0) Z v(o) or o has a suffixt in R with u(t) Z v(1)) . (*)

Call o € Ratype 1 witnes# u(o) IZ v(o), and atype 2 witnes# it has a suffixt e R
with u(t) Z v(1). Statementx) holds if, and only if, there are infinitely many type 1
witnesses or infinitely many type 2 witnesses. The existefdefinitely many type 1
witnesses (call that “case 1”) is the negation of"@®PEP question. Now suppose that
there are infinitely many type 2 witnesses, sayo», ... For each, pick a suffixt; of
;i such thati; € R andu(Tt;) iZ v(Ti). The sef{t; | i = 1,2,...} of these suffixes can be
finite or infinite. If it is infinite (“case 2a"), then
u(t) Z v(1) for infinitely manyt € (4R> NR), ()

where R is short f0r2—°F>2 and fork € N, ZT>Rd:ef {y | Ix: (]x| > kandxy € R)} is the
set of the suffixes of words frofR one obtains by removing at ledstetters. Observe
that, conversely,«x) implies the existence of infinitely many type 2 witnesses
proof, pickt; € R NR satisfying the above, choosr < R of which 17 is a suffix.
Then chooses such thaftz| > |o1|, and proceed similarly).

On the other hand, ift; | i =1,2,...} is finite (“case 2b”), then there istae R such
thatu(t) Z v(t) ando’t € R for infinitely manyo’. By a standard pumping argument,
the second point is equivalent to the existence of some suetith also |0’ i’?'

wherekg is the size of a NFA foR (takingkr = ngr also Works).AWrite novik for >KRR:
if {1i]i=1,2,...} isfinite, thenu(t) IZ v(1) for somet in (R NR), and conversely this
implies the existence of infinitely many type 2 witnesses.

Cutting Through Regular Post Embedding Problems 9

To summarize, and sincE andR are regular and effectively computable frén

we have just reduced®PEPP21? to the following conjunction

v*oeR:u(0) Cv(o) AV°t € (BRNR):u)C v(T) AVt € (ROR) 1u(t) Cv(T).

not case 1 not case 2a not case 2b

This is now reduced to a singi#®’PEP instance by rewriting th&PEP into av*PEP
(as said in the beginning of this proof) and relying on disttivity:

n n
[V"x € X :... some property . |.= V*x€ | X :... same ...
i=1 i—1

6 Undecidability for PEP¢qggir and other extensions

The decidability oPEPR2"is a non-trivial generalization of previous results REP.

It is a natural question whether one can further generalizeidea of partial direct-
ness and maintain decidability. In this section we deschilee attempts that lead to
undecidability, even though they remain inside the regREP framework3

Allowing non-regular R One direction for extendin@EP52" is to allow more ex-

pressive Rsetsfor partial (co)directness. LEEPPAIAIPCFL gngpgpPatalPres he e

PEPPAIAl oy cept thaR can be any deterministic context-freée DCFL(Z) (respec-
tively, any Presburger-definab® € Pres(%), i.e., a language whose Parikh image is a
Presburger, or semilinear, subsefo¥!). Note thatR € Reg(Z) is still required.
partialDCFL]

i and PEPP2 TIPS are 50_complete.

codir

Theorem 6.1 (Undecidability).PEP

Since both problems clearly areZ@, one only has to prove hardness by reduction, e.g.,
from PCP, Post's Correspondence Problem. [(E{l",u,v) be aPCP instance (where
the question is whether there exist& =™ such thatu(x) = v(x)). ExtendX and
with new symbolsZ’ *'su {1,2} andT”’ ©ru {#}. Now defineu’,v : £'* — I'"*

by extendingu,v on the new symbols with' (1) =V (2) = € andu'(2) = V(1) = #.
Define nowR=12>* andR = {120 | 1,7 € Z* and|u(tt’)| # |v(1T’)|}. Note thatR’

is deterministic context-free and Presburger-definable.

partialPres
codir

Lemma 6.2. ThePCP instancg %, I, u,v) has a solution if and only if theEP

and PEPPAMACCF instance(s’ I, /v, R R) has a solution.

Combining directness and codirectneggiother direction is to allomeombiningdirect-
ness and codirectness constraints. FormBHPR ..sir iS the problem of deciding, given
%, T, u, v, andR € Reg(Z) as usual, whether there existss R such thatu(t) C v(1)
andu(t’) C v(t') for all decompositions = 1.T’. In other wordsg is both a direct and
a codirect solution.

3 PEP is undecidable if we allow constraint sésoutsideReg(Z) [2]. Other extensions, like
Ix € Ry : ¥y € Ry : u(xy) C v(xy), for Ry,Ro € Reg(Z), have been shown undecidable [6].

10 P. Karandikar and Ph. Schnoebelen

Note thatPEP¢osqir has noR parameter (or, equivalently, hR= >*) and requires
directness and codirectness at all positions. Howevex réstricted combination is al-
ready undecidable:

Theorem 6.3 (Undecidability). PEPcogdir is £9-complete.

Membership ins? is clear and we prove hardness by reducing from the Readfyabil
Problem for length-preserving semi-Thue systems. The ciddhility is linked to re-

lying on differentembeddings ofi(o) in v(o) for the directness and codirectness. In
contrast, forPEPR2"™ we need to consider only the leftmost embeddingi@f) in
v(0).

A semi-Thue systerB= (Y,A) has a finite sef\ C Y* x Y* of string rewrite rules
over some alphabéf, writtenA = {l; — r1,...,lIx — r¢}. The one-step rewrite relation

—a C Y* x Y* is defined as usual witk—py Ly =27 andy = zrZ for some rule
| — rin A and stringsz,Z in Y*. We Writexmmy andx=ay whenx can be rewritten
into y by a sequence oh (respectively, any number, possibly zero) rewrite steps.
TheReachability Problerfor semi-Thue systems is “Give®= (Y,A) and two reg-
ular language®;, P, € Reg(Y), is therex € P andy € P, s.t.xay?”. Itis well-known
(or easy to see by encoding Turing machines in semi-Thuemgstthat this problem is
undecidable (in factz‘i’-complete) even when restricted length-preserving systems
i.e., systems wherg| = |r| for all rulesl —r € A.

We now construct a many-one reductionRBPcoggir- Let S= (Y, A), P, P, be a
length-preserving instance of the Reachability ProblenhoV., we assume¢ P; and
we restrict to reachability via an even and non-zero numbeswrite steps. With any
such instance we associat®BPcoggir instanceu,v: Z* — ' with R € Reg(Z) such
that the following correctness property holds:

Ix € Py, Iy € P, Ims.t. x5y (@andm > 0 is even) P)
iff 30 € Rs.t.u(t) C v(1) andu(t’) C v(T) for all decompositions = 11'.

The reduction uses letters like b and c taken fromY, and adds T as an extra letter.
We use six copies of each such “plain” letter. These copieshtained by priming and

double-priming letters, and by overlining. Hence the sipies ofa area,a’,a”,3,a’,a”.
As expected, for a “plain” word (or alphabet)we writex’ andx to denote a version of
x obtained by priming (respectively, overlining) all itstkts. Formally, letting; being
short forYU {1}, one hag = €'Y UV, UY UG UY U Y.

We define and explain the reduction by running it on the foifgpexample:

Y ={a,b,c} andA = {ab — bc, cc — aa}. (Sexmp)

Assume thakbc € P; andbaa € P,. ThenP;3,P, sinceabc->pbaa as witnessed
by the following (even-length) derivation = “abc—abcc—abaa”. In our reduction,

a rewrite step like &bc—abcc” appears in the PEP solutiom as the letter-by-letter
interleavingabbccc, denotechbe L bec, of a plain string and an overlined copy of a
same-length string.

Cutting Through Regular Post Embedding Problems 11

Write Ty (A), or justT,. for short, for the set of allLLiy such thak— Y. Obviously,
and since we are dealing with length-preserving syst@gss a regular language, as
seen by writing it asTy. = (Tacyad) . {lwr || =1 € A}.(Tacvad)”, where{l L
r |1 —r e A} is afinite, hence regular, language.

Ty, accounts for odd-numbered steps. For even-numbered #tepst— pbaa in U

above, we use the symmettibacac, i.e.,baallibcc. Here todTl ¢ def {ywx| x—pay} is

. - def
regular. Finally, a derivatiomn of the general fornxg—ax1—aX2 . . . —>aXok, WhereK =

|Xo| =...=|xxl, is encoded as a solutian; of the formo = pp01P102. . . P2k—102kP2k
that alternates between the encodings of stepsithein T, U T, andfillers, (thep;’s)
defined as follows:
o def [Xi-1wx; foroddi, po d:efxng”K , def [KX for oddi,

"7\ x wix_q for eveni, P2k d:efx’z’kLu K X 1K for eveni # 0, 2k.

Note that the extremal fillergg and pok use double-primed letters, when the internal
fillers use primed letters. Continuing our example,dh@ssociated with the derivation
abc—pbcc—pbaa is
On= /T T'c'T" abbece 1B/1'c't'c bhatat b/ T T7a"T".

—_— N —— Y — —

a”b"c"LLIT”T”T” abclllbcc T/T’T,Lub'c’c’ baalllbcc b”a”a”u_IT”T”T”
The point with primed and double-primed copies is thandv associate them with
different images. Precisely, we define
u@@ =a, u@) =1, u(t) =1, u@) =e, u(t’) =,
v@=1 v@)=a vl)=w, v@)=a v(I")=w,

whereais any letter inY, and wherewy is a word listing all letters irY. E.g., W, ..} =
abc in our running example. The extremal fillers use special tspbimed letters be-

cause we wanti(pp) = u(p) = € (while v behaves the same on primed and double-

primed letters). Finally, overlining is preservedibgndv: u(x) 2'u(x) andv(x) £'v(x).

This ensures that, far> 0, u(g;) C v(pi_1) andu(p;) = v(aj), so that aoy con-
structed as above is a direct solution. It also ensufeg C v(p;) andu(pi-1) C v(a;)
for all i > 0, so thatoy is also a codirect solution. One can check it on our running
example by writingu(or) andv(oy) alongside:
Po o1 P1 a2 p2
—_—— —— /Y —A—
O.T[— a”T//b”'l’”c”T// abbccc T/b/T/C/T/C/ bbacac b//T//a//T//a//T//

u(on) = abbccc IRRERET bbacac
V(On) = aabcbabccabe 1T1T1T abcbabccabee TT1T1T babcaabcaabe
There remains to defirfe Sincepo € (Y1), sincec; € T,. for oddi, etc., we let

RE (V) TP (1) . (T (YT) * T (7)) TR (Y @)

12 P. Karandikar and Ph. Schnoebelen

WhereT:F’l def {XWy | x=ayAX e P} =Ty N{xwy | xePLA|X =1y|} is clearly

regular wherP; is, and similarly forTDPz def {ywx | x—=ayAy € P,}. Sinceor € R

when Tt is an even-length derivation from, to P,, we deduce that the left-to-right
implication in (CP) holds.

We refer to the full version of this paper at arxiv.org/ali€fd.1691 for a proof that
the right-to-left implication also holds, which concludes proof of Theorem 6.3.

7 Concluding remarks

We introduced partial directness in Post Embedding Prabland proved the decid-
ability of PEPR2"@ by showing that an instance has a solution if, and only if.ais h
a solution of length bounded by a computable function of tipuf. This generalizes
and simplifies earlier proofs fdPEP and PEPg;;. The added generality is non-trivial
and leads to decidability for UCST, or UCS (that is, unidii@tal channel systems)
extended with tests [10]. The simplification lets us deal athly with counting or
universal versions of the problem. Finally, we showed tt@hbiningdirectness and
codirectness constraints leads to undecidability.

References

1. P. A. Abdulla and B. Jonsson. Verifying programs with unreliablenokés.Information and
Computation127(2):91-101, 1996.

2. P. Chambart and Ph. Schnoebelen. Post Embedding Problenpismibive recursive, with
applications to channel systems. Rroc. FST&TCS 20QA0l. 4855 ofLNCS pages 265—
276. Springer, 2007.

3. P.Chambartand Ph. Schnoebelen. Mixing lossy and perfechiifonels. IiProc. CONCUR
2008 vol. 5201 ofLNCS pages 340—-355. Springer, 2008.

4. P. Chambart and Ph. Schnoebelen. @kReegular Post Embedding Problem.Rroc. FOS-
SACS 2008vol. 4962 ofLNCS pages 97-111. Springer, 2008.

5. P. Chambart and Ph. Schnoebelen. The ordinal recursivelexitypf lossy channel sys-
tems. InProc. LICS 2008pp. 205-216. IEEE Comp. Soc. Press, 2008.

6. P. Chambart and Ph. Schnoebelen. Computing blocker sets foethueaR Post Embedding
Problem. InProc. DLT 2010Qvol. 6224 ofLNCS pp. 136-147. Springer, 2010.

7. P. Chambart and Ph. Schnoebelen. Pumping and counting on th&RRgst Embedding
Problem. InProc. ICALP 2010Qvol. 6199 ofLNCS pp. 64—75. Springer, 2010.

8. M. Fairtlough and S. S. Wainer. Hierarchies of provably recurkivetions. In S. Buss,
editor,Handbook of Proof Theorghapter 3, pp. 149—-207. Elsevier Science, 1998.

9. A. Finkel and Ph. Schnoebelen. Well-structured transition systeemgwlere! Theoretical
Computer Scienc®56(1-2):63-92, 2001.

10. P. Jafar, P. Karandikar, and Ph. Schnoebelen. Unidirectional chaysieinss can be tested.
In preparation, 2012.

11. A. Muscholl. Analysis of communicating automataPloc. LATA 2010vol. 6031 ofLNCS
pp. 50-57. Springer, 2010.

12. S. Schmitz and Ph. Schnoebelen. Multiply-recursive upper sowitth Higman'’s lemma.
In Proc. ICALP 2011vol. 6756 ofLNCS pages 441-452. Springer, 2011.

