
A Polynomial-Time Algorithm for Reachability in
Branching VASS in Dimension One
Stefan Göller∗1, Christoph Haase*1, Ranko Lazić†2, and Patrick
Totzke†2

1 LSV, CNRS & ENS Cachan
Université Paris-Saclay, France
{goeller,haase}@lsv.ens-cachan.fr

2 DIMAP, Department of Computer Science
University of Warwick, United Kingdom
{r.s.lazic,p.totzke}@warwick.ac.uk

Abstract
Branching VASS (BVASS) generalise vector addition systems with states by allowing for special
branching transitions that can non-deterministically distribute a counter value between two con-
trol states. A run of a BVASS consequently becomes a tree, and reachability is to decide whether
a given configuration is the root of a reachability tree. This paper shows P-completeness of
reachability in BVASS in dimension one, the first decidability result for reachability in a subclass
of BVASS known so far. Moreover, we show that coverability and boundedness in BVASS in
dimension one are P-complete as well.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases branching vector addition systems, reachability, coverability, bounded-
ness

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Vector addition systems with states (VASS), equivalently known as Petri nets, are a funda-
mental model of computation which comprise a finite-state controller with a finite number
of counters ranging over the naturals. The number of counters is usually refereed to as the
dimension of the VASS. A configuration q(n) of a VASS in dimension d consists of a control
state q and a valuation n ∈ Nd of the counters. A transition of a VASS can increment
and decrement counters and is enabled in a configuration whenever the resulting counter
values are all non-negative, otherwise the transition is disabled. Consequently, VASS induce
an infinite transition system. Three of the most fundamental decision problems for VASS
are reachability, coverability and boundedness. Given a target configuration q(n) and some
initial configuration, reachability is to decide whether starting in the initial configuration
there exists a path ending in q(n) in the induced infinite transition system. Coverability
asks whether some configuration q(n′) can be reached for some n′ ≥ n, where ≥ is defined
component-wise. Boundedness is the problem to decide whether there are infinitely many
different configurations reachable from a given starting configuration. Those decision prob-
lems find a plethora of applications, for instance in the verification of concurrent programs.

∗ Supported by Labex Digicosme, Univ. Paris-Saclay, project VERICONISS.
† Supported by the EPSRC, grants EP/M011801/1 and EP/M027651/1.

© Stefan Göller, Christoph Haase, Ranko Lazić and Patrick Totzke;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

ar
X

iv
:1

60
2.

05
54

7v
1

 [
cs

.F
L

]
 1

7
Fe

b
20

16

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Reachability in Branching VASS in Dimension One

Coverability can, for example, be used in order to validate mutual exclusion properties of
shared-memory concurrent programs [6]; reachability is a key underlying decision problem
in the verification of liveness properties of finite-data asynchronous programs [5]. Even
though the complexity of coverability and boundedness are well-understood and known to
be EXPSPACE-complete [12, 14], the precise complexity of reachability remains a major
unsolved problem; a non-primitive recursive upper bound (Fω3) has only recently been es-
tablished [11] and the best known lower bound is EXPSPACE [12].

The situation is even more dissatisfying when considering branching extensions of VASS.
Such branching VASS (BVASS) are additionally equipped with special branching trans-
itions of the form (q, p, p′). When in a configuration q(n), a BVASS can simultaneously
non-deterministically branch into configurations p(m) and p′(m′) such that n = m + m′.
Reachability of a configuration q(n) then is to decide whether there exists a proof tree
whose root is labelled with q(n) and whose leaves are all labelled with designated target
control states in which all counters have value zero; coverability and boundedness are defined
analogously as above. While coverability and boundedness are known to be 2-EXPTIME-
complete [3], reachability in BVASS is not known to be decidable, not even in any fixed
dimension. Recently, non-elementary lower bounds for reachability in BVASS have been
obtained [10]. Reachability in BVASS is closely related and in fact equivalent to decid-
ability of the multiplicative-exponential fragment of linear logic [2], and also an underlying
decision problem in various other applications for instance in computational linguistics, cryp-
tographic protocol verification, data logics and concurrent program verification; see [10] for
more details.

The primary contribution of this paper is to provide a polynomial-time algorithm for
reachability in BVASS in dimension one (BVASS1) and to show that reachability is in fact
P-complete. To the best of our knowledge, we give the first decidability result for reachability
in a fragment of BVASS. Let us remark that a decidability result with such low complexity
is actually quite surprising. On the one hand, due to the infinite state space of BVASS1
it is not immediate that reachability is decidable. In particular, the emptiness problem for
conjunctive grammars over a unary alphabet, which can be seen as a slight generalisation of
BVASS1 with special alternating transitions that can simultaneously branch into two control
states while retaining the same counter value (known as ABVASS1), is undecidable [9]. On
the other hand, if we disallow branching rules in ABVASS1 and thus obtain AVASS1 then
reachability is PSPACE-complete [15, 8].

It is in fact not too difficult to show that if a configuration is reachable in a BVASS1 then
there exists a so-called reachability tree of exponential size. What causes a main challenge
when establishing a polynomial-time algorithm is that this bound is optimal in the sense that
there exist families of BVASS1 whose reachability trees are inherently of exponential size
and contain an exponential number of different counter values. Consequently, reachability
cannot be witnessed in polynomial time by explicitly constructing a witnessing reachability
tree. Instead, we show that a polynomial-time computable certificate for the reachability of
a configuration suffices. These certificates have two parts: the first is a table that, for certain
d > 0 contains those pairs of control states q and residue classes r modulo d such that q(n) is
reachable for some sufficiently large n with n ≡ r mod d. This is called residue reachability.
The second part is a compressed collection of incomplete small reachability trees, so-called
expandable partial reachability trees, whose leaves are either accepting configurations or
have the special property of being pumpable. The latter means that on the path from a
pumpable leaf to the root there is another node, called the anchor of the leaf, that is labelled
with the same control state and the counter value between the anchor and the leaf increases

S. Göller, C. Haase, R. Lazić and P. Totzke 3

strictly. By identifying further structural properties of reachability trees, we show that the
subtree between a pumping leaf and an anchor can under certain circumstances be repeated
multiple times, and hence pumping leafs may achieve an arbitrarily large counter value in
a certain residue class. This eventually enables us to witness the existence of a reachability
tree via residue reachability.

In Section 5, we show that coverability and boundedness are P-complete for BVASS1. For
coverability, the upper bound follows easily via a reduction to reachability. For boundedness,
this is not the case and we require a specifically tailored argument.

Due to space constraints, the proofs of some statements can be found in an appendix.

2 Preliminaries

We write Z and N for the sets of integers and non-negative integers, respectively, and define
[i, j] def= {i, i+ 1, . . . , j − 1, j}, for given integers i < j. For d ≥ 1 we define Zd

def= [0, d− 1].
The set of finite words over alphabet A is denoted by A∗ and the length of a word w ∈ A∗

is written as |w|. For two words u, v ∈ A∗, we say u is a prefix of v (written as u � v) if
v = uw for some w ∈ A∗. It is a strict prefix (u ≺ v) if u � v and u 6= v. We say u and v
are incomparable if neither u � v nor v � u. A set U ⊆ A∗ is prefix-closed if for all u ∈ U
and all v ∈ A∗ we have that v � u implies v ∈ U .

Let Σ be a set. A Σ-labelled (finite) tree is a mapping T : U → Σ where U ⊆ A∗ is
a non-empty finite prefix-closed set of nodes for some finite set A. For U ⊆ U , we define
T (U) def= {T (u) | u ∈ U}. A leaf of T is a node u ∈ U such that there is no v ∈ U with
u ≺ v; every node of T that is not a leaf is called inner node. A node u is an ancestor
(resp. descendant) of a node v if u � v (resp. v � u) and a strict ancestor (resp. strict
descendant) if u ≺ v (resp. v ≺ u). For any node u we define the subtree of T rooted at u as
T ↓u : u−1U → Σ, where u−1U

def= {x ∈ A∗ | ux ∈ U} and T ↓u(x) def= T (ux). Note that u−1U

is a prefix-closed subset of U . We define h(u) def= max{|x| | x ∈ u−1U} to be the height of
the subtree rooted at u and and define h(T) def= h(ε). Note that h(u) = 0 if, and only if, u is
a leaf. We say T is binary if U ⊆ {0, 1}∗; in this case if for some node u ∈ U we have that
u0 ∈ U , then u0 the left child of u and if u1 ∈ U we say that u1 is the right child of u.

2.1 Branching Vector Addition Systems
In the following, n and z will denote elements from Nk and Zk, respectively; addition on
Zk is defined component-wise.

I Definition 1. Let k ≥ 1. A k-dimensional branching vector addition system with states
(BVASSk) is a tuple B = (Q,∆, F) where Q is a finite set of control states, ∆ ⊆ Q3 ∪ (Q×
{−1, 0, 1}k ×Q) is a finite set of transitions, and F ⊆ Q is a set of final states. The size |B|
of a BVASS is defined as |B| def= |Q|+ k · |∆|.

The semantics of BVASS is given in terms of reachability trees. A partial reachability
tree of a BVASSk B is a Q×Nk-labelled binary tree T : U → Q×Nk, where each inner node
u ∈ U with T (u) = (q,n) satisfies exactly one of the following conditions:

u0, u1 ∈ U , and if T (u0) = (p,n0) and T (u1) = (p′,n1), then n = n0 + n1 and
(q, p, p′) ∈ ∆; or
u0 ∈ U, u1 6∈ U , and if T (u0) = (p,n0), then n = n0 + z and (p, z, q) ∈ ∆.

A reachability tree is a partial reachability tree T where T (u) ∈ F×{0}k for all leaves u of T .
We call these nodes accepting nodes. For each j ∈ N we say that a partial reachability tree

4 Reachability in Branching VASS in Dimension One

Figure 1 Illustration of the BVASS1 Bn. The reachability set of the control state qn is the
singleton set {2n}, and a reachability tree for q(0) contains all counter values between 0 and 2n.

T is j-bounded if T (u) ∈ Q× [0, j]k for all u ∈ U . We call Q× Nk the set of configurations
of B and for the sake of readability often write its elements (q,n) as q(n). We say that a
configuration q(n) is reachable if there exists a reachability tree T with T (ε) = q(n). Note
that in particular every configuration in F ×{0}k is reachable. The reachability set reach(q)
of a control state q is defined as reach(q) def= {n ∈ N | q(n) is reachable}. The decision
problem that we mainly focus on in this paper is reachability, defined as follows:

Reachability in BVASSk

INPUT: A BVASSk B = (Q,∆, F), a control state q and n ∈ Nk encoded in unary.
QUESTION: Is q(n) reachable?

Our main result is that reachability is P-complete in dimension one.

I Theorem 2. Reachability in BVASS1 is P-complete.

3 Lower Bounds

As a warm-up exercise and in order to familiarise ourselves with BVASS1, we begin with
proving a couple of lower bounds for the reachability problem. First, it is not difficult to see
that the reachability problem is P-hard via a reduction from the monotone circuit value prob-
lem (MCVP) [13]. By simulating ∨-gates of a Boolean by by non-deterministic branching
and ∧-gates by splitting transitions, the following statement can easily be obtained.

I Proposition 3. Let C be a Boolean circuit. There exists a logspace computable BVASS1 B
with a control state q such that q(0) is reachable if, and only if, C evaluates to true.

A challenging aspect when providing a polynomial-time upper bound for reachability in
BVASS1 is that reachability trees may be of exponential size and may contain an exponential
number of nodes labelled with distinct counter values. To see this, consider the family
(Bn)n≥0 of BVASS1, where Bn

def= (Qn,∆n, F) and where Qn
def= {q, qf} ∪ {q0, . . . , qn},

∆n
def= {(q,+1, q), (q, 0, qn)} ∪ {(qi, qi−1, qi−1) | 0 < i ≤ n} ∪ {(q0,−1, qf)} and F def= {qf}.

The construction is illustrated in Figure 1. It is easily seen that qi(N) is reachable if, and
only if, N = 2i. Observe that reach(q) = {0, . . . , 2n} is finite and that the reachability tree
of q(0) contains all counter values between 0 and 2n. In particular, this allows us to obtain
the following hardness result in which the updates of the BVASS1 are from {−1, 0,+1} (i.e.
encoded in unary), but the initial configuration is given in binary, via a straight-forward
reduction from the NP-complete Subset Sum problem [13].

I Proposition 4. Reachability in BVASS1 is NP-hard if the initial configuration q(n) is
given in binary.

It is worth mentioning that the previous lemma enables us to derive as a corollary an
NP-lower bound for reachability in BVASS2. This is in contrast to VASS where there is no
difference between the NL-completeness of reachability in dimensions one and two [16, 4].

S. Göller, C. Haase, R. Lazić and P. Totzke 5

I Corollary 5. Reachability in BVASS2 is NP-hard.

4 Reachability in BVASS1

Here, we show that reachability in BVASS1 is decidable in polynomial time, thereby estab-
lishing the P upper bound claimed in Theorem 2. In the first part, we consider a variation
of the reachability problem in which we are only interested in reaching configurations that
are sufficiently large and lie in a certain residue class. Subsequently, we will apply this inter-
mediate result for showing that reachability can be witnessed by small partial reachability
trees. Finally, we put everything together in order to obtain a polynomial-time algorithm.

4.1 The Residue Reachability Problem
A cornerstone of our algorithm for reachability in BVASS1 is the polynomial-time decidab-
ility of the following variant of the reachability problem for BVASS1:

Residue Reachability for BVASS1

INPUT: A BVASS1 B = (Q,∆, F), a configuration q(n0) and d ≥ 1, where n0 and d
are given in unary.

QUESTION: Does there exist some n ≥ n0 such that q0(n) is reachable and n ≡ n0 mod d?

The main result of this section is that residue reachability for BVASS1 is decidable in
polynomial time. Notice that setting d = 1 allows for checking whether there exists some
n ≥ n0 such that q(n) is reachable. We first introduce some auxiliary definitions that allow
us to abstract away concrete counter values of reachability trees. A partial d-residue tree
is a binary tree T : U → Q × Zd, where each inner node u ∈ U with T (u) = (q, n) satisfies
precisely one of the following conditions:

(i) u0, u1 ∈ U , and if T (u0) = (p,m0) and T (u1) = (p′,m1) then n ≡ m0 +m1 mod d and
(q, p, p′) ∈ ∆;

(ii) u0 ∈ U, u1 6∈ U , and if T (u0) = (p,m) then n = m+ z mod d and (p, z, q) ∈ ∆.

We call a configuration from Q × Zd a residue configuration. Given a set of configurations
S, its residue is S/Zd

def= {(q, n mod d) ∈ Q × Zd | q(n) ∈ S}. Likewise, given a partial
reachability tree T : U → Q × N, the residue T/Zd of T is T/Zd : U → Q × Zd, where
T/Zd(u) def= T (u)/Zd for all u ∈ U . Clearly, T/Zd is a partial residue tree.

For the remainder of this section, fix some BVASS1 B = (Q,∆, F), some configuration
q0(n0) and some d ≥ 1, where n0 and d are given in unary. In order to decide residue reach-
ability, one might be tempted to start with an initial configuration and then to repeatedly
apply transitions of B modulo d until the desired residue configuration is discovered. Such
an approach would, however, not be sound as it may lead to residue configurations that,
informally speaking, can only be obtained by forcing the counter to drop below zero. Also,
the simple alternative of constructing a sufficiently large reachability tree is futile as it may
be of exponential size, cf. Section 3. In order to balance between those two extremes, we
introduce reachability trees in which all nodes except of the root are required to be bounded
by some value j ∈ N: a partial reachability tree T : U → Q × N is almost j-bounded if
T (u) ∈ Q× [0, j] for all u ∈ U \ {ε}. Note that every j-bounded partial reachability tree is
almost j-bounded. The following constant will be particularly useful:

N
def= |Q| · d.

6 Reachability in Branching VASS in Dimension One

Moreover, by S we denote the set of configurations for which there exists an (n0 + N)-
bounded reachability tree and define for i < j:

S
def= {(q,m) ∈ Q× N | q(m) has an (n0 +N)-bounded reachability tree}

S[i, j] def= S ∩Q× [i, j].

I Lemma 6. The set S is computable in polynomial time.

For any set of residue configurations (modulo d) V,W ⊆ Q×Zd, we define the following
sets that contain the result of an application of a transition of B modulo d:

∆(V) def= {(q, r + z mod d) | (q, z, p) ∈ ∆, (p, r) ∈ V }

∆(V,W) def= {(q, r0 + r1 mod d) | (q, p0, p1) ∈ ∆, (p0, r0) ∈ V, (p1, r1) ∈W}.

Next, we inductively define a sequence of sets Ri ⊆ Q×Zd for i ≥ 0 whose fixed point will
allow for deciding residue reachability. The set R0 consists of those pairs of control states
and residue classes that can be witnessed by a reachability tree that is almost (n0 + N)-
bounded and whose root has a counter value at least n0 + N , and the Ri for i > 0 are
obtained by application of ∆ :

R0
def= {(q, n mod d) ∈ Q× Zd |

n ≥ n0 +N, q(n) has an almost (n0 +N)-bounded reachability tree}

Ri+1
def= Ri ∪∆(Ri) ∪∆(Ri, S/Zd) ∪∆(S/Zd, Ri) ∪∆(Ri, Ri).

Since the cardinality of each Ri is at most N , it is easily seen that the sequence (Ri)i≥0
reaches a fixed point which can be computed in polynomial time.

I Lemma 7. The fixed point R def=
⋃

i≥0 Ri equals RN and is computable in polynomial time.

In particular, R together with S yields the whole residue reachability set.

I Lemma 8. The set X def= R∪S[n0, n0+N]/Zd is computable in polynomial time. Moreover,

X = {(q, n mod d) | q ∈ Q,n ∈ reach(q), n ≥ n0}.

Proof (sketch). Polynomial-time computability of X follows immediately from Lemmas 6
and 7. The proof of the stated equality is quite technical though not too difficult and
deferred to the appendix. The crucial part for the inclusion “⊆” is to show that for every
i ∈ [0, N] and each (q, r) ∈ Ri there exists some n ∈ reach(q) with n ≥ n0 + N − i and
n ≡ r mod d by induction on i. For the converse inclusion the only interesting case is when
a potential reachability tree T is not (n0 +N)-bounded. One first shows that all ≺-maximal
nodes u in T with T (u) 6∈ S satisfy T (u)/Zd ∈ R0 and uses the fact that ∆(R,R) ⊆ R and
∆(R) ⊆ R to conclude T (ε)/Zd ∈ R. J

The main result of this section now follows directly from Lemma 8.

I Theorem 9. Residue reachability for BVASS1 is decidable in polynomial time.

S. Göller, C. Haase, R. Lazić and P. Totzke 7

Figure 2 Illustration an exclusive (left) and a non-exclusive (right) partial reachability tree.
Here, v and w are pumping nodes and anchor relationships are depicted as dashed arrows.

4.2 Expandable Partial Reachability Trees
We now employ our result on residue reachability to show that small partial reachability
trees suffice in order to witness reachability. The key idea is to identify branches of partial
reachability trees that end in a leaf and which could, informally speaking, be copied or
pumped an arbitrary number of times, thus achieving a counter value in the leaf that is
large enough and lies in a certain residue class of some modulus. Residue reachability then
witnesses that such a leaf could be completed in order to yield a reachability tree. For the
remainder of this section, fix some BVASS1 B = (Q,∆, F).

Let us first introduce a couple of auxiliary definitions. Given a partial reachability tree
T : U → Q× N and v, w ∈ U , the lowest common ancestor of v, w ∈ U is defined as

lca(v, w) def= max{u ∈ U | u � v and u � w},

where the maximum is taken with respect to �. Let T (u) = q(n), we define functions
state(u) def= q and counter(u) def= n that allow us to access the control state and the counter
value at u, respectively.

I Definition 10. A node v ∈ U is a pumping node if there is a proper ancestor u ≺ v such
that state(u) = state(v) and counter(u) < counter(v); the maximal such u is called the
anchor of v. We say that T exclusive if

every leaf v of T is either accepting or a pumping leaf; and
the least common ancestor of any two distinct pumping leaves is a proper ancestor of at
least one of their anchors.

Exclusive and non-exclusive partial reachability trees are illustrated in Figure 2. Observe
that an accepting leaf can never be a pumping leaf and conversely a pumping leaf can never
be accepting. A node u is said to be exclusive if T ↓u is exclusive.

The next lemma states a useful fact that directly follows from the pigeon-hole principle:
whenever the counter increases on a branch by a certain amount then the branch contains
a pumping node and its anchor.

I Lemma 11. Let u and v be nodes of a partial reachability tree such that u ≺ v and
counter(u) + |Q| ≤ counter(v). Then there exists a pumping node v′ with anchor u′ such
that u � u′ ≺ v′ � v.

8 Reachability in Branching VASS in Dimension One

Finally, we call T expandable if T is exclusive and every pumping leaf v with anchor u
such that T (v) = q(n) and T (u) = q(m) induces a valid instance of the residue reachability
problem, i.e., q(l) is reachable for some l ≥ n and l ≡ n mod (n−m). The following lemma
shows that every reachability tree gives rise to an expandable reachability tree whose nodes
have counter values bounded polynomially in |B|.

I Lemma 12. Suppose q(n) is reachable an let B def= 2 · |Q| + n. Then there exists an
expandable B-bounded partial reachability tree with root q(n).

Proof. Let T be a reachability tree with T (ε) = q(n). We call a node w of T large if
counter(w) = B. We obtain a partial reachability tree T ′ from T as follows. By Lemma 11,
every large node w gives rise to at least one pair of nodes (u, v) such that u ≺ v � w and
v is a pumping node with anchor u. For every large node w that is minimal with respect
to �, we assign the maximal such pair pair(w) def= (u, v) with respect to the lexicographical
ordering on nodes (more precisely, (u, v) � (u′, v′) if either, u ≺ u′, or u = u′ and v � v′).
Let T ′ : U ′ → Q×N denote the tree that one obtains from T by replacing all subtrees of T
that are rooted at some node v such that pair(w) = (u, v) for some minimal (with respect
to ≺) large node w in T by {v} itself, i.e. such nodes v become leaves. It remains to prove
that T ′ is B-bounded and expandable:

T ′ is B-bounded since the w above are chosen minimal with respect to � and hence
counter(u) ≤ B for all nodes u ∈ U ′.
T ′ is exclusive, which can be seen as follows. Striving for a contradiction, suppose that
T ′ is not exclusive. Then there are distinct pumping nodes v, v′ with anchors u, u′ such
that u, u′ � w def= lca(v, v′). Since counter(w) = counter(w0) + counter(w1) ≤ B, either
counter(w0) ≤ B/2 or counter(w1) ≤ B/2, and assume without loss of generality that
counter(w0) ≤ B/2. Since B−B/2 ≥ |Q|, by Lemma 11 there is another pumping node
v′′ with anchor u′′ such that w0 � u′′ ≺ v′′, contradicting the assumed maximality of
(u, v).
It remains to show that T ′ is expandable. Since T is a reachability tree, we have that
T (u) is reachable and thus T ′(u) is reachable for all u ∈ U ′, in particular is every pumping
leaf u of T ′ a positive instance of the induced residue reachability problem (even modulo
any modulus: if T (u) = q(n), then simply choose m def= n). J

We now turn towards the converse direction and show that every expandable tree wit-
nesses reachability. We first state an auxiliary lemma about structural properties of nodes
in exclusive trees whose proof can be found in the appendix.

I Lemma 13. If u is a node of an exclusive partial reachability tree then the following hold:

(i) If u is the anchor of a pumping leaf v then u is exclusive and all nodes w such that
u ≺ w � v are not exclusive.

(ii) u has at most one child that is not exclusive.

The previous lemma enables us to show that an expandable partial reachability tree
implies the existence of a reachability tree.

I Lemma 14. Let T : U → Q × N be an expandable partial reachability tree. Then for all
u ∈ U , T (u) is reachable or u is not exclusive.

Proof. We prove the lemma by induction on h(u). For the induction base, assume h(u) = 0,
hence u is a leaf. Then u is either accepting and thus T (u) is reachable, or u is not accepting
and therefore a pumping leaf and thus not exclusive by Lemma 13(i).

For the induction step, suppose u is exclusive. We distinguish two cases:

S. Göller, C. Haase, R. Lazić and P. Totzke 9

All children of u are exclusive. We only treat the case when u has two children, the
case when u has one child can be proven analogously. If the children u0 and u1 of u are
exclusive then by induction hypothesis there are reachability trees T0 : U0 → Q×N and
T1 : U1 → Q × N with T0(ε) = T (u0) and T1(ε) = T (u1). We define the following tree
Tu : V → Q×N, where V def= {0}U0 ∪{1}U1 ∪{ε}, Tu(ε) def= T (u) and Tu(iv) def= Ti(v) for
all i ∈ {0, 1}. Now Tu is a reachability tree, hence Tu(ε) = T (u) is reachable.
Some child of u is not exclusive. By Lemma 13(ii) there is at most one such child.
Moreover, since u is exclusive but one child of u is not exclusive it must hold that u is
the anchor of some unique pumping leaf v. Let W def= {w ∈ U | u � w ≺ v} be the
set all nodes in T on the path from u to v excluding v. Let us assume without loss
of generality that W = {u0i | i ∈ [0, `]} for some ` ∈ N, i.e. v is reachable from u

by walking down along left children. Let X def= {w1 ∈ U | w ∈ W} and observe that
u−1U = u−1W]u−1X]u−1{v}. By Lemma 13(i), all nodes inW \{u} are not exclusive
and consequently, Lemma 13(ii) implies that all nodes x ∈ X are exclusive. Hence by
induction hypothesis, for every x ∈ X there is a reachability tree Tx such that Tx(ε) =
T (x). Moreover, since T is expandable there exists some m ≥ counter(v) such that q(m)
is reachable and m ≡ counter(v) mod d, where d def= counter(v) − counter(u) ≥ 1 and
q

def= state(u) = state(v). It remains to show that T (u) = q(counter(u)) is reachable.
We show how the reachability of q(m) implies the reachability of q(m − j · d) for all
j ∈ N satisfying m− j · d ≥ counter(u); from which can conclude that T (u) is reachable
since m ≡ counter(v) ≡ counter(u) mod d. We only show this for j = 1, i.e. we
prove that the reachability of q(m) implies the reachability of q(m− d): indeed, one can
iterate the construction below to show that q(m− 2d), . . . , q(counter(v)), q(counter(u))
is reachable. For this, let T̂ : Z → Q×N be a reachability tree for q(m), i.e. T̂ (ε) = q(m).
Let δ def= m − counter(v) ≥ 0. Let the tree T ′ : u−1W] u−1X] u−1(vZ) be defined as
follows:
T ′(u−1w) def= p(m+ δ) in case T (w) = p(m), for all w ∈W ,
T ′(u−1x) def= Tx(ε), and
T ′(u−1vz) def= T̂ (z) for all z ∈ Z.

In other words T ′ is obtained from T ↓u by (i) adding to the configuration of all nodes in
u−1W the non-negative value δ and by replacing the leaf that corresponds to leaf v (i.e.
u−1v) by the tree T̂ . It is clear that the resulting tree is in fact a reachability tree and
we have T ′(ε) = counter(u) + δ = counter(u) +m− counter(v) = m− d. Thus q(m− d)
is reachable. J

A consequence of the previous lemma is that in particular T (ε) is reachable for every expand-
able partial reachability tree T . By combining Lemmas 12 and 14, we obtain the following
characterisation of reachability in BVASS1.

I Proposition 15. A node q(n) is reachable if, and only if, there exists an expandable B-
bounded partial reachability tree T with T (ε) = q(n), where B def= 2 · |Q|+ n.

4.3 The Algorithm
In this section, we provide an alternating logspace procedure for reachability in BVASS1.
This shows that reachability in BVASS1 is decidable in deterministic polynomial time since
alternating logspace equals deterministic polynomial time [1]. We employ the characterisa-
tion of reachability in BVASS1 in terms of expandable B-bounded partial reachability of

10 Reachability in Branching VASS in Dimension One

Algorithm 1 An alternating logspace procedure for reachability in BVASS1.
1: procedure Reach(q(n))
2: if n > B then return false
3: if q(n) ∈ F × {0} then return true
4: else non-deterministically guess t ∈ ∆ ∩ ({q} ×Q×Q ∪ {q} × {−1, 0, 1} ×Q)
5: if t = (q, p, p′) ∈ Q3 then
6: non-deterministically guess m, m′ ∈ [0, B] s.t. n = m + m′

7: return (Reach(p(m)) and Reach(p′(m′)))
8: or (AnchorReach(q(n), p(m)) and Reach(p′(m′)))
9: or (AnchorReach(q(n), p′(m′)) and Reach(p(m)))

10: else let t = (q, z, p) ∈ Q× {−1, 0, 1} ×Q
11: return Reach(q′(n + z)) or AnchorReach(q(n), p(n + z))

12: procedure AnchorReach(p(m), q(n))
13: if max{m, n} > B then return false
14: if p = q and n > m and ResidueReach(q(n), n−m) then return true
15: else non-deterministically guess t ∈ ∆ ∩ ({q} ×Q×Q ∪ {q} × {−1, 0, 1} ×Q)
16: if t = (q, p′, p′′) ∈ Q3 then
17: non-deterministically guess m′, m′′ ∈ [0, B] s.t. n = m′ + m′′

18: return AnchorReach(p(m), p′(m′)) and Reach(p′′(m′′))
19: or AnchorReach(p(m), p′′(m′′)) and Reach(p′(m′))
20: else let t = (q, z, p′) ∈ Q× {−1, 0, 1} ×Q
21: return AnchorReach(p(m), p′(n + z))

Proposition 15. First, by Theorem 9 we may assume the existence of an alternating log-
space procedure for residue reachability in BVASS1, i.e., an alternating logspace procedure
ResidueReach(q(n0), d) that has an accepting computation if, and only if, q(n) is reachable
for some n ≥ n0 and n ≡ n0 mod d. By application of this procedure, we show that one can
construct an alternating logspace procedure Reach(q(n)) that takes a configuration q(n)
as input and that has an accepting computation if, and only if, there exists an expandable
B-bounded partial reachability tree T with T (ε) = q(n).

The idea is to simply to guess an expandable B-bounded partial reachability tree T
in a top-down manner. The procedure Reach is defined above in Algorithm 1. First in
Line 2, Reach rejects whenever the counter value n exceeds B and accepts if q(n) is an
accepting configuration (Line 3). Thus, subsequently we may assume that n ≤ B. In
Line 4, we non-deterministically choose a transition t ∈ ∆. If t = (q, p, p′) ∈ Q3 is a
branching rule, we non-deterministically guess how n can be decomposed as n = m + m′.
Moreover, we non-deterministically guess whether the currently processed inner node of T
labelled by q(n) will be an anchor of some pumping leaf “below”. If not then we simply
recursively call Reach(p(m)) and Reach(p′(m′)) (Line 7). Otherwise, q(n) will be the
anchor of some pumping leaf that is either in the subtree “rooted at” p(m) (Line 8) or in the
subtree “rooted at” p′(m′) (Line 9). Speaking in terms of Lemma 13, either the inner node
corresponding to configuration p(m) is not exclusive or the one for p′(m′) is not exclusive.
Suppose p(m) is not exclusive, we then call a procedure AnchorReach(p(m), q(n)) that
takes two configurations as arguments and tacitly assumes the first argument p(m) “is” the
anchor and the second argument q(n) corresponds to some inner node that lies between the
anchor and the pumping leaf it will eventually correspond to.

In more detail, analogously to Reach the procedure AnchorReach first checks whether
the counter value of its input does not exceed B (Line 13). If so it checks whether q(n)
corresponds to a valid pumping leaf of p(m), i.e., it induces a positive instance of the residue
reachability problem by invoking ResidueReach(q(m),m − n) (Line 14). If not then a
rule t ∈ ∆ is non-deterministically chosen (Line 15), and in case t is a branching rule, it is
non-deterministically chosen which “child” of q(n) is not exclusive, the other child is simply

S. Göller, C. Haase, R. Lazić and P. Totzke 11

checked for reachability by invoking procedure Reach (Lines 18 and 19).
Obviously, Reach and AnchorReach can be implemented in alternating logspace since

the involved counter values are always bounded by B + 1 and can hence be stored using a
logarithmic number of bits.

5 Coverability and Boundedness

In this section, we show that the coverability and boundedness problem for BVASS1 are also
P-complete. The two problems are defined as follows:

Coverability and Boundedness in BVASS1

INPUT: A BVASS1 B = (Q,∆, F), a control state q and n ∈ N encoded in unary.
QUESTION: Coverability: Is there m ≥ n such that q(m) is reachable?

Boundedness: Is reach(q) finite?

If q(n) is a positive instance of coverability then we call the configuration q(n) coverable.
A state q is unbounded whenever reach(q) is unbounded (i.e. infinite).

Hardness for P is in both cases easily seen and similar to the P-hardness reduction from
MCVP in Proposition 3. Moreover, the P upper bound for coverability follows easily from
the P upper bound for residue reachability since q(n) is coverable if, and only if, the pair
(q(n), 1) is a positive instance of the residue reachability problem.

I Theorem 16. Coverability in BVASS1 is P-complete.

The P upper bound for boundedness can, however, not immediately be derived. In
particular, as discussed in Section 3, there exists a family of BVASS1 (Bn)n≥0 with some
control state q such that reach(q) is finite but of cardinality 2n.

For the remainder of this section, fix some BVASS1 B = (Q,∆, F), we first provide
sufficient and necessary criteria that witness that a control state is unbounded. Call a node
v in a reachability tree decreasing if there is an ancestor u ≺ v with state(u) = state(v) and
counter(u) > counter(v). The following lemma, whose proof is deferred to the appendix,
shows that a reachability tree that contains some decreasing node witnesses that the control
state at its root is unbounded.

I Lemma 17. If a reachability tree T with T (ε) = q(n) contains a decreasing node then q

is unbounded.

Conversely, the next lemma shows that a reachability tree whose root is labelled with a
configuration with a sufficiently large counter value gives rise to a reachability tree which
contains a decreasing node, informally speaking, shortly after its root.

I Lemma 18. Suppose n > 2|Q| with n ∈ reach(q). There exists a reachability tree T : U →
Q× N for q(n′) where n′ ≥ n, and which contains a decreasing node v with |v| ≤ |Q|.

A consequence of the two previous lemmas is that q is unbounded if, and only if, reach(q)
contains some n > 2|Q|. Even though the reachability trees in Lemma 18 are sufficient
witnesses for unboundedness, they still contain much more information than necessary and
are potentially of exponential size. In order to verify the existence of such a tree, exact
counter values and in fact the subtrees rooted in v as well as all incomparable nodes can be
abstracted away, as shown in the lemma below.

We first introduce some auxiliary notation. Write src(t) def= q, trg(t) def= {p, p′} and eff(t) def=
0, for the source and target states and the effect of a branching transition t = (q, p, p′) ∈ Q3,
respectively. Similarly, for t = (q, d, p) define src(t) def= q, trg(t) def= {p} and eff(t) def= d.

12 Reachability in Branching VASS in Dimension One

I Lemma 19. A control state p0 is unbounded if, and only if, there is a sequence of control
states and transitions p0t1p1t2 · · · tkpk with k ≤ |Q| such that

(i) pi−1 = src(ti) and pi ∈ trg(ti) for all 1 ≤ i < k;
(ii) pk = pj for some j < k and pi 6= pj for all i < j;
(iii) p(0) is coverable for every p ∈

⋃k−1
i=1 trg(ti); and

(iv) for every j < i ≤ k, there exists ni ≤ |Q| such that ni = 0 if ti /∈ Q3; p′i(ni) is coverable
for p′i ∈ trg(ti) \ pi; and

∑
j<i≤k ni >

∑
j<i≤k eff(ti).

Proof. If q is unbounded, then by Lemma 18 we can take a reachability tree containing a
short decreasing node v that provides a sequence as above. Notice that since v is decreasing,
the the combined effect of all transitions used on the branch from the root to v is bounded by
|v| ≤ |Q|, and must be less than the sum of the counter values of the direct siblings ub 6� v,
where u � v. This guarantees the existence of suitable ni and thus ensures Condition (iv).

For the converse direction, assume a sequence as above. Conditions (i)-(iii) imply the
existence of some reachability tree for some p0(n). Moreover, Condition (iv) ensures that
there is such a tree with decreasing node. We conclude by Lemma 17. J

It is easily seen that Lemma 17 provides a template that directly translates into an AL-
algorithm, analogue to Algorithm 1, which yields the P upper bound for boundedness. In
particular, observe that the witnessing sequence satisfying Conditions (i) and (ii), as well as
the numbers ni ≤ |Q| can be guessed non-deterministically in logarithmic space. Moreover,
Conditions (iii) and (iv) are decidable in polynomial time by Theorem 16.

I Theorem 20. Boundedness in BVASS1 is P-complete.

6 Conclusion

We showed that reachability, coverability and boundedness in BVASS1 are all P-complete
and thereby established the first decidability result for reachability in a subclass of BVASS.

This low complexity is quite surprising since the general reachability problem for BVASS is
at least non-elementary [10] and there exist families of instances of BVASS1-reachability
problems whose reachability trees contain an exponential number of distinct counter values,
cf. Section 3. The approach developed in this paper shows that it is not necessary to
explicitly construct a full reachability tree in order to witness reachability. In fact, we
showed in Section 4 that the existence of so-called residue and expandable reachability trees
suffices in order to decide reachability and can be witnessed in polynomial time.

Our approach is quite specific to having only one counter available in BVASS1 and does
not seem to immediately generalise to higher dimensions. Nevertheless, we believe that
this paper spreads some optimism and provides sufficient evidence that obtaining results for
reachability in general BVASS is not impossible.

S. Göller, C. Haase, R. Lazić and P. Totzke 13

References
1 A.K. Chandra, D. Kozen, and L.J. Stockmeyer. Alternation. J. ACM, 28(1):114–133, 1981.
2 Ph. de Groote, B. Guillaume, and S. Salvati. Vector addition tree automata. In Logic in

Computer Science, LICS, pages 64–73. IEEE Computer Society, 2004.
3 S. Demri, M. Jurdziński, O. Lachish, and R. Lazić. The covering and boundedness problems

for branching vector addition systems. J. Comput. Syst. Sci., 79(1):23–38, 2013.
4 M. Englert, R. Lazić, and P. Totzke. Reachability in two-dimensional unary vector addition

systems with states is NL-complete. Unpublished manuscript, 2016.
5 P. Ganty and R. Majumdar. Algorithmic verification of asynchronous programs. ACM

Trans. Program. Lang. Syst., 34(1):6, 2012.
6 S.M. German and A.P. Sistla. Reasoning about systems with many processes. J. ACM,

39(3):675–735, 1992.
7 R. Greenlaw, H.J. Hoover, and W.L. Ruzzo. Limits to parallel computation: P-completeness

theory. Oxford University Press, 1995.
8 P. Jančar and Z. Sawa. A note on emptiness for alternating finite automata with a one-letter

alphabet. Inf. Process. Lett., 104(5):164–167, 2007.
9 A. Jez and A. Okhotin. Conjunctive grammars over a unary alphabet: Undecidability and

unbounded growth. Theory Comput. Syst., 46(1):27–58, 2010.
10 R. Lazić and S. Schmitz. Nonelementary complexities for branching VASS, MELL, and

Extensions. ACM Trans. Comput. Log., 16(3):20, 2015.
11 J. Leroux and S. Schmitz. Demystifying reachability in vector addition systems. In Logic

in Computer Science, LICS, pages 56–67. IEEE, 2015.
12 R.J. Lipton. The reachability problem requires exponential space. Yale University, Tech-

nical Report 62, 1976.
13 C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
14 C. Rackoff. The covering and boundedness problems for vector addition systems. Theor.

Comput. Sci., 6:223–231, 1978.
15 O. Serre. Parity games played on transition graphs of one-counter processes. In Foundations

of Software Science and Computation Structures, FOSSACS, pages 337–351, 2006.
16 L.G. Valiant and M. Paterson. Deterministic one-counter automata. J. Comput. Syst. Sci.,

10(3):340–350, 1975.

14 Reachability in Branching VASS in Dimension One

A Missing Proofs

A.1 Missing Proofs from Section 3
An instance of MCVP is a Boolean circuit C consisting of n gates g1, . . . , gn such that for
all k ∈ [1, n] either gk = >, gk = ⊥ or there are 1 ≤ i, j < k such that gk = gi ∨ gj or
gk = gi ∧ gj . MCVP is to decide whether C evaluates to true, i.e. if gn evaluates to true.
We note that MCVP is the canonical P-complete problem [7]. The following proposition
gives the lower bound for Theorem 2.

I Proposition 3. Let C be a Boolean circuit. There exists a logspace computable BVASS1 B
with a control state q such that q(0) is reachable if, and only if, C evaluates to true.

Proof. From C we derive a BVASS1 B
def= (Q,∆, F), where Q def= {q1, . . . , qn}, F

def= {qi |
gi = >} and ∆ def= {(qk, qi, qj) | gk = gi ∧ gj} ∪ {(gk, 0, gi), (gk, 0, gj) | gk = gi ∨ gj}. Hence,
∧-gates are simulated by splits and ∨-gates by non-deterministic branching. It is easily seen
that gn evaluates to true if, and only if, qk(0) is reachable in B. J

I Proposition 4. Reachability in BVASS1 is NP-hard if the initial configuration q(n) is
given in binary.

Proof. We first show that for any m ∈ N given in binary, we can in logarithmic space
extend Bn constructed above with a control state qm such that reach(qm) = {m}. Let
m =

∑
0≤i≤n bi · 2i with bi ∈ {0, 1} be the binary representation of m. We introduce

additional fresh control states qi
m, 0 ≤ i ≤ n, transitions (qm, 0, qn

m) and (q0
m, q0, qf), and

for every 1 ≤ i ≤ n transitions (qi
m, 0, qi−1

m) if bi = 0 and (qi
m, qi, q

i−1
m) if bi = 1. It is easily

checked that reach(qm) = {m}.
In order to show hardness for NP, we reduce from the problem Subset Sum. Given a

finite set S = {m1, . . . ,mk} ⊆ N and t ∈ N with all numbers encoded in binary, Subset Sum
is the problem to decide whether there are c1, . . . , ck ∈ {0, 1} such that t =

∑
1≤i≤k ci ·mi

and is known to be NP-complete [13]. As shown above, we can construct a BVASS B with
control states qm1 , . . . , qmk

such that reach(qmi
) = {mi}. We introduce additional fresh

control states qc1 , . . . , qck
that allow us to non-deterministically make a choice for every

ci by introducing for every 1 ≤ i < k transitions (qci
, 0, qci+1) and (qci

, qmi
, qci+1). It is

now easily seen that the instance (S, t) of Subset Sum is valid if, and only if, qc1(t) is
reachable. J

I Corollary 21. Reachability in BVASS2 is NP-hard.

Proof (sketch). The statement follows from an easy adaption of the proof of Proposition 4.
It suffices to show how to construct a BVASS2 that reaches the control state qc1 from
Proposition 4 with counter values (t, 0). But this can easily be achieved by first adding
a non-deterministic number of times (1, 1) to the counter and then by branching into the
control states qc1 and qt, where qt is suitably adjusted such that reach(qt) = {(0, t)}. J

A.2 Missing Proofs from Section 4.1
I Lemma 6. The set S is computable in polynomial time.

Proof. We note that N is polynomially bounded in |B|+ |d|. Moreover, S ⊆ Q× [0, n+N]
and S can be computed in polynomial time by using a dynamic programming approach. J

S. Göller, C. Haase, R. Lazić and P. Totzke 15

I Lemma 7. The fixed point R def=
⋃

i≥0 Ri equals RN and is computable in polynomial time.

Proof. Analogously to the computation of S in Lemma 6, one shows that R0 is computable
in polynomial time. To see that R = RN , note that by definition we have Ri ⊆ Ri+1 for
all i ∈ N. If Ri ⊂ Ri+1, there is at least one pair from Q × Zd that is in Ri+1 and not in
Ri. Since there are at most N such pairs, the sequence stabilises after at most N steps at
RN . Since N is polynomial in |B|+d, consequently RN can also be computed in polynomial
time. J

I Lemma 8. The set X def= R∪S[n0, n0+N]/Zd is computable in polynomial time. Moreover,

X = {(q, n mod d) | q ∈ Q,n ∈ reach(q), n ≥ n0}.

Proof. Polynomial-time computability of X follows immediately from the polynomial time
computability of S (Lemma 6) and of R (Lemma 7). It thus remains to prove that X =
{(q, n mod d) | q ∈ Q,n ∈ reach(q), n ≥ n0}.

(“⊆”) Trivially, S[n0, n0 + N]/Zd ⊆ {(q, n mod d) | q ∈ Q,n ∈ reach(q), n ≥ n0} since
S ⊆ {(q, n) | q ∈ Q,n ∈ reach(q)}. Hence it remains to show that R is contained in
{(q, n mod d) | q ∈ Q,n ∈ reach(q), n ≥ n0}.

To prove this, we show that for every i ∈ [0, N] and each (q, r) ∈ Ri there exists some
n ∈ reach(q) with n ≥ n0 +N − i and n ≡ r mod d by induction on i. We note that this is
sufficient to prove since R = RN and thus for each (q, r) ∈ R there exists some n ∈ reach(q)
with n ≥ n0 and n ≡ r mod d.

For the induction base, i.e. i = 0, we recall that for each (q, r) ∈ R0 there exists some
n ≥ n0 + N = n0 + N − i such that n ≡ r mod d and there is some almost (n0 + N)-
bounded reachability tree whose root is labelled with q(n) by definition of R0; in particular
n ∈ reach(q).

For the induction step, let i+1 ≤ N and let us assume (q, r) ∈ Ri+1. If already (q, r) ∈ Ri

then (q, r) satisfies the desired property immediately by induction hypothesis. Otherwise,
if (q, r) ∈ ∆(Ri) then r ≡ r′ + z mod d for some (q′, r′) ∈ Ri and some (q, z, q′) ∈ ∆. By
induction hypothesis there exists some n′ ∈ reach(q′) with n′ ≥ n0 +N−i and n′ ≡ r mod d.
For n = n′ + z, we have n ≡ r′ + z ≡ r mod d and since n ≥ n′ − |z| ≥ n0 + N − i − |z| ≥
n0 +N − (i+ 1) ≥ n0 ≥ 0 it follows n ∈ reach(q).

It remains to consider the case when (q, r) ∈ ∆(Ri, S/Zd) ∪ ∆(S/Zd, Ri) ∪ ∆(Ri, Ri).
We only treat the case (q, r) ∈ ∆(Ri, S/Zd), the other cases can be proven analogously. In
this case we have r ≡ r′ + n′′ mod d for some (p′, r′) ∈ Ri and some (p′′, n′′) ∈ S, where
(q, p′, p′′) ∈ ∆. Clearly, n′′ ∈ reach(p′′) by definition of S. By the induction hypothesis,
there exists some n′ ≥ n0+N−i such that n′ ∈ reach(p′) and n′ ≡ n mod d. Let n = n′+n′′.
Hence n ∈ reach(q), since n′ ∈ reach(p′) and n′′ ∈ reach(p′′). Obviously n ≡ r mod d and,
finally, n ≥ n′ ≥ n0 +N − i ≥ n0 +N − (i+ 1).

(“⊇”) Assume some q(n) is reachable for some n ≥ n0. We prove that (q, n mod d) ∈ X.
To this end, let us fix some reachability tree T : U → Q×N for q(n). If T is (n0+N)-bounded
it follows that (q, n) ∈ S and we are done since n0 ≤ n ≤ n0 +N .

Consequently, let us assume that T is not (n0 +N)-bounded. First, observe that T (u) ∈
F × {0} ⊆ S for all leaves u ∈ U . In addition, the set of nodes V def= {u ∈ U | T (u) 6∈ S} is
non-empty for otherwise T would be (n0 + N)-bounded. Moreover, V is prefix-closed and
note that every �-maximal node v in V satisfies T (v)/Zd ∈ R0 by the choice of V . For
every node v ∈ V that is not �-maximal, we either have T (v)/Zd ∈ ∆(T (v0)/Zd) (if v0 is
the only child of v) or T (v)/Zd ∈ ∆(T (v0)/Zd, T (v1)/Zd) (if v has two children v0 and v1).

16 Reachability in Branching VASS in Dimension One

Moreover, note that ∆(R) ⊆ R and ∆(R,R) ⊆ R. This shows that T/Zd(V) is contained in
R, in particular T/Zd(ε) ∈ R which proves (q, n mod d) ∈ R ⊆ X. J

A.3 Missing Proofs from Section 4.2
I Lemma 11. Let u and v be nodes of a partial reachability tree such that u ≺ v and
counter(u) + |Q| ≤ counter(v). Then there exists a pumping node v′ with anchor u′ such
that u � u′ ≺ v′ � v.

Proof. The counter value of a node exceeds that of its parent by at most one. Consequently,
for every counter(u) ≤ i ≤ counter(v) there is a node u � ui � v with counter(ci) = i and
uj ≺ uk for all counter(u) ≤ j < k ≤ counter(v). Since counter(v) − counter(u) ≥ |Q| by
assumption, by the pigeonhole principle there exist some counter(u) ≤ j < k ≤ counter(v)
such that state(uj) = state(uk); these yield the required u′ and v′. J

I Lemma 13. If u is a node of an exclusive partial reachability tree then the following hold:

(i) If u is the anchor of a pumping leaf v then u is exclusive and all nodes w such that
u ≺ w � v are not exclusive.

(ii) u has at most one child that is not exclusive.

Proof. Regarding (i), every anchor u′ of every other pumping leaf v′ of T ↓u is a strict
descendant of u, since otherwise u, u′ � lca(v, v′), contradicting T being exclusive. Con-
sequently, T being exclusive implies u being exclusive. Moreover, for w such that u ≺ w � v,
due to an anchor being maximal, v has no anchor on the subtree rooted at any such w and
hence w is not exclusive.

Regarding (ii), suppose u0 and u1 are both not exclusive. If all pumping leaves of T ↓u0

had their anchors in T ↓u0, then u0 would be exclusive. Hence there is some pumping leaf v0
in T ↓u0 with anchor u0 such that u0 � u. Likewise, we find a pumping leaf v1 with anchor
u1 such that u1 � u in T ↓u1. But then u0, u1 � lca(v0, v1) and hence T is not exclusive, a
contradiction. J

A.4 Missing Proofs from Section 5
I Lemma 17. If a reachability tree T with T (ε) = q(n) contains a decreasing node then q

is unbounded.

Proof. It suffices to observe that one can unfold the cyclic suffix of a decreasing node v by
replacing the subtree rooted in v by that one rooted in u ≺ v. This construction is analogous
to the construction in the proof of Lemma 14, with the only difference that the effect of
the cycle is negative here. The result of such an operation is a reachability tree whose root
is labelled with a configuration that has the same control state and whose counter value is
strictly increased. Moreover, this reachability tree still contains a decreasing node. Such an
unfolding can therefore be repeated arbitrarily often, from which the claim follows. J

I Lemma 18. Suppose n > 2|Q| with n ∈ reach(q). There exists a reachability tree T : U →
Q× N for q(n′) where n′ ≥ n, and which contains a decreasing node v with |v| ≤ |Q|.

Proof. In any reachability tree it is possible to collapse the part between two nodes u ≺ v if
state(u) = state(v) and counter(u) ≤ counter(v), that is, to replace the subtree rooted in u
by the one rooted in v. The result of this is a reachability tree with fewer nodes and where
the root has the same state and a counter value at least as large as in the original tree.

S. Göller, C. Haase, R. Lazić and P. Totzke 17

Thus, we may assume with no loss of generality a reachability tree T with root T (ε) =
q(n) for n ≥ 2|Q| and such that for any two nodes u ≺ v with state(u) = state(v), it holds
that counter(u) > counter(v).

In order to find a decreasing node, we move from the root downwards, always choosing
the successor with the largest counter value. This way, the counter value of a chosen node
is at least half as large as the counter of its parent. Since the value in the root is greater or
equal to 2|Q|, this means that the produced sequence is longer than |Q|. In particular, the
prefix of length |Q| must contain a decreasing node. J

	1 Introduction
	2 Preliminaries
	2.1 Branching Vector Addition Systems

	3 Lower Bounds
	4 Reachability in BVASS1
	4.1 The Residue Reachability Problem
	4.2 Expandable Partial Reachability Trees
	4.3 The Algorithm

	5 Coverability and Boundedness
	6 Conclusion
	A Missing Proofs
	A.1 Missing Proofs from Section ??
	A.2 Missing Proofs from Section ??
	A.3 Missing Proofs from Section ??
	A.4 Missing Proofs from Section ??

