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Abstract. In the analysis of reactive systems a quantitative objective
assigns a real value to every trace of the system. The value decision
problem for a quantitative objective requires a trace whose value is at
least a given threshold, and the exact value decision problem requires
a trace whose value is exactly the threshold. We compare the compu-
tational complexity of the value and exact value decision problems for
classical quantitative objectives, such as sum, discounted sum, energy,
and mean-payoff for two standard models of reactive systems, namely,
graphs and graph games.

1 Introduction

The formal analysis of reactive systems is a fundamental problem in computer
science. Traditionally the analysis focuses on correctness properties, where a
Boolean objective classifies the traces of the reactive system as either correct or
incorrect. Recently there has been significant interest in the performance anal-
ysis of reactive systems as well as the analysis of reactive systems in resource-
constrained environments such as embedded systems. In such scenarios quanti-
tative objectives are necessary. A quantitative objective assigns a real value to
every trace of the system which measures how desirable the trace is.

Given a reactive system and a quantitative objective, we consider two variants
of the decision problem. First, the value decision problem for a quantitative
objective requires a trace whose value is at least a given threshold. Second,
the exact value decision problem requires a trace whose value is exactly the
threshold.

Based on the length of the traces to be analyzed, quantitative objectives
can be classified into three categories as follows: (a) infinite-horizon objectives
where traces of infinite length are considered; (b) finite-horizon objectives where
traces of a given bounded length are considered; (c) indefinite-horizon objectives
where, given source and target vertices of the system, traces starting at the
source and ending at the target are considered. While infinite-horizon and finite-
horizon objectives have been traditionally studied, indefinite-horizon objectives
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are natural in many applications, such as robotics, where the robot must reach
a goal state while optimizing the cost of the path [4].

In this work, we focus on two finite-state models of reactive systems, namely,
graphs and graph games. Every transition of the system is assigned an integer-
valued weight representing a reward (or cost). We consider three classical quan-
titative objectives, which are variants of the sum of the weights: (i) the standard
sum of the weights, (ii) the discounted sum of the weights, and (iii) the en-
ergy objective, which is the sum but requires that all partial sums along the
trace are non-negative. We study the computational complexity of the value and
exact-value decision problems for the indefinite-horizon case of the above three
quantitative objectives, both for graphs and games. We also distinguish whether
the numbers are represented in unary and binary. We show how to extend and
adapt existing results from the literature to obtain a comprehensive picture
about the computational complexity of the problems we study. The results are
summarized in Table 1 for graphs and Table 2 for graph games.

Related works. The value decision problem for quantitative objectives has been
extensively studied for graphs and games. For the finite-horizon case the standard
solution is the value iteration (or dynamic programming) approach [17, 27]. For
the infinite-horizon case there is a rich literature: for mean-payoff objectives in
graphs [25] and games [16, 19, 30, 8], for energy objectives in graphs and games [9,
5, 8], for discounted-sum objectives in graphs [1] and games [30, 21]. The exact
value decision problem represents an important special case of the problem where
there are multiple objectives. The multiple objectives problem has been studied
for mean-payoff and energy objectives [29, 14, 24]. For discounted-sum objectives
the problem has been studied in other contexts (such as for randomized selection
of paths) [13, 12]. The special case of multiple objectives defined using a single
quantitative function leads to interval objectives [23]. While finite-horizon and
infinite-horizon problems have been studied for graphs and games, the indefinite-
horizon problem has been studied mainly in artificial intelligence and robotics
for different models (such as partially-observable MDPs) [4, 11, 10]. In this work
we present a comprehensive study for indefinite-horizon objectives in graphs and
games.

2 Preliminaries

A weighted graph G = ⟨V,E,w⟩ consists of a finite set V of vertices, a set
E ⊆ V × V of edges, and a function w : E → Z that assigns an integer weight
to each edge of the graph. In the sequel, we consider weights encoded in unary,
as well as in binary.

A path in G is a sequence ρ = v0v1 . . . vk such that (vi, vi+1) ∈ E for all
0 ≤ i < k. We say that ρ is a path from v0 to vk. Given two vertices s, t ∈ V ,
we denote by Paths(s, t) the set of all paths from s to t in G (we assume that
the graph G is clear from the context). A prefix of ρ is a sequence ρ[0 . . . j] =
v0v1 . . . vj where j ≤ k. We denote by Pref(ρ) the set of all prefixes of ρ.
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≥ 0 = 0
unary binary unary binary

Sum PTIME PTIME NP-c

Discλ PTIME
Decidability is open
Finite-path hard

Energy PTIME PTIME NP-c

Table 1. The complexity of the quantitative (s, t)-reachability problem for graphs, for
threshold and exact value, with weights encoded in unary or in binary.

The total weight of ρ is defined by Sum(ρ) =
∑k−1

i=0
w(vi, vi+1), and given

a discount factor 0 < λ < 1, the discounted sum of ρ is Discλ(ρ) =
∑k−1

i=0
λi ·

w(vi, vi+1). Note that for λ = 1, we have Disc1(ρ) = Sum(ρ). In the sequel, we
consider a rational discount factor represented by two integers encoded like the
weights in the graph (in unary or in binary). A winning condition is a set of
paths. We consider the following winning conditions, which contain paths from
s to t satisfying quantitative constraints. For ∼∈ {=,≥}, define

– Sum∼0(s, t) = {ρ ∈ Paths(s, t) | Sum(ρ) ∼ 0},

– Disc∼0
λ (s, t) = {ρ ∈ Paths(s, t) | Discλ(ρ) ∼ 0},

– Energy∼0(s, t) = {ρ ∈ Sum∼0(s, t) | Sum(ρ′) ≥ 0 for all ρ′ ∈ Pref(ρ)}.

Note that the energy condition is a variant of the sum requiring that all par-
tial sums are nonnegative. For example, Sum=0(s, t) is the set of all paths from
s to t with a total weight equal to 0, and Energy=0(s, t) are all such paths that
maintain the total weight nonnegative along all their prefixes. Note that the en-
ergy condition is the same as the requirement that counters remain nonnegative
used in VASS (Vector Addition Systems with States) and counter automata [2].

Definition 1 (Quantitative (s, t)-reachability problem for graphs). The
quantitative (s, t)-reachability problem for graphs asks, given a graph G and a
winning condition ϕ ∈ {Sum∼0,Disc∼0

λ ,Energy∼0}, whether the set ϕ(s, t) is
nonempty.

3 Graphs

In this section we assume without loss of generality that there is no incoming
edge in vertex s, and no outgoing edge from vertex t. We discuss the details of
the complexity results for graphs.

Theorem 1. The complexity bounds for the quantitative (s, t)-reachability prob-
lem for graphs are shown in Table 1.
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Fig. 1. Reduction from the subset-sum problem with A = {a1, . . . , an} for the NP-
hardness result of Sum=0 in graphs (s = va1

).

3.1 Results for Sum

Results for Sum≥0 The problem asks whether there exists a path from s to
t of total weight at least 0. We can compute the longest path between s and
t using Bellman-Ford algorithm, which detects positive cycles (the algorithm is
the same as for finding a shortest path with opposite sign of the weights). Hence
the problem is in PTIME for weights encoded in binary (and thus for weights
encoded in unary as well).

Results for Sum=0 The problem asks whether there exists a path from s to t
of total weight exactly 0. A pseudo-polynomial algorithm is known for this prob-
lem [26, Theorem 6]. Therefore, the problem is in PTIME for weights encoded
in unary. It is also known that the problem is NP-complete for weights encoded
in binary [26, Theroem 1,Theorem 9]. The NP upper bound is obtained by a
reduction to integer linear programming (ILP) over variables xe (e ∈ E) that
represent the number of times edge e is used in a path from s to t, and where the
ILP constraints require that for every vertex v, the number of incoming edges
in v is equal to the number of outgoing edges from v (except for the source and
target nodes s and t). The solution of the ILP should form a strongly connected
component when a back-edge is added from t to s, which can be checked in poly-
nomial time. The NP lower bound is obtained by a reduction from the subset
sum problem, which asks, given a finite set A ⊆ N and a number B ∈ N, whether
there exists a subset Z ⊆ A such that Σz∈Zz = B (the sum of the elements of
Z is B). The reduction, illustrated in Fig. 1, consists in constructing a graph in
which there is a vertex va for each a ∈ A, and from va there are two outgoing
edges, one with weight a, the other with weight 0. The two edges lead to inter-
mediate vertices from which there is one edge with weight 0 to the vertex va′

(where a′ is the successor of a in some total order over A). From the last vertex
va, there is an edge to t with weight −B. The answer to the subset sum problem
is Yes if and only if there is a path of total weight 0 from the first vertex va to t.

3.2 Results for Discλ

Results for Disc
≥0

λ
We present a polynomial-time algorithm for weights and

discount factor encoded in binary (thus also for weights and discount factor
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encoded in unary). First we compute the co-reachable vertices in the graph,
namely the set coReach(t) = {v ∈ V | Paths(v, t) ̸= ∅} of vertices from which
there exists a path to t, and we consider the graph G′ = ⟨V ∩ coReach(t), E ∩
(coReach(t)× coReach(t))⟩ in which the vertex t has a self-loop with weight 0.

Then, we compute for each vertex v ∈ coReach(t), the largest value of the
discounted sum of an infinite path from v in G′. The discounted sum of an infinite
path v0v1 · · · ∈ V ω is

∑∞
i=0

λi ·w(vi, vi+1). Note that the series converges because
λ < 1 and the weights are bounded. The largest discounted sum of a path from a
given vertex can be computed in polynomial time using linear programming [1,
Section 3.1].

We consider the following cases:

– If the value val(s) in the source vertex s is strictly greater than 0, then the
answer to the (s, t)-reachability problem is Yes. Indeed, consider a prefix ρ′ of
length n of an optimal path ρ from s, where n is such that 2λn

1−λ
·W < val(s)

(where W is the largest weight of G′ in absolute value). Then it is easy to
show that ρ′ can be continued to a path that reaches t with positive weight.

– If val (s) < 0 then the answer to the (s, t)-reachability problem is No, as
all finite paths from s to t have negative value (otherwise, there would be
an infinite path with value at least 0, by prolonging the path through the
self-loop on t).

– If val(s) = 0 then consider the graph G′′ obtained from G′ by keeping
only the optimal edges, where an edge e = (v, v′) is optimal if val (v) =
w(v, v′) + λ · val (v′). The answer to the (s, t)-reachability problem is Yes if
and only if there is a path from s to t in G′′, which can be computed in
polynomial time. Indeed, if there exists a path from s to t with discounted
sum equal to 0, then this path is optimal for the infinite-path problem since
val (s) = 0, and therefore it uses only optimal edges. Moreover, if an infinite
path from s uses only optimal edges, then it has value val (s) = 0, thus if
such a path reaches t, then it gives a solution to the problem since from t
the only outgoing edge is a self-loop with weight 0.

Results for Disc=0

λ
The decidability of the problem is open. Note that the

decidability of the problem of finding an infinite path with exact discounted
sum 0 is also open [3].

3.3 Results for Energy

Results for Energy≥0 The problem asks whether there exists a path from s
to t that maintains the total weight (of all its prefixes) at least 0. We present a
polynomial-time algorithm for weights encoded in binary (thus also for weights
encoded in unary).

The algorithm relies on the fact that if there exists a path from s to t, then
either the path is acyclic, or it contains a cycle, and that cycle needs to be positive
(otherwise, we can remove the cycle and get an equally good path). Accordingly,
the algorithm has two steps. First, we compute for each vertex v ∈ V the largest
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s v1 v2 v3 t

1

−3
−4

5 5

−2

−15

= µ00 −∞ −∞ −∞ −∞

Post(µ0) = = µ10 −∞ 1 −∞ −∞

Post(µ1) = = µ20 6 1 −∞ −∞

Post(µ2) = = µ30 6 2 −∞ −∞

Post(µ3) = = µ40 7 2 0 −∞

Post(µ4) = = µ50 7 5 0 −∞

= µ̃0 (at v2)−∞ −∞ 5 −∞ −∞

Post(µ̃0) = = µ̃1−∞ 10 5 3 −∞

Post(µ̃1) = = µ̃2−∞ 10 8 3 −∞

Post(µ̃2) = = µ̃3−∞ 13 8 6 −∞

Post(µ̃3) = = µ̃4−∞ 13 11 6 −∞

Post(µ̃4) = = µ̃5−∞ 16 11 9 −∞

Fig. 2. Sample of the fixpoint iterations to decide if there exists a path from s to t
with energy (sum of weights) always at least 0.

total weight of a path from s to v (where the path must have all its prefixes
nonnegative). To do that, we start from a function µ0 : V → N ∪ {−∞} such
that µ0(s) = 0 and µ0(v) = −∞ for all v ∈ V \ {s} and we iterate the operator
Post : (V → N ∪ {−∞}) → (V → N ∪ {−∞}) defined as follows:

Post(µ)(v) = max{µ(u) + w(u, v) | (u, v) ∈ E ∧ µ(u) + w(u, v) ≥ 0} ∪ {µ(v)}

where max∅ = −∞. Consider Postn(µ0), the nth iterate of Post on µ0 where
n = |V |. Intuitively, the value Postn(µ0)(v) is the largest credit of energy (i.e.,
total weight) with which it is possible to reach v from s with a path of length
at most n while maintaining the energy always nonnegative along the way. If
Postn(µ0)(t) ≥ 0, then the answer to the (s, t)-reachability problem is Yes. Oth-
erwise, it means that there is no acyclic path from s to t that satisfies the energy
constraint, and thus a positive cycle is necessary to reach t.

The second step of the algorithm is to check, for each vertex v with initial
energy µ̃0 defined by µ̃0(v) = Postn(µ0)(v) and µ̃0(v′) = −∞ for all v′ ̸= v,
whether a positive cycle can be executed from v, that is whether Postn(µ̃0)(v) >
µ̃0(v). Note that only the vertices v such that Postn(µ0)(v) ̸= −∞ need to be
considered. If there exists such a vertex from which t is reachable (without any
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constraint on the path from v to t), then the answer to the (s, t)-reachability
problem is Yes. Otherwise, the answer to the problem is No because if there
existed a path from s to t satisfying the energy constraint, it could not be an
acyclic path (by the result of the first step of the algorithm), and it could not
contain a cycle because (i) there is no positive cycle that can be reached from
s and executed (by the result of the second step of the algorithm), and (ii) all
negative cycles can be removed from the path to obtain a simpler, eventually
acyclic, path that satisfies the energy constraint, which is impossible, as shown
above. It is easy to see that the above computation can be done in polynomial
time.

Consider the weighted graph with five vertices in Fig. 2. The graph has two
cycles around v2, both are positive. The vertex t is reachable from s, but in order
to maintain the energy level nonnegative, we need to go through a cycle around
v2 which increases the energy level and allows to take the transition from v2 to
t with weight −15.

The algorithm first computes for each vertex the largest energy level that
can be obtained by a path of length 5 from s (while maintaining the energy
level always nonnegative). The result is shown in Fig. 2 as µ5 = Post5(µ0). Note
that µ5(t) = −∞, thus there is no acyclic path from s to t with nonnegative
energy level. The second step of the algorithm is a positive cycle detection, from
each vertex of the graph. The computation from v2 is illustrated in Fig. 2. Since
the value at v2 has strictly increased, a positive cycle is detected, and since t
is reachable from v2 (even if it is by a negative path), we can reach t from s
(through v2) with energy always at least 0.

Results for Energy=0 The problem is in PTIME for weights encoded in unary,
as this a reachability problem in VASS (Vector Addition Systems with States)
of dimension one, which is known to be NL-complete [2, Section 1]. The problem
is NP-complete for weights encoded in binary, as this is exactly the reachability
problem for one-counter automata, which is NP-complete [20, Proposition 1,
Theorem 1]. The NP upper bound follows since one-counter automata allow
zero-tests along the execution, and the NP lower bound holds even without
zero-tests using a reduction from the subset-sum problem (see also Fig. 1).

4 Games

A game consists of a weighted graph G = ⟨V,E,w⟩ where V is partitioned into
the sets V1 of player-1 vertices, and the set V2 of player-2 vertices. We assume that
player-1 vertices and player-2 vertices alternate, i.e., E ⊆ (V1 × V2) ∪ (V2 × V1).
This incurs no loss of generality as we can insert intermediate vertices along
every transition that does not ‘alternate’. We also assume that every vertex has
a successor, that is for all v ∈ V there exists v′ ∈ V such that (v, v′) ∈ E.

A strategy of player 1 is a function σ : V ∗V1 → V such that (v,σ(ρ · v)) ∈ E
for all ρ ∈ V ∗ and all v ∈ V1. A strategy σ is memoryless if it depends on the
last vertex only, that is σ(ρ ·v) = σ(ρ′ ·v) for all ρ, ρ′ ∈ V ∗ and all v ∈ V1. Given
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≥ 0 = 0
unary binary unary binary

Sum PTIME NP ∩ coNP PSPACE-c EXPSPACE-c

Discλ PTIME NP ∩ coNP1 Decidability is open
Finite-path hard

Energy PTIME NP ∩ coNP PSPACE-c EXPSPACE-c

Table 2. The complexity of the quantitative (s, t)-reachability problem for games, for
threshold and exact value, with weights encoded in unary or in binary.

an initial vertex v, and a strategy σ of player 1, we say that an infinite path
ρ = v0v1 . . . is an outcome of σ from v if v0 = v and σ(v0 . . . vj) = vj+1 for all
j ≥ 0 such that vj ∈ V1. We denote by Outcomeωv (σ) the set of all outcomes of
strategy σ from vertex v.

Definition 2 (Quantitative (s, t)-reachability problem for games). The
quantitative (s, t)-reachability problem for games asks, given a game G and a
winning condition ϕ ∈ {Sum∼0,Disc∼0

λ ,Energy∼0}, whether there exists a strat-
egy σ of player 1 such that for all outcomes ρ ∈ Outcomeωs (σ) there exists a
prefix of ρ that belongs to the set ϕ(s, t).

Theorem 2. The complexity bounds for the quantitative (s, t)-reachability prob-
lem for games are shown in Table 2.

We now discuss the details of the results.

4.1 Results for Sum

Results for Sum≥0 The game problem for Sum≥0 is also known as the max-
cost reachability problem. The problem is in NP ∩ coNP for weights encoded in
binary [18, Theorem 5.2]. The result of [18, Theorem 5.2] holds for the winning
conditions defined as a strict threshold, namely Sum>0(s, t) = {ρ ∈ Paths(s, t) |
Sum(ρ) > 0}, and the same proof idea works for non-strict threshold. The result
is obtained by a reduction to mean-payoff games [16, 30], which can be viewed
as games where one player 1 wins if he can ensure that all cycles formed along
a play are positive. Such games can be solved in NP ∩ coNP. The reduction
constructs a mean-payoff game as a copy of the original game over the set of
states from which player 1 can ensure to reach t, and adds an edge from t back
to s with weight 0. Then player 1 can ensure a positive cycle if and only if he
can ensure the objective Sum>0(s, t): either he can reach t and loop through
it (with a positive total weight), or he can ensure positive cycles that can be
repeated until the total weight is sufficiently high to let him reach t while the

1 The problem can be solved in PTIME if the weights in the graph are in binary, and
the discount factor is in unary [21].
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total weight remains positive. Conversely, if he can reach t with positive total
weight, then he can win the mean-payoff game by repeatedly reaching t. Note
that memoryless strategies are sufficient for player 2, but not for player 1 as he
may need to accumulate weights along positive cycles before switching to the
strategy that ensures reaching t.

It is not known whether mean-payoff games can be solved in polynomial
time. The game problem for Sum≥0 is at least as hard as mean-payoff games,
thus in the same status as mean-payoff games. This result is analogous to [7,
Theorem 1(2)]. The idea of the reduction is, given a mean-payoff game G with
initial vertex v, to construct a game G′ from G by adding a transition with
weight −nW − 1 from every player-1 vertex to a new vertex t where n is the
number of vertices in G and W is the largest absolute weight in G. The reduction
works because player-1 vertices and player-2 vertices alternate. The reduction is
correct because if player 1 wins the mean-payoff game (with strict threshold),
then he has a memoryless strategy to ensure that all reachable cycles are positive.
Then, in G′ player 1 can play the mean-payoff winning strategy long enough to
accumulate total weight nW+1, and then use the transition with weight−nW−1
to reach t, and thus win in G′. In the other direction, if player 1 does not win
the mean-payoff game, then player 2 can fix a memoryless strategy to ensure
that all cycles are non-positive. Hence, the total weight of all finite prefixes of all
outcomes is at most nW (the largest possible weight of an acyclic path), which
is not sufficient to reach t, thus player 2 wins in G′.

For weights encoded in unary, the game problem for Sum≥0 can be solved
in polynomial time using the algorithm of [7, Theorem 1(4)], a fixpoint iter-
ation that relies on backward induction to compute the optimal cost for i + 1
rounds of the game, knowing the optimal cost for i rounds, similar to the pseudo-
polynomial algorithm for solving mean-payoff games [30, 8]. The fixpoint itera-
tion stops when the cost stabilizes to a finite value, or exceeds nW indicating
that an arbitrary large cost can be achieved.

Results for Sum=0 The game problem for Sum=0 is a reachability problem
where the target consists in both the vertex and the weight value. The problem
was shown to be PSPACE-complete for weights encoded in unary [28, Theo-
rem 5], and EXPSPACE-complete for weights encoded in binary [22, Theorem 1].

4.2 Results for Discλ

Results for Disc
≥0

λ
The game problem for Disc≥0

λ is in NP ∩ coNP for weights
encoded in binary, by an argument similar to [18, Theorem 5.2] which shows
the result for strict threshold (where the winning condition is the set of paths
ρ from s to t such that Discλ(ρ) > 0). The solution for strict threshold can be
modified for non-strict threshold along the same idea as for the graph problem,
thus by a reduction to infinite-horizon discounted sum games, which are solvable
in NP ∩ coNP [30], and even in PTIME for unary encoding of the discount factor
(even if the weights are encoded in binary) [21].
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It is not known whether discounted sum games can be solved in polynomial
time, and we show that discounted sum games reduce to the (s, t)-reachability
problem for Disc≥0

λ . Given an infinite-horizon discounted sum game G, consider
the game G′ obtained from G by adding a vertex t, and edges (v, t) for all
vertices v of player 1 in G (with weight 0). The reduction works because player-
1 vertices and player-2 vertices alternate. Given the rational threshold ν for the
game G, due to the separation of values in discounted sum games (which means
that the optimal value in discounted sum games is the value of a play consisting
of an acyclic prefix followed by a simple cycle, thus a rational number with
denominator bounded by bn, where b is the denominator of the discount factor
λ, and n is the number of vertices in G) we can construct a number ν′ < ν such
that if the optimal value in G is smaller than ν, then it is also smaller than ν′.
The reduction produces the game G′ with vertices s, t and threshold ν′ (which
can be replaced by threshold 0, by subtracting (1 − λ) · ν′ to all weights). It is
easy to see that (i) if player 1 can ensure discounted sum at least ν from an
initial vertex s in G, then by playing sufficient long the optimal strategy from s,
player 1 can ensure a value sufficiently close to ν to ensure reaching t with value
at least ν′. Conversely, (ii) if player 1 does not win the discounted sum game G
from s with threshold ν, then player 1 cannot win for threshold ν′ and thus he
cannot win in G′ for (s, t)-reachability, which establishes the correctness of the
reduction.

Results for Disc=0

λ
For Disc=0

λ , the decidability of the problem is open, as it
is already open for graphs.

4.3 Results for Energy

Results for Energy≥0 For Energy≥0, the problem is inter-reducible with energy
games: we consider infinite-horizon energy games where the winning condition for
player 1 requires to maintain the total payoff (i.e., the energy) at least 0 along all
prefixes of the (infinite) play, starting with initial energy 0. Memoryless strategies
are sufficient for player 1 in energy games, and after fixing a memoryless strategy,
all finite outcomes have nonnegative total weight thus all reachable simple cycles
are nonnegative.

The reductions follow the same general ideas as between Sum≥0 and mean-
payoff games, with some additional care. While nonnegative cycles are sufficient
for player 1 in energy games, the reduction works only for the slightly stronger
winning condition that asks player 1 to form only strictly positive cycles (while
maintaining the energy condition on all acyclic outcomes as well). This stronger
winning condition is equivalent to an energy condition in a modified graph where
the weights are decreased by a value ϵ > 0 where ϵ is sufficiently small to ensure
that negative simple cycles remain negative (thus nϵ < 1). Moreover, since the
initial energy 0 may now no longer be sufficient to survive the acyclic paths,
we need to give a slightly positive initial energy value (by an initial transition
of weight nϵ). Note that this initial energy does not allow player 1 to survive a
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≥ 0 = 0
unary binary unary binary

Discλ PTIME
Decidability is open
Infinite-path hard

MP, MP PTIME PTIME

Table 3. The complexity of the infinite-horizon quantitative problem for graphs, for
threshold and exact value, with weights encoded in unary or in binary.

negative finite prefix as nϵ < 1. We can take ϵ = 1
n+1

and scale up the weights
by a factor n + 1 to get integer weights. From this game graph with modified
weights, we can use the same reductions as between Sum≥0 and mean-payoff
games.

It follows that the problem has the same status as energy games with fixed
initial credit, namely it is in NP ∩ coNP for weights encoded in binary, and in
PTIME for weights encoded in unary [5, Proposition 12,Theorem 13].

Results for Energy=0 For Energy=0, the game problem is PSPACE-complete
for weights encoded in unary [6, Theorem 11], and EXPSPACE-complete for
weights encoded in binary [22, Theorem 1].

5 Survey of Infinite-horizon Quantitative Objectives

We present a survey of the computational complexity for the problem of satis-
fying a quantitative objective over an infinite duration, that requires an infinite
trace with value either at least, or exactly a given threshold.

We consider winning conditions defined by the following quantitative mea-
sures over infinite paths (we denote by Pathsω the set of all infinite paths in the
graph G, where G is clear from the context), for ∼∈ {=,≥}:

– Disc∼0
λ = {ρ ∈ Pathsω | Discλ(ρ) ∼ 0},

– MP
∼0

= {ρ ∈ Pathsω | lim supn→∞
1
n
· Sum(ρ[0 . . . n]) ∼ 0},

– MP∼0 = {ρ ∈ Pathsω | lim infn→∞
1
n
· Sum(ρ[0 . . . n]) ∼ 0},

The discounted sum is well defined for infinite paths (the infinite sum always
exists). The MP and MP conditions are the mean-payoff objectives (see also Sec-
tion 4.1), which are well defined as the limsup and liminf always exist, although
the limit itself may not exist.

5.1 Results for graphs

We consider the infinite-horizon quantitative problem for graphs, which is to

decide, given a graph G and a winning condition ϕ ∈ {Disc∼0,MP
∼0

,MP∼0},
whether the set ϕ is nonempty.
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≥ 0 = 0
unary binary unary binary

Discλ PTIME NP ∩ coNP2 Decidability is open
Infinite-path hard

MP, MP PTIME NP ∩ coNP PTIME NP ∩ coNP

Table 4. The complexity of the infinite-horizon quantitative problem for games, for
threshold and exact value, with weights encoded in unary or in binary.

Theorem 3. The complexity bounds for the infinite-horizon quantitative prob-
lem for graphs are shown in Table 3.

The results of Table 3 for discounted sum follow from the linear program-
ming approach for computing the largest discounted sum of an infinite path [1,
Section 3.1], and the decidability of the exact-value problem is open [3].

For mean-payoff, the infinite-horizon quantitative problem can be solved in
polynomial time using Karp’s algorithm to compute the reachable cycle with
largest mean value, which runs in polynomial time [25]. For the exact-value
problem, it is easy to see that the answer is Yes if and only if there exists
a strongly connected component (scc) that contains both a nonnegative cycle
and a nonpositive cycle. The path that reaches such an scc and then alternates
between the two cycles (essentially repeating the nonnegative cycle until the
partial sum of weights becomes positive, then switching to the nonpositive cycle
until the partial sum of weights becomes negative, and so on) has mean-payoff
value 0 (for both limsup and liminf) because the partial sum of the acyclic parts
of the path (obtained by removing all cycles) is bounded by nW , where n is
the number of vertices in G and W is the largest absolute weight in G. The scc
decomposition and cycle with largest (resp., least) mean value can be computed
in polynomial time.

5.2 Results for games

We consider the infinite-horizon quantitative problem for games, which is to
decide, given a graph G, an initial vertex v, and a winning condition ϕ ∈

{Disc∼0,MP
∼0

,MP∼0}, whether there exists a strategy σ of player 1 such that
Outcomeωv (σ) ⊆ ϕ.

Theorem 4. The complexity bounds for the infinite-horizon quantitative prob-
lem for games are shown in Table 4.

The results of Table 4 for discounted sum follow from the results of [30, 21,
3] (see also Section 4.2).

2 The problem can be solved in PTIME if the weights in the graph are in binary, and
the discount factor is in unary [21].
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For mean-payoff, the results for the threshold problem follow from [16, 30]
in particular there is a pseudo-polynomial algorithm for solving mean-payoff
games [30, 8]. The NP ∩ coNP result for the exact-value problem follows from [23,
Corollary 6], and the set Z of initial vertices from which player 1 has a winning
strategy has the following characterization: from every vertex in Z, player 1
has a strategy to ensure nonnegative mean-payoff value, and player 1 has a
(possibly different) strategy to ensure nonpositive mean-payoff value. Moreover
if from some vertex player 1 does not have a strategy to ensure nonnegative (or
nonpositive) mean-payoff value, then player 1 does not have a winning strategy
from that vertex for the exact-value objective. By an argument analogous to
the case of graphs, we can show that player 1 wins from every vertex in Z by
switching between the strategies to ensure nonpositive and nonnegative mean-
payoff value, because the partial sums will remain bounded by nW , thus the
mean-payoff value is 0 (both for limsup and liminf).

We can compute the set Z by removing from the set V of vertices the vertices
that are losing for player 1, iteratively as follows, until a fixpoint is obtained: at
each iteration, remove the vertices where player 1 does not win either the non-
positive or the nonnegative mean-payoff objective, and remove the vertices from
which player 2 can ensure to reach an already removed vertex (this amounts to
solving a reachability game, thus in polynomial time). The number of iterations
is at most n, thus the algorithm is polynomial for weights in unary. Note that
player 2 has a memoryless strategy from all removed vertices, to ensure that the
mean-payoff value is not 0.

It follows that for weights in binary, the exact-value problem can be solved
in NP by guessing the set Z and checking that from every vertex in Z player 1
wins the nonpositive mean-payoff objective as well as the nonnegative mean-
payoff objective (possibly with a different strategy), and in coNP by guessing a
memoryless winning strategy for player 2 in V \ Z and solving in PTIME the
exact-value problem for mean-payoff in graphs.

Note that the exact-value problem can be reduced to a two-dimensional
mean-payoff objective, which is known to be solvable in NP ∩ coNP for MP,
but only in coNP for MP [29]. In contrast, the exact-value problem is solvable
in NP as well for MP.

6 Conclusion

In this work we studied the complexity of the value decision problem and the
exact-value decision problem for sum, discounted sum, and energy objectives for
the indefinite-horizon case. We studied them for graphs and graph games, and
also distinguished the representation of numbers in unary and binary. In several
cases the exact decision problem is computationally harder as compared to the
non-exact counterpart. An interesting direction of future work is to consider the
problems we studied in other related models, such as stochastic games (extending
the work of [15]), Markov decision processes, timed games, etc.
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