
Typing messages for free in security protocols: the case
of equivalence properties ?

Rémy Chrétien1,2, Véronique Cortier1, and Stéphanie Delaune2

1 LORIA, INRIA Nancy - Grand-Est
2 LSV, ENS Cachan & CNRS

Abstract. Privacy properties such as untraceability, vote secrecy, or anonymity
are typically expressed as behavioural equivalence in a process algebra that mod-
els security protocols. In this paper, we study how to decide one particular rela-
tion, namely trace equivalence, for an unbounded number of sessions.
Our first main contribution is to reduce the search space for attacks. Specifically,
we show that if there is an attack then there is one that is well-typed. Our result
holds for a large class of typing systems and a large class of determinate secu-
rity protocols. Assuming finitely many nonces and keys, we can derive from this
result that trace equivalence is decidable for an unbounded number of sessions
for a class of tagged protocols, yielding one of the first decidability results for
the unbounded case. As an intermediate result, we also provide a novel decision
procedure in the case of a bounded number of sessions.

1 Introduction

Privacy properties such as untraceability, vote secrecy, or anonymity are typically ex-
pressed as behavioural equivalence (e.g. [9, 5]). For example, the anonymity of Bob is
typically expressed by the fact that an adversary should not distinguish between the
situation where Bob is present and the situation where Alice is present. Formally, the
behaviour of a protocol can be modelled through a process algebra such as CSP or the
pi calculus, enriched with terms to represent cryptographic messages. Then indistin-
guishability can be modelled through various behavioural equivalences. We focus here
on trace equivalence, denoted ≈. Checking for privacy then amounts into checking for
trace equivalence between processes, which is of course undecidable in general. Even
in the case of a bounded number of sessions, there are few decidability results and the
associated decision procedures are complex [6, 22, 11]. In this paper, we study trace
equivalence in the case of an unbounded number of sessions.

Our contribution. Our first main contribution is a simplification result, that reduces the
search space for attacks: if there is an attack, then there exists a well-typed attack. More
formally, we show that if there is a witness (i.e. a trace) that P 6≈ Q then there exists
a witness which is well-typed w.r.t. P or Q, provided that P and Q are determinate

? The research leading to these results has received funding from the European Research Council
under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant
agreement n◦ 258865, project ProSecure, and the ANR project JCJC VIP no 11 JS02 006 01.

processes (intuitively, messages that are outputted are completely determined by the
interactions of the protocol with the environment, i.e. the attacker). This typing result
holds for an unbounded number of sessions and an unbounded number of nonces, that
is, it holds even if P and Q contain arbitrary replications and NEW operations. It holds
for any typing system provided that any two unifiable encrypted subterms of P (or Q)
are of the same type. It is then up to the user to adjust the typing system such that this
hypothesis holds for the protocols under consideration. For simplicity, we prove this
typing result for the case of symmetric encryption and concatenation but we believe
that our result could be extended to the other standard cryptographic primitives.

The finer the typing system is, the more our typing result restricts the attack search.
In general, our typing result does not yield directly a decidability result since even the
simple property of reachability is undecidable for an unbounded number of sessions and
arbitrary nonces, even if the messages are of bounded size (e.g. [3]). Indeed, our typing
system ensures the existence of a well-typed attack (if any) but the number of well-typed
traces may remain infinite. To obtain decidability, we further assume a finite number of
terms of each type (i.e. in particular a finite number of nonces). Decidability of trace
equivalence then follows from our main typing result, for a class of simple protocols
where each subprocess uses a distinct channel (intuitively, a session identifiers).

As an application, we consider the class of tagged protocols introduced by Blanchet
and Podelski [8]. An easy way to achieve this in practice by labelling encryption and is
actually a good protocol design principle [2, 19]. We show that tagged protocols induce
a typing system for which trace equivalence is decidable, for simple protocols and for
an unbounded number of sessions (but a fixed number of nonces).

Interestingly, the proof of our main typing result involves providing a new decision
procedure for trace equivalence in the case of a bounded number of sessions. This is a
key intermediate result of our proof. Trace equivalence was already shown to be decid-
able for a bounded number of sessions (e.g. [22, 11]) but we propose a novel decision
procedure that further provides a well-typed witness whenever the two processes are not
in trace equivalence. Compared to existing procedures (e.g. [22]), we show that it is only
necessary to consider unification between encrypted terms. We believe that this new
procedure is of independent interest since it reduces the number of traces (executions)
that need to be considered. Our result could therefore be used to speed up equivalence
checkers like SPEC [22]. Detailed proofs of our results can be found in [14].

Related work. Formal methods have been very successful for the analysis of security
protocols and many decision procedures and tools (e.g. [21, 20, 16]) have been pro-
posed. However, most of these results focus on reachability properties such as con-
fidentiality or authentication. Much fewer results exist for behavioural equivalences.
Based on a procedure proposed by Baudet [6], a first decidability result has been pro-
posed for determinate process without else branches, and for equational theories that
capture most standard primitives [12]. Then Tiu and Dawson [22] have designed and
implemented a procedure for open bisimulation, a notion of equivalence stronger than
the standard notion of trace equivalence. Cheval et al [11] have proposed and imple-
mented a procedure for processes with else branches and standard primitives. The tool
AkisS [10] is also dedicated to trace equivalence but is not guaranteed to terminate.
However, all these results focus on a bounded number of sessions. An exception is the

2

tool ProVerif which can handle observational equivalence for an unbounded number of
sessions [7]. It actually reasons on a stronger notion of equivalence (which may turn to
be too strong in practice) and is again not guaranteed to terminate.

To our knowledge, the only decidability result for an unbounded number of sessions
is [13]. It is shown that trace equivalence can be reduced to the equality of languages
of pushdown automata. A key hypothesis for reducing to pushdown automata is that
protocol rules have at most one variable, that is, at any execution step, any participant
knows already every component of the message he received except for at most one
component (e.g. a nonce received from another participant). Moreover variables shall
not occur in key position, i.e. agents may not use received keys for encryption. This
strongly limits the class of protocols that can be considered and the approach is strictly
bound to this “one-variable” hypothesis. In contrast, we can consider here a much wider
class of protocols, provided that they are tagged (which is easy to implement).

Our proof technique is inspired from the approach developed by Arapinis et al [4]
for bounding the size of messages of an attack for the reachability case. Specifically,
they show for some class of tagged protocols, that whenever there is an attack, there is
a well-typed attack (for a particular typing system). We somehow extend their approach
to trace equivalence and more general typing systems.

2 Model for security protocols

Security protocols are modelled through a process algebra inspired from [1] that ma-
nipulates terms.

2.1 Syntax

Term algebra. We assume an infinite setN of names, which are used to represent keys
and nonces, and two infinite disjoint sets of variables X and W . The variables in W
intuitively refer to variables used to store messages learnt by the attacker. We assume a
signature F , i.e. a set of function symbols together with their arity. We consider:

Σc = {enc, 〈 〉}, Σd = {dec, proj1, proj2}, and Σ = Σc ∪Σd.

The symbols dec and enc of arity 2 represent symmetric decryption/encryption.
Pairing is modelled using a symbol of arity 2, denoted 〈 〉, and projection functions
are denoted proj1 and proj2. We further assume an infinite set of constant symbols Σ0

to represent atomic data known to the attacker. The symbols in Σc are constructors
whereas those in Σd are destructors. Both represent functions available to the attacker.

Given a set of A of atoms (i.e. names, variables, and constants), and a signature
F ∈ {Σc, Σd, Σ}, we denote by T (F ,A) the set of terms built from symbols in F ,
and atoms in A. The subset of T (Σc,A) which only contains terms with atoms as a
second argument of the symbol enc, is denoted T0(Σc,A). Terms in T0(Σc, Σ0 ∪ N)
are called messages. An attacker builds his own messages by applying functions to
terms he already knows. Formally, a computation done by the attacker is modelled by a
term, called a recipe, built on the signature Σ using (public) constants in Σ0 as well as
variables inW , i.e. a term R ∈ T (Σ,Σ0 ∪W). Note that such a term does not contain
any name.

3

We denote vars(u) the set of variables that occur in u. The application of a substi-
tution σ to a term u is written uσ, and we denote dom(σ) its domain. Two terms u1
and u2 are unifiable when there exists σ such that u1σ = u2σ.

The relations between encryption/decryption and pairing/projections are represented
through the three following rewriting rules, yielding a convergent rewrite system:

dec(enc(x, y), y)→ x, and proji(〈x1, x2〉)→ xi with i ∈ {1, 2}.
Given u ∈ T (Σ,Σ0 ∪ N ∪ X), we denote by u↓ its normal form. We refer the reader
to [18] for the precise definitions of rewriting systems, convergence, and normal forms.

Example 1. Let s, k ∈ N , and u = enc(s, k). The term dec(u, k) models the applica-
tion of the decryption algorithm on u using k. We have that dec(u, k)↓ = s.

Process algebra. Let Ch be an infinite set of channels. We consider processes built
using the following grammar where u ∈ T (Σc, Σ0 ∪N ∪ X), n ∈ N , and c, c′ ∈ Ch:

P,Q := 0 | in(c, u).P | out(c, u).P | (P | Q) | !P | new n.P | new c′.out(c, c′).P

The process 0 does nothing. The process “in(c, u).P ” expects a message m of the
form u on channel c and then behaves like Pσ where σ is a substitution such that
m = uσ. The process “out(c, u).P ” emits u on channel c, and then behaves like P .
The variables that occur in u are instantiated when the evaluation takes place. The
process P | Q runs P and Q in parallel. The process !P executes P some arbitrary
number of times. The name restriction “new n” is used to model the creation in a pro-
cess of a fresh random number (e.g., a nonce or a key) whereas channel generation
“new c′.out(c, c′).P ” is used to model the creation of a new channel name that shall
immediately be made public. Note that we consider only public channels. It is still use-
ful to generate fresh (public) channel names to let the attacker identify the different
sessions of a protocol (as it is often the case in practice through sessions identifiers).

We assume that names are implicitly freshly generated, thus new k.out(c, k) and
out(c, k) have exactly the same behaviour. The construction “new” becomes important
in the presence of replication to distinguish whether some value k is generated at each
session, e.g. in !(new k.out(c, k)) or not, e.g. in new k.(!out(c, k)).

For the sake of clarity, we may omit the null process. We also assume that processes
are name and variable distinct, i.e. any name and variable is at most bound once. For
example, in the process in(c, x).in(c, x) the variable x is bound once and thus the pro-
cess is name and variable distinct. By contrast, in in(c, x) | in(c, x), one occurrence of
the variable x would need to be renamed. We write fv(P) for the set of free variables
that occur in P , i.e. the set of variables that are not in the scope of an input.

We assume Ch = Ch0] Chfresh where Ch0 and Chfresh are two infinite and disjoint
sets of channels. Intuitively, channels of Chfresh, denoted ch1, . . . , chi, . . . will be used
in the semantics to instantiate the channels generated during the execution of a protocol.
They shall not be part of its specification.

Definition 1. A protocol P is a process such that P is ground, i.e. fv(P) = ∅; P is
name and variable distinct; and P does not use channel names from Chfresh.

4

Example 2. The Otway-Rees protocol [15] is a key distribution protocol using symmet-
ric encryption and a trusted server. It can be described informally as follows:

1. A→ B : M,A,B, {Na,M,A,B}Kas

2. B → S : M,A,B, {Na,M,A,B}Kas
, {Nb,M,A,B}Kbs

3. S → B : M, {Na,Kab}Kas
, {Nb,Kab}Kbs

4. B → A : M, {Na,Kab}Kas

where {m}k denotes the symmetric encryption of a messagemwith key k,A andB are
agents trying to authenticate each other, S is a trusted server, Kas (resp. Kbs) is a long
term key shared between A and S (resp. B and S), Na and Nb are nonces generated
by A and B, Kab is a session key generated by S, and M is a session identifier.

We propose a modelling of the Otway-Rees protocol in our formalism. We use re-
stricted channels to model the use of unique session identifiers used along an execution
of the protocol. Below, kas, kbs,m, na, nb, kab are names, whereas a and b are constants
from Σ0. We denote by 〈x1, . . . , xn−1, xn〉 the term 〈x1, 〈. . . 〈xn−1, xn〉〉〉.

POR =! new c1.out(cA, c1).PA | ! new c2.out(cB , c2).PB | ! new c3.out(cS , c3).PS

where the processes PA, PB are given below, and PS can be defined in a similar way.
PA = new m.new na. out(c1, 〈m, a, b, enc(〈na,m, a, b〉, kas)〉).

in(c1, 〈m, enc(〈na, xab〉, kas)〉);

PB = in(c2, 〈ym, a, b, yas〉).new nb.out(c2, 〈ym, a, b, yas, enc(〈nb, ym, a, b〉, kbs)〉).
in(c2, 〈ym, zas, enc(〈nb, yab〉, kbs)〉).out(c2, 〈ym, zas〉)

2.2 Semantics

The operational semantics of a process is defined using a relation over configurations.
A configuration is a pair (P;φ) where:

– P is a multiset of ground processes.
– φ = {w1 . m1, . . . ,wn . mn} is a frame, i.e. a substitution where w1, . . . ,wn are

variables inW , and m1, . . . ,mn are messages, i.e. terms in T0(Σc, Σ0 ∪N).

We often write P instead of ({P}; ∅), and P ∪ P or P | P instead of {P} ∪ P .
The terms in φ represent the messages that are known by the attacker. The operational
semantics of a process is induced by the relation α−→ over configurations defined below.

(in(c, u).P ∪ P;φ) in(c,R)−−−−→ (Pσ ∪ P;φ) where R is a recipe such that Rφ↓
is a message and Rφ↓ = uσ for some σ with dom(σ) = vars(u)

(out(c, u).P ∪ P;φ) out(c,wi+1)−−−−−−−→ (P ∪ P;φ ∪ {wi+1 . u})
where u is a message and i is the number of elements in φ

(new c′.out(c, c′).P ∪ P;φ) out(c,chi)−−−−−−→ (P{chi/c′} ∪ P;φ)
where chi is the “next” fresh channel name available in Chfresh

(new n.P ∪ P;φ) τ−→ (P{n′
/n} ∪ P;φ) where n′ is a fresh name in N

(!P ∪ P;φ) τ−→ (P ∪ !P ∪ P;φ)

5

The first rule allows the attacker to send to some process a term built from publicly
available terms and symbols. The second rule corresponds to the output of a term by
some process: the corresponding term is added to the frame of the current configura-
tion, which means that the attacker can now access the sent term. Note that the term is
outputted provided that it is a message. In case the evaluation of the term yields an en-
cryption with a non atomic key, the evaluation fails and there is no output. The third rule
corresponds to the special case of an output of a freshly generated channel name. In such
a case, the channel is not added to the frame but it is implicitly assumed known to the
attacker, as all the channel names. These three rules are the only observable actions. The
two remaining rules are quite standard and are unobservable (τ action) from the point
of view of the attacker. The relation α1...αn−−−−−→ between configurations (where α1 . . . αn
is a sequence of actions) is defined as the transitive closure of α−→.

Given a sequence of observable actions tr, we write K tr
==⇒ K ′ when there exists

a sequence α1 . . . αn such that K α1...αn−−−−−→ K ′ and tr is obtained from α1 . . . αn by
erasing all occurrences of τ . For every protocol P , we define its set of traces as follows:

trace(P) = {(tr, φ) | P tr
==⇒ (P;φ) for some configuration (P;φ)}.

Note that, by definition of trace(P), trφ↓ only contains terms from T0(Σc, Σ0 ∪N).

Example 3. Consider the following sequence tr:
tr = out(cA, ch1).out(cB , ch2).out(ch1,w1).in(ch2,w1).

out(ch2,w2).in(ch2, R0).out(ch2,w3).in(ch1,w3)

where R0 = 〈proj1/5(w2), proj4/5(w2), proj5/5(w2)〉, and proji/5 is used as a shortcut
to extract the ith component of a 5-uplet. Actually such a sequence of actions allows
one to reach the following frame with tenc = enc(〈na,m, a, b〉, kas):
φ = {w1 . 〈m, a, b, tenc〉,w2 . 〈m, a, b, tenc, enc(〈nb,m, a, b〉, kbs)〉,w3 . 〈m, tenc〉}.

We have that (tr, φ) ∈ trace(POR). The first five actions actually correspond to a
normal execution of the protocol. Then, the agent who plays PB will accept in input the
message built using R0, i.e. u = 〈m, enc(〈na,m, a, b〉, kas), enc(〈nb,m, a, b〉, kbs)〉.
Indeed, this message has the expected form. At this stage, the agent who plays PB is
waiting for a message of the form: u0 = 〈m, zas, enc(〈nb, yab〉, kbs)〉. The substitution
σ = {zas . tenc, yab . 〈m, a, b〉} is such that u = u0σ. Once this input has been
done, a message is outputted (action out(ch3,w3)) and given in input to PA (action
in(ch1,w3)).

Note that, at the end of the execution, A and B share a key but it is not the expected
one, i.e. one freshly generated by the trusted server, but 〈m, a, b〉.

2.3 Trace equivalence

Intuitively, two protocols are equivalent if they cannot be distinguished by any attacker.
Trace equivalence can be used to formalise many interesting security properties, in
particular privacy-type properties, such as those studied for instance in [9]. We first
introduce a notion of intruder’s knowledge well-suited to cryptographic primitives for
which the success of decrypting is visible.

6

Definition 2. Two frames φ1 and φ2 are statically equivalent, φ1 ∼ φ2, when we have
that dom(φ1) = dom(φ2), and:

– for any recipe R, Rφ1↓ ∈ T0(Σc, Σ0 ∪N) iff Rφ2↓ ∈ T0(Σc, Σ0 ∪N); and
– for all recipes R1 and R2 such that R1φ1↓, R2φ1↓ ∈ T0(Σc, Σ0 ∪ N), we have

that R1φ1↓ = R2φ1↓ iff R1φ2↓ = R2φ2↓.

Intuitively, two frames are equivalent if an attacker cannot see the difference be-
tween the two situations they represent. If some computation fails in φ1 for some
recipe R, i.e. Rφ1↓ is not a message, it should fail in φ2 as well. Moreover, φ1 and φ2
should satisfy the same equalities. In other words, the ability of the attacker to distin-
guish whether a recipe R produces a message, or whether two recipes R1, R2 produce
the same message should not depend on the frame.

Example 4. Consider φ1 = φ ∪ {w4 . 〈m, a, b〉}, and φ2 = φ ∪ {w4 . n} where n is a
name. Let R = proj1(w4). We have that Rφ1↓ = m ∈ T0(Σc, Σ0 ∪ N), but Rφ2↓ =
proj1(n) /∈ T0(Σc, Σ0 ∪ N), hence φ1 6∼ φ2. This non static equivalence can also be
established considering the recipes R1 = 〈proj1(w3), a, b〉 and R2 = w4. We have that
R1φ1↓, R2φ1↓ ∈ T0(Σc, Σ0 ∪N), and R1φ1↓ = R2φ1↓ whereas R1φ2↓ 6= R2φ2↓.

Intuitively, two protocols are trace equivalent if, however they behave, the resulting
sequences of messages observed by the attacker are in static equivalence.

Definition 3. A protocolP is trace included in a protocolQ, writtenP v Q, if for every
(tr, φ) ∈ trace(P), there exists (tr′, φ′) ∈ trace(Q) such that tr = tr′ and φ ∼ φ′. The
protocols P and Q are trace equivalent, written P ≈ Q, if P v Q and Q v P .

As illustrated by the following example, restricting messages to only contain atoms
in key position also provides the adversary with more comparison power when variables
occurred in key position in the protocol.

Example 5. Let n, k ∈ N and consider the protocol P = in(c, x).out(c, enc(n, k))
as well as the protocol Q = in(c, x).out(c, enc(enc(n, x), k)). An attacker may dis-
tinguish between P and Q by sending a non atomic data and observing whether the
process can emit. Q will not be able to emit since its first encryption will fail. This
attack would not have been detected if arbitrary terms were allowed in key position.

In what follows, we consider determinate protocols as defined in [10], i.e., we con-
sider protocols in which the attacker knowledge is completely determined (up to static
equivalence) by its past interaction with the protocol participants.

Definition 4. A protocol P is determinate if for any tr, and for any (P1, φ1), (P2, φ2)

such that P tr
==⇒ (P1, φ1), and P tr

==⇒ (P2, φ2), we have that φ1 ∼ φ2.

Assume given two determinate protocols P and Q such that P 6v Q. A witness of
non-inclusion is a trace tr for which there exists φ such that (tr, φ) ∈ trace(P) and:

– either there does not exist φ′ such that (tr, φ′) ∈ trace(Q),
– or such a φ′ exists and φ 6∼ φ′.

7

A witness of non-equivalence for determinate protocols P and Q is a trace tr that
is a witness for P 6v Q or Q 6v P . Note that when a protocol P is determinate, once
the sequence tr is fixed, all the frames reachable through tr are actually in static equiv-
alence, which ensures the unicity of φ′, if it exists, up-to static equivalence.

Example 6. We wish to check strong secrecy of the exchanged key received by the
agent A for the Otway-Rees protocol. A way of doing so is to check that P 1

OR ≈ P 2
OR

where the two protocols are defined as follows:

– P 1
OR is as POR but we add the instruction out(c1, xab) at the end of the process PA;

– P 2
OR is as POR but we add the instruction new n.out(c1, n) at the end of PA.

The idea is to check whether an attacker can see the difference between the session key
obtained by A and a fresh nonce.

As already suggested by the scenario described in Example 3, the secrecy (and so
the strong secrecy) of the key received by A is not preserved. More precisely, consider
the sequence tr′ = tr.out(ch1,w4) where tr is as in Example 3. In particular, (tr′, φ1) ∈
trace(P 1

OR) and (tr′, φ2) ∈ trace(P 2
OR) with φ1 = φ ∪ {w4 . 〈m, a, b〉} and φ2 =

φ ∪ {w4 . n}. As described in Example 4, φ1 6∼ φ2 and thus tr′ is a witness of non-
equivalence for P 1

OR and P 2
OR. This witness is actually a variant of a known attack on

the Otway-Rees protocol [15].

3 Existence of a well-typed witness of non-equivalence

In this section, we present our first main contribution: a simplification result that re-
duces the search space for attacks. Roughly, when looking for an attack, we can restrict
ourselves to consider well-typed traces. This results holds for a general class of typing
systems and as soon as the protocols under study are determinate and type-compliant.
We first explain these hypotheses and then we state our general simplification result
(see Theorem 1). The proof of this simplification result involves to provide a novel de-
cision procedure for trace equivalence in the case of a bounded number of sessions. The
novelty of this decision procedure, in comparison to the existing ones, is to provide a
well-typed witness whenever the two processes are not in trace equivalence. This key
intermediate result is stated in Proposition 1.

3.1 Typing system

Our simplification result holds for a general class of typing systems: we simply require
that types are preserved by unification and application of substitutions. These operations
are indeed routinely used in decision procedures.

Definition 5. A typing system is a pair (T , δ) where T is a set of elements called types,
and δ is a function mapping terms t ∈ T (Σc, Σ0 ∪N ∪ X) to types τ in T such that:

– if t is a term of type τ and σ is a well-typed substitution, i.e. every variable of its
domain has the same type as its image, then tσ is of type τ ,

8

– for any terms t and t′ with the same type, i.e. δ(t) = δ(t′) and which are unifiable,
their most general unifier (mgu(t, t′)) is well-typed.

We further assume the existence of an infinite number of constants inΣ0 (resp. variables
in X , names in N) of any type.

A straightforward typing system is when all terms are of a unique type, say Msg. Of
course, our typing result would then be useless to reduce the search space for attacks.
Which typing system shall be used typically depends on the protocols under study. We
present in Section 5 a typing system that allows us to reduce the search space (and then
derive decidability) for a large subclass of (tagged) protocols.

3.2 Well-typed trace

Whether or not a trace is well-typed is defined w.r.t. the set of symbolic traces of a
protocol. Formally, we define trs−−→s to be the transitive closure of the relation αs−→s

defined between processes as follows:

in(c, u).P ∪ P in(c,u)−−−−→s P ∪ P !P ∪ P τ−→s P ′ ∪ !P ∪ P
out(c, u).P ∪ P out(c,u)−−−−−→s P ∪ P new n.P ∪ P τ−→s P{n′

/n} ∪ P
new c′.out(c, c′).P ∪ P out(c,chi)−−−−−−→s P{chi/c′} ∪ P

where P ′ is equal to P up to renaming of variables that do not occur yet in the trace
with fresh ones (of the same type), n′ is a fresh name (of the same type as n), and chi
is the “next” fresh channel name available in Chfresh.

Then, the set of symbolic traces traces(P) of a protocol P is defined as follows:

traces(P) = {trs | P
trs−→s Q for some Q }.

Intuitively, the symbolic traces are simply all possible traces before instantiation of
the variables, with some renaming to avoid unwanted captures.

Example 7. Let P1 = in(c, x).!new k. in(c, enc(〈x, y〉, k)). We have that:
trs = in(c, x).in(c, enc(〈x, y1〉, k1)).in(c, enc(〈x, y2〉), k2) ∈ traces(P1)

Indeed, the variable x is bound before replication.

As stated in the lemma below, any concrete trace is the instance of a symbolic trace.

Lemma 1. Let P be a protocol and (tr, φ) ∈ trace(P). We have that trφ↓ = trsσ for
some trs ∈ traces(P) and some substitution σ.

A well-typed trace is simply a trace that is well-typed w.r.t. one of the symbolic
traces. Since keys are atomic, some executions may fail when a protocol is about to
output a term that contains an encryption with a non atomic key. To detect these be-
haviours, we need to consider slightly ill-typed traces. Formally, we consider a special
constant ω ∈ Σ0. Its usefulness is illustrated in Example 8.

Definition 6. A first-order trace of P is a sequence tr = trsσ where trs ∈ traces(P)
and σ is a substitution such that for any io(c, u) that occurs in trs with io ∈ {in, out}
and u not a channel, then uσ ∈ T0(Σc, Σ0 ∪N ∪ X). The trace tr is said to be:

9

– well-typed w.r.t. a typing system (T , δ) if there exists such a σ that is well-typed;
– pseudo-well-typed w.r.t. a typing system (T , δ) if there exists such σ, as well as
c0 ∈ Σ0 and σ′ such that σ = σ′{〈ω,ω〉/c0} with σ′ well-typed.

Then a trace (tr, φ) ∈ trace(P) is well-typed (resp. pseudo-well-typed) if trφ↓ is
well-typed (resp. pseudo-well-typed).

Note that Lemma 1 ensures that trφ↓ is a first-order trace of P , and a well-typed
trace is also pseudo-well-typed.

Example 8. Going back to Example 5, let tr = in(c, 〈ω, ω〉).out(c,w1). We have that
(tr, {w1 . enc(n, k)}) ∈ trace(P) while there exists no frame ψ such that (tr, ψ) ∈
trace(Q). Consider the typing system (T , δ) such that δ(t) = atom for any atom or
variable t and δ(t) = ¬atom if t is not an atom. We can see there exists no well-typed
witness of P 6≈ Q (while P and Q are type-compliant as defined in Definition 7).
However, the witness (tr, {w1 . enc(n, k)}) of P 6v Q is pseudo-well-typed (note that
〈ω, ω〉 occurs in tr). Intuitively, pseudo-well-typed traces harness the ability for the
attacker to use the protocol as an oracle to test if some terms (when used in a key
position) are atomic.

3.3 Type compliance

Our main assumption on the typing of protocols is that any two unifiable encrypted
subterms are of the same type. The goal of this part is to state this hypothesis formally.

Due to the presence of replication, we need to consider two copies of protocols in
order to consider different instances of the variables. Given a protocol P with replica-
tion, we define its 2-unfolding unfold2(P) to be the protocol such that every occurrence
of a process !R in P is replaced by R | R, and some α-renaming is performed on one
copy to ensure names and variables distinctness of the resulting process. Note that if P
is a protocol that does not contain any replication, we have that unfold2(P) = P .

Example 9. Let P1 be the protocol defined in Example 7. We have that:
unfold2(P1) = in(c, x).(new k1.in(c, enc(〈x, y1〉, k1)) | new k2.in(c, enc(〈x, y2〉, k2)))

We write St(t) for the set of (syntactic) subterms of a term t, and ESt(t) the set of
its encrypted subterms, i.e. ESt(t) = {u ∈ St(t) | u is of the form enc(u1, u2)}. We
extend this notion to sets/sequences of terms, and to protocols as expected.

Definition 7. A protocol P is type-compliant w.r.t. a typing system (T , δ) if for every
t, t′ ∈ ESt(unfold2(P)) we have that: t and t′ unifiable implies that δ(t) = δ(t′).

3.4 Main result

We are now ready to state our first main contribution: if there is an attack, then there is a
pseudo-well-typed attack. This result holds for protocols with replications and nonces.

Theorem 1. Let P and Q be two determinate protocols type-compliant w.r.t. (T1, δ1)
and (T2, δ2) respectively. We have that P 6≈ Q if, and only if, there exists a witness of
non-equivalence tr such that:

10

– either (tr, φ) ∈ trace(P) for some φ and (tr, φ) is pseudo-well-typed w.r.t. (T1, δ1);
– or (tr, ψ) ∈ trace(Q) for some ψ and (tr, ψ) is pseudo-well-typed w.r.t. (T2, δ2).

The key step for proving Theorem 1 is to provide a decision procedure, in the
bounded case (i.e. processes without replication), that returns a pseudo-well-typed wit-
ness of non-equivalence.

Proposition 1. Let P and Q be two determinate protocols without replication. There
exists an algorithm that decides whether P ≈ Q and if not, returns a witness tr of
non-equivalence. Moreover, if P and Q are type-compliant w.r.t. (T1, δ1) and (T2, δ2)
respectively, the witness tr of non-equivalence returned by the algorithm is such that:

– either (tr, φ) ∈ trace(P) for some φ and (tr, φ) is pseudo-well-typed w.r.t. (T1, δ1);
– or (tr, ψ) ∈ trace(Q) for some ψ and (tr, ψ) is pseudo-well-typed w.r.t. (T2, δ2).

The main idea is to assume given a decision procedure (for a bounded number of
sessions) for reachability properties such as those proposed in [20, 16, 23] and to built
on top of it a decision procedure for trace equivalence. Our procedure is carefully design
to only allow unification between encrypted subterms. To achieve this,

1. we use as a reachability blackbox one that satisfies this requirement. Most of the
existing algorithms (e.g. [20, 16, 23]) were not designed with such a goal in mind.
However, in the case of the algorithm given in [16], it has already been shown how
it can be turned into one that satisfies this requirement [17].

2. we design carefully the remaining of our algorithm to only consider unification
between encrypted subterms.

This design allows us to provide a pseudo-well-typed witness when the protocols
under study are type-compliant and not trace equivalent.

Then, relying on Proposition 1, the proof of Theorem 1 is almost immediate. Indeed,
whenever two determinate type-compliant protocols P and Q are not in trace equiva-
lence, there exists a witness of non-inclusion for P v Q (or Q v P) for a bounded
version of P and Q (unfolding the replications).

4 Decidability result

Now, assuming finitely many terms of each type, and in particular finitely many nonces,
we obtain a new decidability result for trace equivalence, for an unbounded number of
sessions. Compared to [13], we no longer need to restrict the number of variables per
transition (to one), we allow variables in key positions, and we are more flexible in the
control-flow of the program (we may have arbitrary sequences of in and out actions).

4.1 Simple processes

To establish decidability, we consider the class of simple protocols as given in [12] but
we do not allow name restriction. Intuitively, simple protocols are protocols such that
each copy of a replicated process has its own channel. This reflects the fact that due to
IP addresses and sessions identifiers, an attacker can identify which process and which
session he is sending messages to (or receiving messages from).

11

Definition 8. A simple protocol P is a protocol of the form PU | PB where:

– PU =!new c′1.out(c1, c
′
1).B1 | ... | !new c′m.out(cm, c

′
m).Bm; and

– PB = Bm+1 | . . . | Bm+n.

Each Bi with 1 ≤ i ≤ m (resp. m < i ≤ m + n) is a ground process on channel c′i
(resp. ci) built using the following grammar:

B := 0 | in(c′i, u).B | out(c′i, u).B where u ∈ T0(Σc, Σ0 ∪N ∪ X).
Moreover, we assume that c1, . . . , cn, cn+1, . . . , cn+m are pairwise distinct.

Example 10. The protocol presented in Example 2 is not simple yet: we need to con-
sider only finitely many nonces. To achieve this, we may remove all the instructions
”new n” with n ∈ N that occur in the process. Note that removing for instance
”new na” from the process PA means that na is still modelled as a name, and thus
it is unknown to the attacker. However, we do not assume anymore that a fresh nonce is
generated at each session.

Simple protocols form a large class of protocols that are determinate: the attacker
knows exactly who is sending a message or from whom he is receiving a message.
Given a simple protocol P and a sequence of observable actions tr, there is a unique
configuration (P;φ) (up to some internal reduction steps) such that P tr

==⇒ (P;φ).

Lemma 2. A simple protocol is determinate.

4.2 Main result

Our decidability result relies on the assumption that there are finitely many terms of
each type (of the protocol), once the number of constants is bound for each type.

Formally, we say that a typing system (T , δ) is finite if, for any set A ⊆ N∪Σ0 such
that there is a finite number of names/constants of each type, then there are finitely many
terms of each type, that is, for any τ ∈ T , the following set is finite and computable:

{t ∈ T (Σc,A) | δ(t) = τ}.

Theorem 2. The problem of deciding whether two simple protocols P and Q, type-
compliant w.r.t. some finite typing systems (T1, δ1) and (T2, δ2) are trace equivalent
(i.e. P ≈ Q) is decidable.

Proof. (Sketch) Since simple protocols are determinate (see Lemma 2), we obtain,
thanks to our typing result (Theorem 1), the existence of well-typed witness of non-
equivalence when such a witness exists. We further show that we can bound the number
of useful constants in the witness trace. We then derive from the finiteness of the typing
system that the witness trace uses finitely many distinct terms. Therefore, after some
point, the trace only reproduces already existing transitions. Using the form of simple
protocols, we can then show how to shorten the length of the witness trace. ut

12

5 Application: tagged protocols

In this section, we instantiate our general results (Theorems 1 and 2) by exhibiting a
class of protocols that is type-compliant for rather fine-grained typing systems. We con-
sider tagged protocols, for a notion of tagging similar to one introduced by Blanchet [8].

Assume given a protocol P and an unfolding P ′ of it (remember that when com-
puting unfold2(P) names and variables are renamed to avoid clashes). Let u be a term
in T (Σc, ΣP ∪N ′P ∪ X ′P) where ΣP , N ′P , X ′P are the constants, names, and variables
occurring in P ′, we denote by u the transformation that replaces any name and variable
occurring in u by its representative in NP and XP where NP and XP are the names
and variables occurring in P .

Definition 9. A protocol P is tagged if there exists a substitution σP such that for any
s1, s2 ∈ ESt(unfold2(P)) with s1 and s2 unifiable, we have that s1σP = s2σP .

Tagging can easily be enforced by labelling encrypted terms, as proposed in [8].

Definition 10. A protocol P is strongly tagged if:

1. any term in ESt(P) is of the form enc(〈c,m〉, k) for some c ∈ Σ0; and
2. there exists σP such that for any s, t ∈ ESt(P) with s = enc(〈c0, s1〉, s2) and
t = enc(〈c0, t1〉, t2) for some c0 ∈ Σ0, we have that sσP = tσP .

The second condition requires that there is a a substitution that unifies any two
tagged terms unless their tags differ. This condition is easy to achieve for executable
protocols. More precisely, assume a protocol admits an execution where each protocol
step (in and out) is executed once (i.e. there is one honest execution). This protocol can
be easily strongly tagged by adding a distinct tag in each encrypted term.

Lemma 3. Let P be a protocol. If P is strongly tagged then P is tagged.

Example 11. In our modelling of the Otway-Rees protocol, the protocols P 1
OR and

P 2
OR (as described in Example 6) are not tagged. For instance, consider the terms
s1 = enc(〈na,m, a, b〉, kas) and s2 = enc(〈na, xab〉, kas). Both are encrypted sub-
terms of PA (and thus of unfold2(P 1

OR) and unfold2(P 2
OR)) and s1 and s2 are unifiable.

Now, let s3 = enc(〈za, kab〉, kas). Actually, s3 is an encrypted subterm of PS which is
unifiable with s2. However, there exists no substitution σ such that s1σ = s2σ = s3σ.

We can consider a tagged, and safer, version of the Otway-Rees protocol by intro-
ducing 4 different tags, denoted 1,2,3 and 4, that are modelled using constants fromΣ0.
P ′OR =! new c1.out(cA, c1).P

′
A | ! new c2.out(cB , c2).P

′
B | ! new c3.out(cS , c3).P

′
S

P ′A = new m.new na. out(c1, 〈m, a, b, enc(〈1, na,m, a, b〉, kas)〉).
in(c1, 〈m, enc(〈2, na, xab〉, kas)〉)

P ′B = in(c2, 〈ym, a, b, yas〉).
new nb. out(c2, 〈ym, a, b, yas, enc(〈3, nb, ym, a, b〉, kbs)〉).
in(c2, 〈ym, zas, enc(〈4, nb, yab〉, kbs)〉).out(c2, 〈ym, zas〉)

P ′S = in(c3, 〈zm, a, b, enc(〈1, za, zm, a, b〉, kas), enc(〈3, zb, zm, a, b〉, kbs)〉).
new kab. out(c3, 〈zm, enc(〈2, za, kab〉, kas), enc(〈4, zb, kab〉, kbs)〉)

13

and P ′1OR and P ′2OR are defined similarly as P 1
OR and P 2

OR relying on P ′OR instead of POR.
Note that tr′ is no longer a witness of P ′1OR 6≈ P ′2OR as the attack has been removed
by this tagging scheme. We can show that P ′OR is strongly tagged: consider the natural
execution of P ′OR, matching inputs and outputs as intended. From this execution we can
define:

σP = {xab . kab, ym . m, yas . enc(〈1, na,m, a, b〉, kas)〉,
zas . enc(〈2, na, kab〉, kas), zm . m, za . na, zb . nb}.

It is then easy to check that for any two terms s1 and s2 that are unifiable, their instances
by σP are actually identical.

For any tagged protocol, we can infer a finite typing system, and show the type-
compliance of the tagged protocol w.r.t. this typing system. Thus, relying on Theorem 2,
we derive the following decidability result for simple and tagged protocols.

Corollary 1. The problem of deciding whether two simple and tagged protocols P
and Q are trace equivalent (i.e. P ≈ Q) is decidable.

Proof. (Sketch) The first step of the proof consists in associating to a tagged protocol P ,
a typing system (TP , δP) such that P is type-compliant w.r.t. (TP , δP). Intuitively,
(TP , δP) is simply induced by σP , the substitution ensuring the tagged condition in
Definition 9. For example, the type of a closed term t is t itself while the type of a vari-
able x in P is simply xσP . This definition is then propagated to any term. With such
typing systems, we can show that the size of a term (i.e. number of function symbols) is
smaller than the size “indicated” by its type (i.e. the size of the type, viewed as a term).
Thus the typing system (TP , δP) is finite. We then conclude by applying Theorem 2.

ut
Example 12. Consider the protocols P ′1OR and P ′2OR obtained from P ′1OR and P ′2OR by re-
moving the instructions corresponding to a name restriction. These protocols are still
strongly tagged and are now simple. Thus, our algorithm can be used to check whether
these two protocols are in trace equivalence or not. This equivalence actually models a
notion of strong secrecy of the key received by A. Since we have bounded the number
of nonces, this equivalence does not require that the key is renewed at each session but
it requires the key to be indistinguishable from a (private) name, n in our setting.

6 Conclusion

Decidability results for unbounded nonces are rare and complex, even in the reachability
case. One of the only results has been established by Ramanujam and Suresh [21],
assuming a particular tagging scheme (which itself involves nonces). We plan to explore
whether our typing result could be applied to the tagging scheme defined in [21], to
derive decidability of trace equivalence in the presence of nonces.

Our main typing result relies on the design of a new procedure in the case of a
bounded number of sessions, that preserves typing. Specifically, we show that it is suf-
ficient to consider only unification between encrypted (sub)terms. We think that this
result can be applied to existing decision procedures (in particular SPEC [22] and also
APTE [11], with some more work) to speed up their corresponding tools. As future
work, we plan to implement this optimisation and measure its benefit.

14

References
1. M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In 28th

Symposium on Principles of Programming Languages (POPL’01). ACM Press, 2001.
2. M. Abadi and R. M. Needham. Prudent engineering practice for cryptographic protocols.

IEEE Trans. Software Eng., 22(1):6–15, 1996.
3. R. Amadio and W. Charatonik. On name generation and set-based analysis in the Dolev-Yao

model. In 13th Int. Conference on Concurrency Theory (CONCUR’02), 2002.
4. M. Arapinis and M. Duflot. Bounding messages for free in security protocols. In 27th

Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’07), 2007.

5. M. Backes, C. Hritcu, and M. Maffei. Automated verification of remote electronic voting
protocols in the applied pi-calculus. In 21st IEEE Computer Security Foundations Sympo-
sium (CSF’08), pages 195–209. IEEE Computer Society, 2008.

6. M. Baudet. Deciding security of protocols against off-line guessing attacks. In 12th ACM
Conference on Computer and Communications Security (CCS’05). ACM Press, 2005.

7. B. Blanchet, M. Abadi, and C. Fournet. Automated Verification of Selected Equivalences
for Security Protocols. In 20th Symposium on Logic in Computer Science, 2005.

8. B. Blanchet and A. Podelski. Verification of cryptographic protocols: Tagging enforces ter-
mination. In Foundations of Software Science and Computation Structures (FoSSaCS’03).

9. M. Bruso, K. Chatzikokolakis, and J. den Hartog. Formal verification of privacy for RFID
systems. In 23rd Computer Security Foundations Symposium (CSF’10), 2010.

10. R. Chadha, Ş. Ciobâcă, and S. Kremer. Automated verification of equivalence properties of
cryptographic protocols. In 21th European Symposium on Programming (ESOP’12), LNCS.

11. V. Cheval, H. Comon-Lundh, and S. Delaune. Trace equivalence decision: Negative tests and
non-determinism. In 18th ACM Conference on Computer and Communications Security.

12. V. Cheval, V. Cortier, and S. Delaune. Deciding equivalence-based properties using con-
straint solving. Theoretical Computer Science, 492:1–39, June 2013.

13. R. Chrétien, V. Cortier, and S. Delaune. From security protocols to pushdown automata. In
40th Int. Colloquium on Automata, Languages and Programming (ICALP’13), 2013.

14. R. Chrétien, V. Cortier, and S. Delaune. Typing messages for free in security protocols:
the case of equivalence properties. Technical Report 8546, Inria, June 2014.

15. J. Clark and J. Jacob. A survey of authentication protocol literature: Version 1.0, 1997.
16. H. Comon-Lundh, V. Cortier, and E. Zalinescu. Deciding security properties for crypto-

graphic protocols. Application to key cycles. ACM Transactions on Computational Logic
(TOCL), 11(4), 2010.

17. V. Cortier and S. Delaune. Safely composing security protocols. Formal Methods in System
Design, 34(1):1–36, Feb. 2009.

18. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science. Elsevier, 1990.

19. J. D. Guttman and F. J. Thayer. Protocol independence through disjoint encryption. In 13th
Computer Security Foundations Workshop (CSFW’00). IEEE Comp. Soc. Press, 2000.

20. J. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic protocol
analysis. In 8th ACM Conference on Computer and Communications Security, 2001.

21. R. Ramanujam and S. P. Suresh. Tagging makes secrecy decidable with unbounded nonces as
well. In 23rd Conference of Foundations of Software Technology and Theoretical Computer
Science (FSTTCS’03), LNCS, pages 363–374. Springer, 2003.

22. A. Tiu and J. E. Dawson. Automating open bisimulation checking for the spi calculus. In
23rd IEEE Computer Security Foundations Symposium (CSF’10), pages 307–321, 2010.

23. A. Tiu, R. Goré, and J. E. Dawson. A proof theoretic analysis of intruder theories. Logical
Methods in Computer Science, 6(3), 2010.

15

