
Deciding Security of Protocols against Off-line Guessing
Attacks

Mathieu Baudet
LSV – CNRS & INRIA Futurs Projet SECSI & ENS Cachan

61, avenue du Président Wilson, 94235 Cachan Cedex, France

mathieu.baudet@lsv.ens-cachan.fr

ABSTRACT
We provide an effective procedure for deciding the exis-
tence of off-line guessing attacks on security protocols, for a
bounded number of sessions.

The procedure consists of a constraint solving algorithm
for determining satisfiability and equivalence of a class of
second-order E-unification problems, where the equational
theory E is presented by a convergent subterm rewriting
system.

To the best of our knowledge, this is the first decidability
result to use the generic definition of off-line guessing attacks
due to Corin et al. based on static equivalence in the applied
pi calculus.

Categories and Subject Descriptors: C.2.2 [Network
Protocol]: Protocol Verification, D.2.4 [Software/Program
Verification]: Formal Methods, F.4.2 [Grammars and Other
Rewriting Systems]: Decision Problems

General Terms: Security, Theory, Verification

Keywords: Security Protocols, Formal Methods, Guessing
Attacks, Second-Order E-Unification

1. INTRODUCTION
Guessing attacks, also known as dictionary or brute-force

attacks, occur in cryptography when an attacker is able to
guess a secret by just trying every possible value for it. Prac-
tically, this is feasible only when the number of those values
(the “dictionary”) is small—say 232 for a (poor) password
or even less for a vote in an election protocol. In this case
the secret is called a weak secret.

Fortunately not all weak secrets can be broken. As pointed
out by Lowe [18] the attacker must still be able to test
whether one of his guesses is correct or not, typically by
exploiting redundancy between messages.

Among guessing attacks, by definition, off-line guessing
attacks are those for which the attacker does not need to
participate in any communication during the guessing phase
(but he may have interacted with the honest agents before).

This work appeared in the proceedings of the ACM CCS’05 conference,
November 7–11, 2005, Alexandria, Virginia, USA. This is a revised version,
dated January 6, 2006.

When the size of the dictionary becomes significant, off-line
guessing attacks are more feasible in practice than on-line
ones and thus are more crucial to detect. On-line guessing
attacks may need to send as many requests to the network
as the size of the dictionary.

Several attempts have been made, based on the initial
work of Lowe [18], to characterize off-line guessing attacks
from a logical point of view and derive formal methods for
detecting them [9, 11, 13]. The attempts for a “good” defi-
nition currently culminate with Corin et al. [10]. Using the
notion of static equivalence from the applied pi calculus [3],
they give a simple and intuitive definition of off-line guess-
ing attacks for an arbitrary set of primitives, modeled by an
equational theory. However no automatic procedure is given
in [10] and the mentioned examples only deal with passive
adversaries.

In this paper we address the question whether the general
definition of Corin et al. [10] is suitable for automatic reason-
ing. We show that the problem of finding off-line guessing
attacks is decidable in the case of a bounded number of ses-
sions, for protocols whose set of primitives is described by
a convergent subterm rewriting system (see Section 2 for a
definition). In particular our class of protocols encompasses
the initial Dolev-Yao model [14] and subsequent extensions
as in [19, 12, 3, 6, 1] with symmetric encryption, ciphers,
compound keys, signatures and hashes.

Our algorithm is based on a procedure for solving a class
of second-order E-unification problems. We show that the
satisfiability of those constraint systems is decidable, and
more remarkably, that the equivalence between two systems
(that is, the equality of their sets of solutions) is decidable.

The purpose of our constraint systems is here to represent
symbolic traces of protocols (see for instance [19, 20, 8, 12]).
We use the equivalence of systems to specify the absence
of off-line guessing attacks, by expressing the fact that the
intruder cannot distinguish between two versions of the same
symbolic trace: one corresponding to a good guess and the
other one to a bad guess of the secret.

To our knowledge, this is the first decision procedure for
finding such off-line guessing attacks. It is fair to mention,
though, that recent releases of Blanchet’s tool Proverif [5]
do support off-line guessing attacks based on Corin et al.’s
definition. In case of success, Blanchet’s (non-terminating,
approximate) procedure for proving strong secrecy [6], later
refined by [7], rules out the possibility of on-line/off-line
guessing attacks, for an unbounded number of sessions. Our
concern is different here, as we look for an exact answer,
given by a terminating algorithm, to the security problem
for a bounded number of sessions.

Further related work. Delaune and Jacquemard [12]
give an NP procedure for verifying trace properties, for a
bounded number of sessions, on protocols with explicit de-
structors. Our algorithm deals with a more general class of
security properties, including resistance to off-line guessing
attacks. We also relax (and somewhat simplify) the syn-
tactic conditions on the equational theory, by considering
convergent subterm rewriting systems instead of convergent
public-collapsing rewriting ones (see Section 2).

Abadi and Cortier [1] present an algorithm for deciding
static equivalence between closed frames in polynomial time,
when the equational theory is given by a convergent subterm
rewriting system. Recently, this result has been extended to
a more general class of equational theories allowing associa-
tive and commutative symbols [2]. This work corresponds
to passive adversaries, that is, pure eavesdroppers. Our pro-
cedure can be seen as an extension of [1] to the general case
of active adversaries.

Outline of the paper. Section 2 begins with prelim-
inary definitions. We describe our class of constraint sys-
tems, called (standard) intruder constraint systems. These
correspond to second-order E-unification problems with a
number of regularity conditions. Compared to usual unifi-
cation, though, we allow distinguishing between private and
public symbols. Private symbols typically account for secret
values not directly available to the intruder. Our main theo-
rem is the following: if the equational theory E is presented
by a convergent subterm rewriting system and the signature
contains an infinite number of public constants, the satisfi-
ability of intruder constraint systems is decidable, and so
is the equivalence between standard intruder constraint sys-
tems.

We apply this result in Section 3 for deciding trace proper-
ties and, more remarkably, the existence of off-line guessing
attacks on cryptographic protocols, for a bounded number
of sessions.

Section 4 is devoted to the proof of the main theorem. The
heart of our decision procedure is a sound and complete set
of transformation rules together with a (nondeterministic)
terminating strategy, so as to bring any intruder constraint
system into a solved form. As such solved forms are always
satisfiable, this gives a procedure to decide satisfiability. In
order to decide the equivalence of systems, we provide a cri-
terion for testing whether the set of solutions corresponding
to a solved system is included in that of a standard intruder
constraint system. We conclude in Section 5.

2. PRELIMINARIES

2.1 Syntax and Basic Definitions
A signature is a set of symbols F together with non-

negative arities. Given an additional set of variables X , we
write T (F ,X) for the set of (usual first-order) terms built
upon X using the symbols in F .

We assume a given set of symbols F , with elements de-
noted by f, g . . . Symbols of arity 0 are called constants. F
is partitioned into public symbols Fpub and private symbols
Fpriv. We also use an additional set of constants, called
parameters W = {w1, w2 . . . wk . . .}.

We fix a set of variables X , partitioned into first-order
variables X 1, with elements denoted by x, y . . . and second-
order variables X 2, written X, Y . . . Second-order variables
X are given with arities, denoted ar(X). In the following

we assume that infinite numbers of public constants, first-
order variables and second-order variables of each arity, are
available.

Elements of T (F ,X 1) are called first-order terms, and
denoted by letters t, s . . . Elements of T (Fpub ∪W,X 2) are
called second-order terms, and denoted by M, N . . . More
generally we use letters T, S . . . for terms in T (F ∪ W,X)
and letter v for variables in X .

We write var(T) and par(T) for the sets of variables and
parameters, respectively, occurring in T . A term is closed iff
it has no variable, public iff is uses no private symbol. Note
that our second-order terms are always public. We extend
the notations var(.) and par(.) to tuples and sets of terms
in the obvious way.

Substitutions are written σ = {v1 7→ T1, . . . , vn 7→ Tn}.
We let dom(σ) = {v1 . . . vn} ⊆ X if ∀i, vi 6= Ti . We write
Tσ = σ(T) for the (usual, first-order) application of σ to T ,
σµ = µ ◦ σ for the composition of substitutions. σ is closed
iff all the Ti are closed terms, idempotent iff σσ = σ, that
is, ∀i, var(Ti) ∩ dom(σ) = ∅. We let var(σ) = {v1 . . . vn} ∪
var(T1 . . . Tn). T |p denotes the subterm of T at position p,
whereas T [p := T ′] is the result of replacing the subterm
at position p in T with T ′. This notation is extended to
equations: for instance (T =? T ′)|p and (T =? T ′)[p := T ′′].

For each pair of terms (t1, t2), mgu(t1, t2) denotes a most
general unifier of t1 and t2, that is, an idempotent substi-
tution µ such that t1µ = t2µ and for every substitution µ′,
t1µ

′ = t2µ
′ implies µ′ = µµ′.

In the rest of this paper, unless stated otherwise, we only
consider well-formed substitutions, that is, substitutions σ

which assign first-order variables to first-order terms, and
second-order variables X to second-order terms of correct ar-
ity : ∀wi ∈ par(Xσ), i ≤ ar(X) and ∀Y ∈ var(Xσ), ar(Y) ≤
ar(X). Thus, arity represents the maximal index of eligible
parameters for substituting a second-order variable.

A (closed, public, non necessarily linear) context is a closed
second-order term C given with an arity n ≥ 0 such that
par(C) ⊆ {w1 . . . wn}. Each parameter may occur zero, one
or several times. If C is n-ary, C[T1 . . . Tn] denotes the result
of replacing each wk by Tk in C. We extend the notation
to second-order terms and may write M [T1 . . . Tn] provided
that par(M) ⊆ {w1 . . . wn}.

A term rewriting system, or simply rewriting system, is
a finite set R of rewriting rules l → r, where l, r are two
first-order terms. A term T reduces to S by R, written
T →R S, iff there exists a rule l → r in R, a position p

and a non-necessarily well-formed substitution σ such that
T |p = lσ and S = T [p := rσ]. We write →∗

R for the reflexive
and transitive closure of the binary relation →R, =R for its
reflexive, symmetric and transitive closure. A term T is R-
reduced, or equivalently, is in R-normal form iff there is no
T ′ such that T →R T ′.

A rewriting system R is terminating iff it admits no infi-
nite sequence of reductions; confluent iff for every T1, T2, T3

such that T1 →∗
R T2, T1 →∗

R T3, there exists T4 such that
T2 →∗

R T4, T3 →∗
R T4; convergent iff it is confluent and

terminating.

2.2 Intruder Constraint Systems
Constraint solving is by now a standard method for de-

ciding reachability properties in cryptographic protocols for
a finite number of sessions [19, 20, 8, 12]. Our purpose is to
extend this method to properties that compare the behav-

ior of two systems from the intruder’s point of view. This
leads us to introduce the following constraint systems and
the corresponding notion of satisfiability and equivalence.
We show in Section 3 how to use these notions to express
the security of protocols against off-line guessing attacks.

Definition 1. Let R be a rewriting system and Y a set of
m pairwise distinct second-order variables X1 . . . Xm. De-
fine ai = ar(Xi) and assume 0 ≤ a1 ≤ a2 ≤ . . . ≤ am. An
(R,Y)-intruder constraint system is a system of equations
Σ of the form

∃x1 . . . xm,































X1[t1 . . . ta1
] =? x1

. . .

Xm[t1 . . . tam
] =? xm

s1 =?
R s′1

. . .

sn =?
R s′n

such that the following regularity conditions hold:

(1) var(s1 . . . sn, s′1 . . . s′n) ⊆ {x1 . . . xm} and

(2) for all 1 ≤ i ≤ m and 1 ≤ j ≤ ai, var(tj) ⊆ {x1 . . . xi−1}.

As suggested by the notation above, a solution to Σ is a
closed (well-formed) substitution θ with domain dom(θ) =
{X1 . . . Xm} such that there exists a closed (well-formed)
substitution θ′ with dom(θ′) = {x1 . . . xm} satisfying the
two conditions

(i) for all 1 ≤ i ≤ m, (Xi θ)[t1θ
′ . . . tai

θ′] = xi θ′, and

(ii) for all 1 ≤ j ≤ n, sj θ′ =R s′j θ′.

Note that the regularity condition (2) implies that for each
closed substitution θ with dom(θ) = {X1 . . . Xm}, there ex-
ists a unique θ′ satisfying condition (i). Indeed, xiθ

′ is com-
puted from (i) by induction on i. Thus, given condition (1),
and provided that the word problem for =R is decidable, it
is easy to check whether a given θ is a solution.

An intruder constraint system is satisfiable iff it admits at
least one solution. Two (R,Y)-intruder constraint systems
are equivalent iff they have the same set of solutions. We
emphasize that, given our definition of solutions, equivalence
of systems does not depend on the exact values of first-order
variables. This is crucial for the applications described in
Section 3.

Using the same notations as above, an (R,Y)-intruder
constraint system Σ is (X, Y)-standard iff X = Xm−1 and
Y = Xm are two fixed distinct variables of maximal arity in
Y (that is, am−1 = am), Σ contains the equation xm−1 =?

R

xm and xm−1, xm occur in no other equation sj =?
R s′j of

Σ.
A rewriting system R is subterm iff: for each rule l → r

in R, r is either a proper subterm of l or a closed public
R-reduced term. In Section 4 we prove the following result:

Theorem 1. Let R be a convergent subterm rewriting
system and Y a finite set of second-order variables. The
satisfiability of (R,Y)-intruder constraint systems is decid-
able. Assume that X, Y are two distinct variables of max-
imal arity in Y. The equivalence between (X, Y)-standard
(R,Y)-intruder constraint systems is decidable.

We leave open the question if it is decidable whether two
(non necessarily standard) intruder constraint systems are

equivalent. On the other hand, the equivalence problems
useful for the applications (Section 3) only involve standard
constraint systems.

Following Delaune and Jacquemard [12], a rewriting sys-
tem R is public-collapsing iff for every rule l → r ∈ R, the
following two conditions hold:

1. r 6= l and either r ∈ var(l) or r is a public R-reduced
term;

2. if l = f(l1 . . . ln) and f ∈ Fpub, then for all proper
subterms of l of the form g(t1 . . . tm) with g ∈ Fpub,
we have that either g(t1 . . . tm) is a closed public R-
reduced term, or there exists j such that tj = r.

Thus in particular, every public-collapsing rewriting system
is subterm according to our definition.

3. APPLICATION TO SECURITY
In this section we illustrate how to use the intruder con-

straint systems of Section 2 for analyzing cryptographic pro-
tocols with respect to trace properties and, more remark-
ably, resistance to off-line guessing attacks.

Let us consider the following example, called the Hand-
shake protocol [15, 13]:

0. A → B : {N}kAB

1. B → A : {f(N)}kAB

The goal of these two messages is to authenticate B from A’s
point of view, provided that they share an initial secret kAB .
This is done by a simple challenge-response transaction: A

sends a random number (a nonce) encrypted with the secret
key kAB ; B decrypts this number, applies a given function
(for instance f(N) = N +1) to it, and sends the result back,
also encrypted with kAB ; finally A checks the validity of the
result, for instance by decrypting the message and checking
the decryption against f(N).

We model this protocol using the sets of public symbols
Fpub = {senc(2), sdec(2), f(1), a, b, i, c1, c2 . . .} and private
symbols Fpriv = {k(2), n, n1, n2 . . .} where the numbers in
parentheses denote the arities of non-constant symbols. We
may write {x}y or senc(x, y) equivalently. The symbols
c1, c2 . . . and n, n1, n2 . . . are respectively pools of public and
private constants used to model nonces. We equip terms
with the following convergent subterm rewriting system R,
so as to model a symmetric, deterministic, length-preserving
encryption scheme (that is, a cipher):

sdec(senc(x, y), y) → x senc(sdec(x, y), y) → x

The second rule states that any message x is a valid cipher-
text for any key y. This characteristic property of ciphers is
useful for preventing the trivial guessing attack on any mes-
sage encrypted by a weak key, which arises when decryption
fails whenever it is given a wrong decryption key.

More generally, we refer the reader to previous work [3, 6,
1, 10] for classical examples on how to model pairs, public-
key encryption, hash functions, signatures. . . using conver-
gent subterm rewriting systems.

3.1 Symbolic Traces
Informally, a symbolic trace (e.g. [19, 20, 8, 12]) is an

execution trace of the protocol where the messages sent by
the intruder (the sizes of which are unbounded) are replaced
by fresh variables xi. Each symbolic trace is associated to

a constraint system which accounts for the conditions that
the messages xi must satisfy for the trace to be feasible.
Importantly, we also keep track of the computations Xi done
by the attacker to compute the xi. This makes it possible
to define a suitable notion of equivalence between traces.

Suppose that we want to prove the authentication prop-
erty for one session on our example protocol. This boils
down to asking whether the intruder I can emulate B in the
normal session. The intruder constraint system correspond-
ing to this problem is:

∃x1, X1[{n}k(a,b)] =?
x1 sdec(x1, k(a, b)) =?

R f(n)

The first equation means that x1, the answer of the intruder,
must be computable from the message sent by A using a
(public) context X1. The second one is the test done by A

upon receiving the second message. This system is easily
showed unsatisfiable, either manually or using the proce-
dure of Section 4. (Recall that k is a private symbol so it
may not be used in X1.) Hence, there exists no attack on
authentication using only one session.

More generally, trace properties on security protocols are
verified by checking that no symbolic trace corresponding
to an attack is satisfiable. This is possible indeed because a
bounded number of sessions of a protocol may only generate
finitely many symbolic traces [19, 20, 8, 12].

3.2 Off-line Guessing Attacks
A more interesting problem arises if the key k(a, b) is a

weak secret, that is, vulnerable to brute-force off-line test-
ing. In [10], Corin et al. give a general definition of off-line
guessing attacks using static equivalence [3, 1].

Static equivalence usually relates frames [3, 1], meant to
represent sequences of messages sent on the network. In
our setting, a frame is a tuple of first-order terms written
Φ = {w1 � t1 . . . wn � tn} (this notation will prove useful
in the next sections). Φ is closed iff all the ti are closed
terms. Two closed frames Φ = {w1 � t1 . . . wn � tn} and
Φ′ = {w1 � t′1 . . . wn � t′n} are statically equivalent, written
Φ ≈R Φ′, iff for all n-ary closed (public) contexts C1 and C2,
C1[t1 . . . tn] =R C2[t1 . . . tn] ⇔ C1[t

′
1 . . . t′n] =R C2[t

′
1 . . . t′n].

Let Σ be an intruder constraint system modeling the sat-
isfiability of a given symbolic trace τ of the protocol, involv-
ing a weak secret s. Using the same notation as before, Σ is
written

∃x1 . . . xm,































X1[t1 . . . ta1
] =? x1

. . .

Xm[t1 . . . tam
] =? xm

s1 =?
R s′1

. . .

sn =?
R s′n

Let Φ = {w1 � t1, . . . , wam
� tam

}.
The idea behind Corin et al. [10]’s definition for off-line

guessing attacks is the following. Assume that the intruder
is given an additional message tam+1 ∈ {s, s′} where s′ is a
fresh private constant. Let θ be a solution to Σ and θ′ its
(unique) extension to first-order variables as before. There
is an off-line guessing attack on s at the end of the concrete
trace τθ iff intuitively it is possible for the intruder to dis-
tinguish (off-line) whichever tam+1 = s (correct guess) or
tam+1 = s′ (wrong guess), that is, in terms of static equiva-
lence:

Φθ
′ ∪ {wam+1 � s} 6≈R Φθ

′ ∪ {wam+1 � s′} (1)

In terms of intruder constraint systems, we model off-line
guessing attacks as follows. Let X, Y be fresh second-order
variables of arity am + 1 and x, y fresh first-order variables.
For any term t, we define the (X, Y)-standard intruder con-
straint system Σ[t]:

∃x1 . . . xm, x, y,























































X1[t1 . . . ta1
] =? x1

. . .

Xm[t1 . . . tam
] =? xm

X[t1 . . . tam
, t] =? x

Y [t1 . . . tam
, t] =? y

s1 =?
R s′1

. . .

sn =?
R s′n

x =?
R y

Let s′ be a fresh private constant.

Fact 1. There exists a solution θ to Σ such that θ′ ful-
fills equation (1) iff the two systems Σ[s] and Σ[s′] are not
equivalent.

Proof. Assume for instance that θ1 is a solution to Σ[s]
but not to Σ[s′]. (The other case is similar.) We let θ

be the restriction of θ1 to {X1 . . . Xm}, C1 = Xθ1, and
C2 = Y θ1. Let θ′ be the extension of θ to the first-order
variables x1 . . . xm in Σ as before. In the case of Σ[s], the ex-
tension of θ1 is written θ′

1 = θ′ {x 7→ C1[t1θ
′ . . . tnθ′, s], y 7→

C2[t1θ
′ . . . tnθ′, s]}, whereas in the case of Σ[s′], it is written

θ′′
1 = θ′ {x 7→ C1[t1θ

′ . . . tnθ′, s′], y 7→ C2[t1θ
′ . . . tnθ′, s′]}.

Since θ1 is a solution to Σ[s], θ is a solution to Σ and we
have C1[t1θ

′ . . . tnθ′, s] =R C2[t1θ
′ . . . tnθ′, s]. Besides, θ1

may only fail on the last equation of Σ[s′], thus we deduce
C1[t1θ

′ . . . tnθ′, s′] 6=R C2[t1 . . . tn, s′].
Conversely, let θ be a solution to Σ such that θ′ satis-

fies (1). By assumption, there exist two contexts C1 and C2

such that e.g. C1[t1θ
′ . . . tnθ′, s] =R C2[t1θ

′ . . . tnθ′, s] but
C1[t1θ

′ . . . tnθ′, s′] 6=R C2[t1θ
′ . . . tnθ′, s′]. Let θ1 = θ{X 7→

C1, Y 7→ C2}. Then, θ1 is a solution to Σ[s] but not to
Σ[s′].

As an application, the intruder constraint system Σ cor-
responding to the main session of our example protocol is
written:

∃x1, x2,






X1[{n}k(a,b)] =? x1

X2[{n}k(a,b), {f(sdec(x1, k(a, b)))}k(a,b)] =? x2

sdec(x2, k(a, b)) =?
R f(n)

with ar(X1) = 1, ar(X2) = 2. One solution θ to this system
is given by the normal run of the protocol1:

X1θ = w1 thus x1θ
′ = {n}k(a,b)

X2θ = w2 thus x2θ
′ = {f(sdec({n}k(a,b), k(a, b)))}k(a,b)

=R {f(n)}k(a,b)

Let us define the two systems Σ[k(a, b)] and Σ[s′] as above
and extend θ by

Xθ = f(sdec(w1, w3)) and Y θ = sdec(w2, w3).

1In this sense, the simple example presented here only in-
volves a passive attacker. More complex off-line guessing
attacks may be found in [15, 13].

Then θ is a solution to Σ[k(a, b)] but not to Σ[s′]. This cor-
responds to the classical guessing attack on the Handshake
protocol [15]: by decrypting both messages of the protocols
with the guess x and checking the relation

f(sdec({n}k(a,b), x)) = sdec({f(n)}k(a,b), x)

it is possible to test whether x = k(a, b) and thus to recover
the weak secret k(a, b) by brute-force testing.

4. DECISION PROCEDURE
We now describe a decision procedure for the satisfiability

and the equivalence of (standard) intruder constraint sys-
tems. We begin by introducing extended constraint systems.
These can be seen as some syntax for representing (generally
infinite) sets of solutions to the initial problem. We then de-
scribe a set of transformation rules on the extended systems
that is sound and complete for every convergent rewriting
system. Finally we show how to enforce termination in the
case of convergent subterm rewriting systems, and conclude
the proof of Theorem 1.

Detailed proofs are available in an extended version [4].

4.1 Extended Constraint Systems
Let R be a convergent rewriting system and Y a finite

set of second-order variables. An (R,Y)-extended constraint
system (or simply constraint system in this section) is a tuple
Σ = Φ; Ψ; C; σ where

• Φ is a finite set of expressions ∀β.M � t, called frame
rules (or simply rules) of Σ, where β ranges over finite
sets of second-order variables;

• Ψ is a finite set of expressions ∀β.M ./ N , called equa-
tions of Σ;

• C is a finite set of constraints of the form t1 =?
R t2 and

X �
? t, where in the latter case, X may occur only

once in C;

• σ is an idempotent substitution satisfying dom(σ) ∩
var(Φ; Ψ; C) = ∅.

We introduce quantifiers on second-order variables ∀β for
technical reasons regarding the termination of the proce-
dure on convergent subterm rewriting systems. Those will
be used in Section 4.3 and may be safely ignored for the mo-
ment. We apply the usual conventions on binders ∀β. No-
tably, equality between quantified expressions is understood
modulo (arity-preserving) renaming of bound variables and
deletion of useless ones (that is, ∀β.M = ∀(β∩var(M)).M).
We let var(∀β.M � t) = var(M) ∪ var(t) − β, var(∀β.M ./

N) = var(M) ∪ var(N) − β. Substitutions are applied ac-
cordingly: (∀β.M � t)σ = ∀β.Mσ � tσ if β ∩ var(σ) = ∅.
Besides we see ./ as a commutative symbol.

The cryptographic intuition behind the four sets Φ;Ψ; C; σ
of each constraint system is the following. A frame rule
∀β.M � t in Φ records the fact that a term t is computable
(or deducible [1]) by the intruder using any computation (or
recipe) Mµ, with dom(µ) ⊆ β. Initially, recipes are simply
parameters w1 . . . wam

and the set of rules is simply a frame
{w1 � t1, . . . , wam

� tam
}. During the procedure, new facts

are inferred. For instance, if w1�enc(a, b) and w2�b belong
to Φ, we may add dec(w1, w2) � a.

Equations ∀β.M ./ N in Ψ correspond to relations that
are visible to the intruder: intuitively any two computa-
tions Mµ and Nµ, dom(µ) ⊆ β, yield the same result when
parameters are substituted with their actual values. For in-
stance, given the two rules w1 � h(n) and w2 � n, a visible
equation is w1 ./ h(w2).

C is a set of constraints: either deducibility constraints
X �

? t, meaning that t must be computable by the in-
truder using a (yet) unknown recipe X, or equality con-
straints t1 =?

R t2, so as to account for tests done by honest
participants. Finally, σ is used to record the solved variables
of a system.

A closed (well-formed) substitution θ with dom(θ) = Y is
a solution to Σ = Φ;Ψ; C; σ, written θ |= Σ, iff there exists
a closed (well-formed) substitution λ with dom(λ) ⊇ var(Σ)
such that:

• for every constraint X �
? t in C, there exist an m-

ary (public, closed) context C, some rules ∀β1.M1 �

t1 . . . ∀βm.Mm � tm ∈ Φ, some closed substitutions
µ1 . . . µm with dom(µi) ⊆ βi such that

Xλ = C[M1µ1λ . . . Mmµmλ] and tλ = C[t1λ . . . tmλ];

• for every equation t1 =?
R t2 in C, t1λ =R t2λ;

• λ extends σ, in the sense that σλ = λ;

• λ is related to θ, meaning that for all X ∈ Y, we have
Xθ =R∪Ψλ Xλ.

We have used =R∪Ψλ to denote the equivalence relation as-
sociated to the rewriting rules in R and the equations in
Ψλ—seen as pairs of rewriting rules, one for each direction.
We may write θ, λ |= Σ to specify a λ associated to a solution
θ.

Intruder constraint systems of Section 2 are seen as ex-
tended constraint systems Σ = Φ; ∅; C; ∅ where, using the
notations of Section 2, we let

Φ = {w1 � t1, . . . , wam
� tam

} and

C = {X1 �
?

x1, . . . , Xm �
?

xm, s1 =?
R s

′

1, . . . , sn =?
R s

′

n}.

Solutions to such a Σ are defined equivalently using the def-
inition of intruder constraint systems or that of extended
constraint systems. Notice that, due to the regularity con-
ditions on intruder constraint systems (Section 2), for every
solution θ, there exists a unique λ (up to =R, once restricted
to var(Σ)) such that θ, λ |= Σ.

A constraint system Σ = Φ; Ψ; C; σ is pre-solved iff C is of
the form above, that is, the right-hand sides of deducibility
constraints X �

? t in C are pairwise distinct variables. It is
solved iff besides C contains no equality constraints si =?

R s′i.

Fact 2. Every solved constraint system Σ is satisfiable.

Indeed, let λ0 assign fresh public constants to every unsolved
variable in Σ, ensuring that Xλ0 = xλ0 for each X�

?x in Σ,
but for any other pair of unsolved variables v1, v2, v1λ 6= v2λ.
Let λ = σλ0 and define θ as the restriction of λ to Y. Then
θ is a solution to Σ. In the following, we call such a θ a
principal solution of Σ.

Our goal in the next subsection is to describe a set of
transformation rules that is sound and complete in the fol-
lowing sense: for all intruder constraint system Σ = Φ; ∅; C; ∅
with Φ and C written as above,

• (soundness) for every Σ′, if Σ =⇒∗ Σ′ and θ |=
Σ′ then θ |= Σ; moreover the set of equations Ψ′

of Σ′ is sound with respect to Σ: for all ∀β.M ./

N in Ψ′, if θ, λ |= Σ and θ, λ′ |= Σ′, we have that
(Mλ′)[t1λ . . . tam

λ] =R (Nλ′)[t1λ . . . tam
λ];

• (completeness) if θ |= Σ then there exists a solved
constraint system Σ′ such that Σ =⇒∗ Σ′ and θ |= Σ′.

All these notions are motivated by the following criterion
for the satisfiability and the equivalence of intruder con-
straint systems.

Proposition 1. Let =⇒ be a sound and complete set of
transformation rules.
1. An intruder constraint system Σ is satisfiable iff there
exists a solved system Σ′ such that Σ =⇒∗ Σ′.

2. Let Σ1 and Σ2 be two (X, Y)-standard (R,Y)-intruder
constraint systems, with Σ2 = Φ2; ∅; C2; ∅ and Φ2 = {w1 �

t1, . . . , wam
� tam

}. The following conditions are equivalent:

(a) Every solution to Σ1 is a solution to Σ2.

(b) For every solved constraint system Σ such that Σ1 =⇒∗

Σ, every (resp. at least one) principal solution θ of
Σ satisfies (i) θ |= Σ2 and (ii) for every (resp. at
least one) λ2 such that θ, λ2 |= Σ2, for every equation
∀β.M ./ N of Σ, we have that M [t1λ2 . . . tam

λ2] =R

N [t1λ2 . . . tam
λ2].

Provided that =⇒ is effective, this entails a semi-decision
procedure for testing (non-)inclusion of sets of solutions:
enumerate all the solved constraints systems reachable from
Σ1 and check conditions (i) and (ii) on each of them. More-
over, if =⇒ is finitely-branching and terminates, then by
König’s Lemma, the number of reachable solved constraint
systems is finite, so we obtain a decision procedure.

4.2 Transformation Rules for Convergent
Rewriting Systems

We now describe a set of transformation rules that is
sound and complete for any convergent rewriting system.
Let am = max{ar(Y) |Y ∈ Y} be the maximal arity of the
second-order variables in Y. We consider the two groups of
transformation rules presented in Table 1.

The first three rules, Project, Imitate and Coalesce,
aim to simplify deducibility constraints and bring constraint
systems into a pre-solved form. The other rules in this paper
only apply to constraint systems that are already pre-solved.

Specifically, rule Project uses a frame rule of Φ to solve
a deducibility constraint in C. By fresh renaming, we mean
that ρ may substitute variables in M with distinct variables
not occurring in the system yet. This is useful for lowering
arities of second-variables so as to keep σ well-formed. As
usual, we require the bound variables in β to be fresh, that
is, β ∩ var(Φ;Ψ; C; σ) = ∅. Rule Imitate decomposes a
deducibility constraint into smaller constraints by applying
a public symbol in head position. Rule Coalesce merges
deducibility constraints which deal with the same first-order
variables.

It is not hard to prove that this set of three rules termi-
nates. Indeed, Imitate and Coalesce create no first-order
variables and decrease the total size of right-hand sides of
deducibility constraints. Project either reduces the number
of unsolved first-order variables (if dom(µ) 6= ∅) or decreases
the size of deducibility constraints as well.

The next five rules constitute the main loop of the proce-
dure. We discuss later their termination on convergent sub-
term rewriting systems. As already mentioned, these rules
are restricted to pre-solved constraint systems. Hence, an
application of any of those is generally followed by a number
of Project, Imitate and Coalesce steps.

Rules Narrowing-1, Narrowing-2 and Constrain are
classical (see for instance [16, 12]). By “l → r fresh from R”,
we mean that the rewriting rule l → r is obtained by renam-
ing the variables of some rule in R so that they do not oc-
cur in the left-hand constraint system. Rules Narrowing-
1, Narrowing-2 aim to guess possible reductions, respec-
tively in computable terms and in equality constraints. Rule
Constrain tries to solve an equality constraint by syntactic
unification.

Rule Context accounts for reductions that occur at the
top of computable terms. An example of application of this
rule is the following. Assume that M1 � enc(a, x0) is in Φ
and X0 �

? x0 in C. Assume a fresh rewriting rule l → r =
dec(enc(x, y), y) → x from R and fresh variables X, X1, X2

of maximal arity. If Σ = Φ; Ψ; C; σ is pre-solved then we
have the following sequence of reductions:

Φ; Ψ; C; σ

=⇒Context Φ ∪ {X � x}; Ψ; C ∪ {X �
? dec(enc(x, y), y)}; σ

=⇒Imitate Φ ∪ {dec(X1, X2) � x}; Ψ;

C ∪ {X1 �
? enc(x, y), X2 �

?
y)}; σ{X 7→ dec(X1, X2)}

=⇒Project Φ ∪ {dec(M1, X2) � a}; Ψ; C ∪ {X2 �
?

x0};

. . . {X1 7→ M1, x 7→ a, y 7→ x0}

=⇒Coalesce Φ ∪ {dec(M1, X0) � a}; Ψ; C; . . . {X2 7→ X0}

where the dots (. . .) stand for the previous substitutions.
Thus, we have inferred the new fact dec(M1, X0)�a, by ap-
plying decryption at the top of computable terms (or sup-
posedly computable terms in the case of x0).

Rule Relate is needed for the completeness of Coalesce.
It tries to find new visible equations, that is, different ways
to obtain a same computable term.

We now state the soundness and the completeness of the
transformation rules for any convergent rewriting system R.

Proposition 2 (Soundness). Let Σ0 = Φ0; ∅; C0; ∅ be
an intruder constraint system with Φ0 = {w1 � t1, . . . , tam

�

tam
}. Let Σ0 =⇒∗ Σ be a derivation using the rules of

Table 1. If θ |= Σ then θ |= Σ0. Moreover, the sets of rules
Φ and equations Ψ of Σ are sound with respect to Σ0: for
all θ, λ, λ0 such that θ, λ0 |= Σ0 and θ, λ |= Σ,

1. for every ∀β.M � t in Φ, (Mλ)[t1λ0 . . . tam
λ0] =R tλ;

2. for every ∀β.M ./ N in Ψ, (Mλ)[t1λ0 . . . tam
λ0] =R

(Nλ)[t1λ0 . . . tam
λ0].

The proof of soundness is done by induction on the deriva-
tion. Our proof for Narrowing-1, Context and Relate
relies on a number of syntactic invariants. Notably, we es-
tablish the following important invariant, originating from
the regularity condition (2) on intruder constraint systems:

For every ∀β.M � t in Φ and x ∈ var(t), there
exists X �

? t′ in C such that x ∈ var(t′) and
either X ∈ var(∀β.M) or ar(X) < max{i |wi ∈
par(M)}.

Intuitively each variable occurring in a deducible term t with
∀β.M � t ∈ Φ is constrained by a second-order variable at a
lower level than M .

Proposition 3 (Completeness). Let Σ0 be an in-
truder constraint system. If θ |= Σ0, then there exists a
solved constraint system Σ and a derivation Σ0 =⇒∗ Σ us-
ing the rules of Table 1 such that θ |= Σ.

Completeness is shown by instrumenting the rules of Ta-
ble 1 with the considered solution θ, that is, intuitively by
defining transformations rules of the form (θ, λ |= Σ) =⇒
(θ, λ′ |= Σ′). We successively prove the correctness of the
instrumented rules (that is, the symbol |= is actually pre-
served), progress (if the system is not solved, at least one
rule applies) and termination.

4.3 Enforcing Termination on Convergent
Subterm Rewriting Systems

We now assume a convergent subterm rewriting system R
and show how to enforce the termination of the transforma-
tion rules.

We have already proved the termination of rules Project,
Imitate and Coalesce. Concerning the narrowing rules, we
enforce termination by using a variant of the basic narrowing
strategy (see for instance [12]). Specifically, we augment
constraint systems with a fifth component N , standing for
a set of first-order terms. The set N is meant to store terms
known to be R-reduced. Semantically, θ is a solution to
Σ = Φ;Ψ; C; σ;N for some λ iff θ, λ |= Ψ; Ψ; C; σ in the
previous sense and for all t ∈ N , tλ is R-reduced. Hence,
terms which appear in N need not be narrowed anymore.
Initially, that is, for intruder constraint systems, N is set to
∅. We write st(N) for the set of subterms of terms in N .

The case of rule Context is more problematic as it may
introduce new variables indefinitely. We address this issue
by introducing four additional transformation rules, meant
to be applied eagerly on pre-solved constraint systems.

The new set of transformation rules is presented in Ta-
ble 2. We have omitted rules Imitate and Coalesce which
are the same as in Table 1, except for the additional com-
ponent N which is left unchanged.

As suggested, rules Narrowing-{1,2} now require that
the narrowed term t|p (resp. (t1 =R t2)|p) do not belong to
st(N). Rules Project and Relate add their argument t to
N in order to prevent further narrowing inside t. Similarly,
rule Constrain records the unified term t1µ as being R-
reduced.

Interestingly, rules Narrowing-{1,2} and Context tag
their result rσ as being R-reduced as well. This is crucial
for the termination of the algorithm as it entails that the
number of positions p eligible for narrowing steps does not
increase with rule Context and strictly decreases with rules
Narrowing-{1,2}.

As for the new rules, the two simple rules Clean-1 and
Clean-2 delete useless variables in the system. In the same
vein, rule Generalize adds universal quantifiers on second-
order variables X which appear free in frame rules and equa-
tions but nowhere else. This aims to reduce the number of
rules and equations, since these are considered modulo re-
naming of bound variables.

Rule Discard is a variant of Relate used to remove frame
rules ∀β.M�t that are intuitively subsumed by existing rules
∀βi.Mi � ti and existing constraints Xj �

? xj , provided that

a new equation is added to Ψ. The sets of bound variables
β, β1 . . . βn are required to be fresh and mutually disjoint.
The last two technical conditions in the premisses ensure the
completeness of this rule when it is applied eagerly.

We now make precise the control on transformation rules,
that is, which sequences of rules need to be considered by
the algorithm. For simplicity, we assume that the unification
procedure tries to match its second argument against the
first one whenever possible. In other words, mgu(t, l) = σ

whenever var(t)∩var(l) = ∅ and t = lσ. In rule Project, we
also require that ρ does not rename second-order variables
in var(M) more than necessary, that is formally, for all Y ∈
dom(ρ), ar(Y) > ar(X) and ar(Y ρ) = ar(X). The choice
of arity am + 1 rather than am for the fresh second-order
variables introduced by Context and Related is to ensure
that rule Coalesce substitutes these variables in priority.

Let Σ be an intruder constraint system. A sequence of
transformations (derivation) Σ =⇒∗ Σ′ by the rules of Ta-
ble 2 is standard iff it has the following structure:

• If Σ1 occurs before Σ2 in the derivation, with Σi =
Φi; Ψi; Ci; σi;Ni, and both constraint systems are pre-
solved and saturated for the last four rules, Discard,
Clean-{1,2} and Generalize, then Φ1; Ψ1; C1; σ1 6=
Φ2; Ψ2; C2; σ2.

• Each rule Narrowing-{1,2}, Constrain, Context,
Relate is followed by a maximal sequence of Project,
Imitate, Coalesce, and then, if a pre-solved form is
reached, by a maximal sequence of Discard, Clean-1,
Clean-2 and Generalize, in this order of priority.

• Rule Discard is applied in priority to the most re-
cently created frame rules ∀β.M � t. (Formally, each
frame rule created by Context is labeled with the
value of a global counter, incremented each time. Rules
with the highest labels are discarded in priority.)

Finally, we state our main theorem.

Theorem 2. Standard derivations form a sound, com-
plete, effective and finitely branching (up to renaming) trans-
formation system. Moreover there exists no infinite standard
derivation.

We deduce the decision result of Theorem 1 using König’s
Lemma and Proposition 1. The proofs of soundness and
completeness follow the same structure as previously. For
rules Narrowing-{1,2} and Context, the fact that rσ may
be added to N is justified by the following property of sub-
term rewriting systems: if f(t1 . . . tn) = lµ for some rewrit-
ing rule l → r ∈ R, and all the t1 . . . tn are R-reduced then
rµ is reduced. This property together with the convergence
of R turns out to be sufficient to imply the completeness of
standard derivations.

As for the proof of termination, due to the constraints
on narrowing positions, the rules Narrowing-{1,2} ter-
minate independently from the other rules. So does rule
Constrain, as well as the last four rules of Table 2. Con-
cerning Context and Relate, we prove that in any reach-
able system Σ that is saturated for Discard, the number
of right-hand sides t of frame rules in Σ cannot exceed the
number of subterms of right-hand sides t0 in Σ0—or more
exactly the number of subterms of such t0, once they have
been narrowed and added to N . We then bound the number
of frame rules created by Context, and deduce termination
for the whole set of rules.

5. CONCLUSION
In this work we described a class of second-order E-unifi-

cation problems and provided a terminating procedure to
decide their satisfiability and their equivalence, in the case
where the equational theory E is presented by a convergent
subterm rewriting system. This decision result is interesting
by itself as it is not implied by previous work in the area,
for instance [16, 21, 17].

A major application, for which these constraint systems
were intended, is the security of cryptographic protocols
against off-line guessing attacks. No previous decision re-
sults existed for such properties, in any case, not using the
recent general definition of Corin et al. [10]. Using our main
result, we recovered the decidability of trace properties, and
proved the decidability of security against of off-line guessing
attacks for a bounded number of sessions.

As future work, we foresee to apply our notion of equiv-
alence between symbolic traces to other security properties,
such as strong secrecy and resistance to on-line guessing at-
tacks. On the long term an interesting avenue would be
to extend our result to equational theories involving alge-
braic properties such as associativity-commutativity, XOR
or homomorphism.

Acknowledgments
We are very grateful to Véronique Cortier, Florent Jacque-
mard and Stéphanie Delaune for helpful discussions, to Jean
Goubault-Larrecq and Steve Kremer for useful comments.
This work was partially supported by the RNTL project
PROUVÉ and the ACI-SI Rossignol.

6. REFERENCES
[1] M. Abadi and V. Cortier. Deciding knowledge in

security protocols under equational theories. In Proc.
31st International Colloquium on Automata,
Languages and Programming (ICALP’04), volume
3142 of LNCS, pages 46–58, 2004.

[2] M. Abadi and V. Cortier. Deciding knowledge in
security protocols under (many more) equational
theories. In Proc. 18th IEEE Computer Security
Foundations Workshop (CSFW’05), pages 62–76,
2005.

[3] M. Abadi and C. Fournet. Mobile values, new names,
and secure communications. In Proc. 28th Annual
ACM Symposium on Principles of Programming
Languages (POPL’01), pages 104–115, 2001.

[4] M. Baudet. Deciding security of protocols against
off-line guessing attacks (extended version), 2005.
Manuscript.

[5] B. Blanchet. Personal web page.
http://www.di.ens.fr/∼blanchet.

[6] B. Blanchet. Automatic proof of strong secrecy for
security protocols. In Proc. 25th IEEE Symposium on
Security and Privacy (SSP’04), pages 86–100, 2004.

[7] B. Blanchet, M. Abadi, and C. Fournet. Automated
verification of selected equivalences for security
protocols. In Proc. 20th IEEE Symposium on Logic in
Computer Science (LICS’05), pages 331–340, 2005.

[8] Y. Chevalier, R. Küsters, M. Rusinowitch, and
M. Turuani. Deciding the security of protocols with
Diffie-Hellman exponentiation and products in

exponents. In Proc. 23rd Conference on Foundations
of Software Technology and Theoretical Computer
Science (FST–TCS’03), volume 2914 of LNCS, pages
124–135, 2003.

[9] E. Cohen. Proving protocols safe from guessing. In
Proc. Foundations of Computer Security (FCS’02),
pages 85–92, 2002.

[10] R. Corin, J. Doumen, and S. Etalle. Analysing
password protocol security against off-line dictionary
attacks. In Proc. 2nd International Workshop on
Security Issues with Petri Nets and other
Computational Models (WISP’04), volume 121 of
ENTCS, pages 47–63, 2005.

[11] R. Corin, S. Malladi, J. Alves-Foss, and S. Etalle.
Guess what? Here is a new tool that finds some new
guessing attacks. In Proc. Workshop on Issues in the
Theory of Security (WITS’03), pages 62–71, 2003.

[12] S. Delaune and F. Jacquemard. A decision procedure
for the verification of security protocols with explicit
destructors. In Proc. 11th ACM Conference on
Computer and Communications Security (CCS’04),
pages 278–287, 2004.

[13] S. Delaune and F. Jacquemard. A theory of dictionary
attacks and its complexity. In Proc. 17th IEEE
Computer Security Foundations Workshop
(CSFW’04), pages 2–15, 2004.

[14] D. Dolev and A. C. Yao. On the security of public key
protocols. IEEE Transactions on Information Theory,
IT-29(12):198–208, 1983.

[15] L. Gong, M. A. Lomas, R. M. Needham, and J. H.
Saltzer. Protecting poorly chosen secrets from
guessing attacks. IEEE Journal on Selected Areas in
Communications, 11(5):648–656, 1993.

[16] J.-P. Jouannaud and C. Kirchner. Solving equations in
abstract algebras: A rule-based survey of unification.
In J.-L. Lassez and G. Plotkin, editors, Computational
Logic: Essays in Honor of Alan Robinson, pages
257–321. MIT Press, 1991.

[17] J. Levy and M. Veanes. On the undecidability of
second-order unification. Information and
Computation, 159(1-2):125–150, 2000.

[18] G. Lowe. Analysing protocols subject to guessing
attacks. Journal of Computer Security, 12(1):83–98,
2004.

[19] J. K. Millen and V. Shmatikov. Constraint solving for
bounded-process cryptographic protocol analysis. In
Proc. 8th ACM Conference on Computer and
Communications Security (CCS’01), pages 166–175,
2001.

[20] J. K. Millen and V. Shmatikov. Symbolic protocol
analysis with products and Diffie-Hellman
exponentiation. In Proc. 16th IEEE Computer
Security Foundations Workshop (CSFW’03), pages
47–61, 2003.

[21] W. Snyder and J. H. Gallier. Higher-order unification
revisited. Journal of Symbolic Computations,
8:101–140, 1989.

Project

µ = mgu(t, f(t1 . . . tn)) X 6∈ var(M) ∀wi ∈ par(M), i ≤ ar(X)
ρ fresh renaming such that dom(ρ) ⊆ var(M) and ∀Y ∈ var(Mρ), ar(Y) ≤ ar(X)

Φ ∪ {∀β.M � t}; Ψ; C] {X �? f(t1 . . . tn)}; σ =⇒ (Φ ∪ {∀β.M � t}; Ψ; C; σ) {X 7→ Mρ}ρµ

Imitate

f ∈ Fpub X1 . . . Xn fresh second-order variables with ar(Xi) = ar(X)

Φ; Ψ; C] {X �
? f(t1 . . . tn)}; σ

=⇒ (Φ; Ψ; C ∪ {X1 �
? t1, . . . , Xn �

? tn}; σ) {X 7→ f(X1 . . . Xn)}

Coalesce

ar(X1) ≤ ar(X2)

Φ; Ψ; C] {X1 �? x, X2 �? x}; σ =⇒ (Φ; Ψ; C ∪ {X1 �? x}; σ) {X2 7→ X1}

Narrowing-1

l → r fresh rule from R t|p 6∈ X µ = mgu(t|p, l)

Φ] {∀β.M � t}; Ψ; C; σ =⇒ (Φ ∪ {∀β.M � t[p := r]}; Ψ; C; σ) µ

Narrowing-2

l → r fresh rule from R (t1 =?
R t2)|p 6∈ X µ = mgu((t1 =?

R t2)|p, l)

Φ; Ψ; C] {t1 =?
R

t2}; σ =⇒ (Φ; Ψ; C] {(t1 =?
R

t2)[p := r]}; σ) µ

Constrain

µ = mgu(t1, t2)

Φ; Ψ; C] {t1 =?
R

t2}; σ =⇒ (Φ; Ψ; C; σ) µ

Context

l → r fresh rule from R X fresh second-order variable of arity am

Φ; Ψ; C; σ =⇒ Φ ∪ {X � r}; Ψ; C ∪ {X �? l}; σ

Relate

X fresh second-order variable of arity am

Φ ∪ {∀β.M � t}; Ψ; C; σ =⇒ Φ ∪ {∀β.M � t}; Ψ ∪ {∀β.X ./ M}; C ∪ {X �? t}; σ

Table 1: Transformation rules for convergent rewriting systems

Each of the last five rules additionally requires its left-hand constraint system to be pre-solved, that
is, saturated for the first three rules.

Project

µ = mgu(t, f(t1 . . . tn)) X 6∈ var(M) ∀wi ∈ par(M), i ≤ ar(X)
ρ fresh renaming such that dom(ρ) ⊆ var(M) and ∀Y ∈ var(Mρ), ar(Y) ≤ ar(X)

Φ ∪ {∀β.M � t}; Ψ; C] {X �? f(t1 . . . tn)}; σ; N =⇒ (Φ ∪ {∀β.M � t}; Ψ; C; σ; N ∪ {t}) {X 7→ Mρ}ρµ

Narrowing-1

l → r fresh rule from R t|p 6∈ X ∪ st(N) µ = mgu(t|p, l)

Φ] {∀β.M � t}; Ψ; C; σ; N =⇒ (Φ ∪ {∀β.M � t[p := r]}; Ψ; C; σ; N ∪ {r}) µ

Narrowing-2

l → r fresh rule from R (t1 =?
R t2)|p 6∈ X ∪ st(N) µ = mgu((t1 =?

R t2)|p, l)

Φ; Ψ; C] {t1 =?
R

t2}; σ; N =⇒ (Φ; Ψ; C] {(t1 =?
R

t2)[p := r]}; σ; N ∪ {r}) µ

Constrain

µ = mgu(t1, t2)

Φ; Ψ; C] {t1 =?
R

t2}; σ; N =⇒ (Φ; Ψ; C; σ; N ∪ {t1}) µ

Context

l → r fresh rule from R X fresh second-order variable of arity am + 1

Φ; Ψ; C; σ; N =⇒ Φ ∪ {X � r}; Ψ; C ∪ {X �? l}; σ; N ∪ {r}

Relate

X fresh second-order variable of arity am + 1

Φ ∪ {∀β.M � t}; Ψ; C; σ; N =⇒ Φ ∪ {∀β.M � t}; Ψ ∪ {∀β.X ./ M}; C ∪ {X �? t}; σ; N ∪ {t}

Discard

t = C[t1 . . . tn, x1 . . . xm] t, t1 . . . tn ∈ st(N)
∀β1.M1 � t1, . . . , ∀βn.Mn � tn ∈ Φ X1 �

? x1, . . . , Xm �
? xm ∈ C

max{j |wj ∈ par(M1 . . . Mn)} ≤ max{j |wj ∈ par(M)}

∀Y ∈ var(∀β1 . . . βn.C[M1 . . . Mn, X1 . . . Xm]),

{

either Y ∈ var(∀β.M)

or ar(Y) < max{j |wj ∈ par(M)}

Φ] {∀β.M � t}; Ψ; C; σ; N =⇒ Φ; Ψ ∪ {∀β1 . . . βn, β.C[M1 . . . Mn, X1 . . . Xm] ./ M}; C; σ; N

Clean-1

v 6∈ Y

Φ; Ψ; C; σ] {v 7→ T}; N =⇒ Φ; Ψ; C; σ; N

Clean-2

x 6∈ var(Φ; C; σ)

Φ; Ψ; C] {X �? x}; σ; N =⇒ Φ; Ψ; C; σ; N

Generalize

X ∈ var(Φ) ∪ var(Ψ) − var(C) − var(σ) − Y

Φ; Ψ; C; σ; N =⇒ {∀X.∀β.M � t}(∀β.M�t)∈Φ; {∀X.∀β.M ./ N}(∀β.M./N)∈Ψ; C; σ; N

Table 2: Transformation rules for convergent subterm rewriting systems

Rules Imitate and Coalesce are similar to those of Table 1 and thus omitted.
The five rules from Narrowing-1 to Relate additionally require their left-hand constraint systems
to be pre-solved and saturated for the last four rules.
Each of the last four rules requires its left-hand constraint system to be pre-solved and saturated
for the higher rules in this group.

