
Model Checking Parse Trees

Anudhyan Boral1 Sylvain Schmitz2

1CMI, Chennai, India
2LSV, ENS Cachan & CNRS, France

Abstract

Parse trees are fundamental syntactic structures in both computa-
tional linguistics and compilers construction. We argue in this paper that,
in both fields, there are good incentives for model-checking sets of parse
trees for some word according to a context-free grammar. We put forward
the adequacy of propositional dynamic logic (PDL) on trees in these appli-
cations, and study as a sanity check the complexity of the corresponding
model-checking problem: although complete for exponential time in the
general case, we find natural restrictions on grammars for our applications
and establish complexities ranging from nondeterministic polynomial time
to polynomial space in the relevant cases.

1 Introduction

The parse trees of a sequence w are employed extensively in computational
linguistics, where they represent constituent analyses of the natural language
sentence w, and in compilers, where they provide the syntactic structure of the
input program w. They are produced by a parsing algorithm on the basis of
a grammar, for instance a context-free one, that typically required quite a bit
of ingenuity in its conception: in each of the two communities, a subfield of
grammar engineering has arisen (e.g. Klint et al., 2005; Kallmeyer et al., 2008),
dedicated to the principled development of grammars. Part of the difficulty in
this task stems from the limited expressiveness of the formalism: for instance,
in a context-free grammar, a production A→ BC only states that an ‘A’ node
might have two children labeled ‘B’ and ‘C’ in this order. This means that
orthogonal considerations, possibly involving distantly related tree nodes, have
to be enforced manually, little by little in the local rules of the grammar, blowing
up its size and quickly rendering it unmaintainable.

Model theoretic syntax provides an alternative approach to syntax specifica-
tions: rather than an ‘enumerative’ formalism that generates the desired parse
trees, one can describe them as models of a logical formula. This point of view
leads to interesting consequences for syntactic theory (Pullum and Scholz, 2001),
but here we are mostly interested in the conciseness and ease of manipulation
of formulæ. Several logical formalisms over trees have been employed to this
end, notably first-order (FO) or monadic second-order (MSO) logics (Rogers,
1998), and propositional dynamic logic on trees (PDLtree) (Kracht, 1995; Palm,
1999; Afanasiev et al., 2005). In practice however, model-theoretic approaches
suffer from a prohibitively high complexity, as the known recognizing algorithms

1

ar
X

iv
:1

21
1.

52
56

v2
 [

cs
.L

O
]

 2
5

M
ar

 2
01

3

essentially amount to a satisfiability check (Cornell, 2000): given a formula ϕ
and a sequence w to parse, build a formula ϕw that recognizes all the trees that
yield w, and check ϕ ∧ ϕw for satisfiability. As satisfiability is in general non-
elementary for FO and MSO formulæ and ExpTime-complete for PDLtree ones,
this seems like a serious impediment to a larger adoption of model-theoretic
techniques.

In this paper, we introduce the model-checking problem for parse trees. For-
mally, given a sequence w, a grammar G, and a formula ϕ, we ask whether all
the parse trees of w according to G verify ϕ. It turns out that checking sets of
parse trees of a given w, i.e. parse forests, can be easier than other classes of tree
languages, as could be defined by tree automata, document type definitions, etc.

This parse forest model-checking problem (PFMC) allows for a ‘mixed’ ap-
proach, where a context-free grammar is employed for a cursory syntax specifi-
cation, alongside a logical formula for the fine-tuning. Because the logical lan-
guages we consider are closed under negation, under this viewpoint, the PFMC
problem also answers the recognition problem for the ‘conjunction’ of the gram-
mar G and the formula ϕ: is there a parse of w according to both G and ϕ?
As ϕ might describe a non-local tree language, there is a slight expressive gain
to be found in such conjunctions, but our interest lies more in the concision
and clarity brought by refining a grammar with a PDLtree formula: it allows to
capture long-distance dependencies that would often require a cumbersome and
error-prone hard-wiring in the grammar, at the expense of an explosion of the
number of nonterminal symbols.

We detail in Section 3 two applications of the PFMC; for these, we found it
convenient to use PDLtree as the logical language for properties:

1. In computational linguistics, we advocate a mixed approach for model-
theoretic syntax, with syntactic structures described by the conjunction
of a grammar for localized specification together with a PDLtree constraint
capturing long-distance syntactic phenomena;

2. In compilers construction, PDLtree formulæ provide a compelling means
for parser disambiguation (Thorup, 1994; Klint and Visser, 1994; Kats
et al., 2010) by allowing to express formally the informal disambiguation
rules usually provided with grammars for programming languages.

We discuss the appropriateness of our formalizations in some depth, which al-
lows us to motivate (1) practically relevant restrictions on the grammar G, and
(2) considering the full logic PDLtree rather than some weaker fragments. We
consider the two formalizations proposed in Section 3 as the initial steps of a
larger research programme on the model-checking problem in syntax; we point
for instance to several interesting open issues with the choice of finite labeled
ordered trees as syntactic structures and PDLtree as logical formalism.

As a first usability check, we investigate the computational complexity of the
PFMC and map the resulting complexity landscape for the problem in Section 4.
Although the general case is ExpTime-complete like the PDLtree satisfiability
problem, our restrictions on grammars lead to more affordable complexities

1. from NPTime-complete for our linguistic applications, where we can as-
sume the grammar to be both ε-free and acyclic,

2

2. to PSpace-complete for our applications in ambiguity filtering, where we
can only assume the grammar to be acyclic

(see Figure 3 for a summary). Our study also unearthed a somewhat surprising
corollary for model-theoretic syntax (Cor. 1):

3. the recognition problem for PDLtree, i.e. whether there exists a tree model
with the input word as yield, is PSpace-complete if empty labels are
forbidden—the best algorithms for this were only known to operate in
exponential time (Cornell, 2000; Palm, 2004).

Interestingly, the PFMC is closely related to a prominent algorithmic prob-
lem studied by the XML community: there the formula ϕ is a Core XPath
one—which is equivalent to a restricted fragment PDLcore of PDLtree—and the
tree language L is generated by a document type definition (DTD), and the prob-
lem is accordingly referred to as ‘satisfiability in presence of a DTD’. Benedikt
et al. (2008) comprehensively investigate this topic, and in some restricted cases
the problem becomes tractable (Montazerian et al., 2007; Ishihara et al., 2009).
Our applications in computational linguistics and compilation lead however to
a different setting, where L comes from a class of tree languages smaller than
that of DTDs—and our grammar restrictions have no natural counterpoints in
the XML literature—, but where ϕ requires more expressive power than that
of PDLcore. Nevertheless, we will reuse several proof techniques developed in
the XML setting and adapt them to ours, Prop. 6 being a prime example: it
relies on an extension of the results of Benedikt et al. (2008) to the full logic
PDLtree (see Prop. 4) and on an encoding of a restricted class of parse forests
into non-recursive DTDs.

2 Propositional Dynamic Logic on Trees

Propositional dynamic logic (PDL, see (Fischer and Ladner, 1979)) is a modal
logic where “programs”—in the form of regular expressions over the relations
in a frame—are used as modal operators. Originally motivated by applications
in computational linguistics (Kracht, 1995; Palm, 1999; Afanasiev et al., 2005),
propositional dynamic logic on trees (PDLtree) has also been extensively stud-
ied in the XML community (Marx, 2005; Benedikt et al., 2008; ten Cate and
Segoufin, 2010), where it is better known as Regular XPath. It features two
relations: the child relation ↓ between a parent node and any of its immediate
children, and the right-sibling relation → between a node and its immediate
right sibling.

2.1 Syntax and Semantics

Formally, a PDLtree formula ϕ is defined by the abstract syntax

ϕ ::= p | > | ¬ϕ | ϕ ∧ ϕ | 〈π〉ϕ (node formulæ)

π ::= ↓ | → | π ; π | π + π | π∗ | π−1 | ϕ? (path formulæ)

where p is an atomic proposition ranging over some countable set AP—because
we only deal with satisfiability questions, we can actually assume AP to be

3

finite. We enrich this syntax as usual by defining box modalities as duals [π]ϕ
def
=

¬〈π〉¬ϕ of the diamond ones, inverses to the atomic path formulæ as ↑ def
= ↓−1

and ← def
= →−1, and boolean connectives ⊥ def

= ¬>, ϕ1 ∨ ϕ2
def
= ¬(¬ϕ1 ∧ ¬ϕ2),

ϕ1 ⇒ ϕ2
def
= ¬ϕ1 ∨ ϕ2, and ϕ1 ≡ ϕ2

def
= (ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1).

Formulæ are interpreted over finite ordered trees t with nodes labeled by
propositions in AP. Such a tree t is a partial function from the set N∗ of finite
sequences of natural numbers, i.e. the set of tree nodes, to AP, s.t. its domain
dom t is (1) finite, (2) prefix closed, i.e. uv in dom t for some u, v in N∗ implies
that u is also in dom t, and (3) predecessor closed, i.e. if ui is in dom t for some
u in N∗ and i in N, then uj is also in dom t for all j < i in N. Such a tree can
be seen as a structure Mt = 〈dom t, ↓t,→t, t〉 with

↓t
def
= {(u, ui) | ui ∈ dom t}

→t
def
= {(ui, u(i+ 1)) | u(i+ 1) ∈ dom t} .

We define the interpretations of PDLtree formulæ over t inductively by

JpKt
def
= {u ∈ dom t | p = t(u)} J>Kt

def
= dom t

Jϕ1 ∧ ϕ2Kt
def
= Jϕ1Kt ∩ Jϕ2Kt J¬ϕKt

def
= dom t \ JϕKt

Jϕ?Kt
def
= {(u, u) | u ∈ JϕKt} J〈π〉ϕKt

def
= JπK−1

t (JϕKt)

J↓Kt
def
= ↓t J→Kt

def
= →t

Jπ1 ; π2Kt
def
= Jπ1Kt # Jπ2Kt Jπ∗Kt

def
= JπK∗t

Jπ1 + π2Kt
def
= Jπ1Kt ∪ Jπ2Kt Jπ−1Kt

def
= JπK−1

t

Observe that these are sets of nodes included in dom t in the case of node
formulæ, but binary relations included in dom t × dom t in the case of path
formulæ; thus JπK∗t denotes the reflexive transitive closure of JπKt and JπK−1

t its
inverse, while Jπ1Kt # Jπ2Kt denotes the composition of the two relations Jπ1Kt
and Jπ2Kt. A node u in dom t satisfies ϕ, noted t, u |= ϕ, if u is in JϕKt. A tree

t satisfies ϕ, noted t |= ϕ, if its root ε satisfies ϕ; we let JϕK def
= {t | t |= ϕ} be

the set of models of ϕ.

Example 1 (Basic Navigation). Several simple formulæ helping navigation can

be defined: root
def
= ¬〈↑〉> holds only at the root, leaf

def
= ¬〈↓〉> only at a leaf

node, first
def
= ¬〈←〉> at a leftmost one, and last

def
= ¬〈→〉> at a rightmost one.

We can also define the first-child relation ↙ def
= ↓; first?, and conversely

express the child relation as ↓ ≡ ↙;→∗: this shows that we could work on
binary tree models instead of the unranked ones we used in our definitions.

Example 2 (Parse Trees (Blackburn et al., 1993)). Recall that a context-free
grammar (CFG) is a tuple G = 〈N,Σ, P, S〉 composed of a finite nonterminal
alphabet N , a finite terminal alphabet Σ disjoint from N and forming a vocab-

ulary V
def
= N]Σ, a finite set of productions P ⊆ N ×V ∗, and an axiom S ∈ N .

We denote the empty sequence by ε and write Σ′
def
= Σ] {ε} and V ′

def
= V] {ε}.

Given a context-free grammar G, its set of parse trees forms a local tree
language, which can be expressed as JϕGK for a PDLtree formula ϕG with V ′

4

as set of atomic propositions. First define a path formula πα that defines a
sequence of sibling nodes labeled by α in V ∗:

πα
def
=


X?;→;πα′ if α = Xα′, X ∈ V, α′ 6= ε ,

X?; last? if α = X ∈ V ,

ε?; last? otherwise, i.e. if α = ε .

ϕG
def
= S (the root is labeled by S)

∧ [↓∗]
(
leaf ≡

∨
a∈Σ′

a

(leaves are terminals and internal nodes nonterminals)

∧
∧
A∈V

A⇒
∨
A→α
〈↙;πα〉>

)
. (productions are enforced)

2.2 The Conditional Fragment

We will consider in this paper several fragments of PDLtree, most importantly
the conditional path fragment PDLcp (Palm, 1999; Marx, 2005), with a restricted
syntax on path formulæ

π ::= α | π ; π | π + π | ϕ? | (α;ϕ?)∗ (conditional paths)

α ::=← | → | ↑ | ↓ . (atomic paths)

This fragment is of particular relevance, because it extends the core language
PDLcore (Blackburn et al., 1996; Gottlob and Koch, 2002) (which features α∗

instead of (α;ϕ?)∗) and captures exactly first-order logic over finite ordered
trees with the two relations →+ and ↓+ (Marx, 2005).

Example 3 (Depth-First Traversal). Observe that the formulæ in examples 1

and 2 are actually in PDLcore. The depth-first traversal relation ≺ def
= (last?; ↑

)∗;→; (↓; first?)∗ is an example of a path that is not definable in PDLcore—this
can be checked for instance using an Ehrenfeucht Fräıssé argument.

More generally, PDLcp allows to express relations akin to LTL’s until and
since modalities; see e.g. (Libkin and Sirangelo, 2010). We denote by PDLtree[↓]
(resp. PDLcp[↓], PDLcore[↓]) the fragments with only downward navigation, i.e.
without the →, ←, and ↑ atomic paths.

3 Model-Checking Parse Trees

Many problems arising naturally with PDLtree are decidable, notably the

model-checking problem: given a tree t and a formula ϕ, does t |= ϕ? This is
known to be in PTime even for larger fragments of PDL (Lange, 2006).

satisfiability problem: given a formula ϕ, does there exist a tree t s.t. t |= ϕ?
This is known to be ExpTime-complete (Afanasiev et al., 2005).

In the context of XML processing and XPath, an intermediate question between
model-checking and satisfiability also arises:

5

satisfiability in presence of a tree language: given a formula ϕ and a reg-
ular tree language L, does there exist a tree t ∈ L s.t. t |= ϕ?

Due to its initial XML motivation, the basic case for this problem is that of
a PDLcore[↓] formula (a downward Core XPath query) and of a local tree lan-
guage (described by a DTD), but many variants exist (Benedikt et al., 2008;
Montazerian et al., 2007; Ishihara et al., 2009)—in particular one where the tree
language is the language of infinite trees of a two-way alternating parity tree
automaton, which is used by Göller et al. (2009) to prove that the satisfiability
problem for PDL with intersection and converse is 2ExpTime-complete.

Our own flavour is motivated by applications in computational linguistics
and programming languages, where the tree language is the set of parse trees of

a word w in Σ∗ according to a CFGG = 〈N,Σ, P, S〉 verifying V ′
def
= Σ]N]{ε} =

AP. More precisely, following a well-known construction of Bar-Hillel et al.
(1961), if w = a1 · · · an is a word of length n, the set of parse trees or parse
forest of a CFG G for w, written LG,w, is the regular tree language recognized
by a tree automaton AG,w with state set

QG,w
def
= {(i,X, j) | 0 ≤ i ≤ j ≤ n,X ∈ V ′} ,

alphabet V ′, initial state (0, S, n), and rules

δG,w
def
= {(i0, A, im)→ A((i0, X1, i1) · · · (im−1, Xm, im))

| A→ X1 · · ·Xm ∈ P ∧ 0 ≤ i0 ≤ · · · ≤ im ≤ n}
∪ {(i, ai+1, i+ 1)→ ai+1() | 0 ≤ i < n}
∪ {(i, ε, i)→ ε() | 0 ≤ i ≤ n} .

Intuitively, a state (i,X, j) of this automaton recognizes the set of trees deriv-
able in G from the symbol X and spanning the factor ai+1 · · · aj of w. This
automaton is in general not trim, in that many of its states and rules are never
employed in any accepting configuration, but it can be trimmed in linear time
if required.

Parse Forest Model-Checking Problem (PFMC).

input a context free grammar G, a word w, and a PDLtree formula ϕ,

question does there exists t ∈ LG,w s.t. t |= ϕ?

Note that the automaton AG,w has size O(|G| · |w|m+1) if m is the maximal
length of a production rightpart in G; since the grammar can be put in quadratic
form (corresponding to the binarization we would also perform on the formula),
this typically results in size O(|G| · |w|3). Therefore, although a tree automaton
for the tree language is not part of the input, it can nevertheless be constructed
in logarithmic space. The originality of the problem stems from considering
parse forests, which form a rather restricted class of tree languages.

In Section 4, we will investigate the complexity of this problem, and focus on
the influence of the acyclicity and ε-freeness of G: Define the derivation relation
⇒ between sequences in V ∗ by βAγ ⇒ βαγ iff A→ α is a production of G and
β, γ are arbitrary sequences in V ∗. A CFG is acyclic, if none of its nonterminals

6

A allows A⇒+ A. A CFG is ε-free, if none of its productions is of form A→ ε
for some nonterminal A.

In the remainder of this section, we motivate the problem by considering ap-
plications in computational linguistics (Section 3.1) and compilers construction
(Section 3.2).

3.1 Application: Computational Linguistics

In contrast with many formal theories of syntax that describe natural lan-
guage sentences through ‘generative-enumerative means’, Pullum and Scholz
(2001) champion model-theoretic syntax, where the syntactic structures (typi-
cally, trees) of a natural language are the models of some logical formula. They
point out interesting consequences on theories of syntax, but here we betray the
spirit of their work in exchange for some practicality.1

Indeed, the usual approach to model-theoretic syntax would be to describe
a language through a huge formula ϕ of PDLtree or monadic second-order logic
(MSO) on trees. Checking whether a given sentence w can be assigned a struc-
ture then reduces to a recognition problem on a tree automaton Aϕ of expo-
nential (for PDLtree) or non-elementary (for MSO) size (Cornell, 2000).

A Mixed Approach We consider a pragmatic approach, where

• a CFG describes the local aspects of syntax, e.g. that a canonical transitive
French sentence can be decomposed into a noun phrase acting as subject
followed by a verb kernel and an object noun phrase corresponds to a
production S→ NP VN NP, while

• long-distance dependencies and more complex linguistic constraints are
described through PDLtree formulæ.

Example 4 (French Clitics). A toy grammar for French sentences with pred-
icative verbs like ‘dire’ or ‘demander’ could look like (in an extended syntax
where X? describes zero or one occurrences of symbol X):

S→ NPsuj? VN VPinfobj? PPaobj?

NPsuj→ d n

VN→ clsuj? clobj? claobj? v

VPinfobj→ de VN

PPaobj→ à NP

v→ demande | réfléchir clsuj→ elle

n→ philosophe clobj→ le

d→ la claobj→ lui

Such predicative verbs have a mandatory object and subject, and an optional
indirect object. But all three canonical arguments can be replaced by clitics in
the verb matrix VN. This grammar fragment generates reasonable sentences
like

1In an ESSLLI 2013 lecture, Geoffrey Pullum famously explained that “model theoretic
syntax is not generative enumerative syntax with constraints”, the latter being exactly what
we are proposing as a way of mitigating the complexity of model-theoretic techniques.

7

S

NP suj

d

la

n

philosophe

VN

cl obj

le

cl aobj

lui

v

demande

(a) Syntax tree according to Example 4.

S

NP suj

d

la

n

philosophe

VN

cl obj

le

cl aobj

lui

v

demande

VP inf obj

ε

PP aobj

ε

(b) Analysis with moved constituents.

Figure 1: Syntax trees for “la philosophe le lui demande.”

(1) La
The

philosophe
philosopher

demande
asks

de
to

réfléchir.
think.

(2) La
The

philosophe
philosopher

le
it.ACC

lui
her.DAT

demande.
asks.

“The philosopher asks it to her”.

where the ‘le’ clitic acts as direct object and ‘lui’ as an indirect one (see Figure 1a
for an example syntax tree). It also generates ungrammatical ones like

(3) * Elle
She

le
it.ACC

lui
her.DAT

demande
asks

de
to

réfléchir.
think.

“She asks it to her to think”.

(4) * demande.
asks.

where there are duplicated or missing arguments.
Instead of refining the grammar (which might prove impossible, for instance

if it was automatically extracted from a treebank, i.e. a set of sentences anno-
tated with syntactic trees), we can filter out the unwanted trees using a PDLtree

formula. To improve readability, we take symbols like ‘VPinfobj’ or ‘clsuj’ to
denote sets of atomic propositions, respectively {VP, inf, obj} and {cl, suj} in

8

this instance, and refine our grammar with the following formula:

[↓∗]demande ⇒
(
〈(↑; ↑;→+) + (↑;←+; cl?)〉obj (at least one object)

∧ 〈(↑; ↑;←) + (↑;←+; cl?)〉suj (at least one subject)

∧
∧

f∈{suj,obj,aobj}

〈↑;←+; cl?〉f

⇒ ¬〈↑; ↑; (← +→+)〉f
)

(clitic arguments forbid the matching canonical arguments)

Interestingly, such PDLtree constraints can easily be tested against tree cor-
pora to check their validity; see (Lai and Bird, 2010) on using PDLtree-like query
languages to this end. We checked that the above PDLtree formula was satis-
fied by the trees in the Sequoia treebank (Candito and Seddah, 2012) using an
XPath processor: note that our formula is indeed in PDLcore.

Discussion In this approach, the CFG can be a very permissive, over-generating
one, like the probabilistic grammars extracted from treebanks,2 since it is later
refined by the PDLtree constraints. We are not aware of any linguistic ratio-
nale for cycles in CFGs; on the other hand, ε-productions are sometimes used
as placeholders for moved constituents. However, in such analyses, the moved
constituent and the placeholder are coindexed, i.e. related through an additional
relation, which

• requires a richer class of models than mere trees over a finite alphabet if we
want to make the coindexation explicit (see Figure 1b for an example)—
one could consider data trees to this end (Bojańczyk and Lasota, 2012;
Figueira, 2012)—, and

• can be simulated by a PDLtree formula, as seen with the connection we
establish between a clitic and the corresponding missing argument in Ex-
ample 4.

We therefore expect our grammars to be both acyclic and ε-free—and we could
check that this was indeed the case on the three rather different CFGs proposed
by Moore (2004) for natural language parsing benchmarks.

On the logical side, it seems necessary to be able to use e.g. depth-first
traversals (recall Example 3). Palm (1999) and Lai and Bird (2010) study the
question in much greater detail and argue that PDLcp provides an appropriate
expressiveness for linguistic queries.

3.2 Application: Ambiguity Filtering

Ambiguities in context-free grammars describing the syntax of programming
languages are a severe issue, as they might lead to different semantic interpre-
tations, and complicate the use of deterministic parsers—they basically require
manual fiddling. They are also quite useful, as they allow for more concise
and more readable grammars, and it is actually uncommon to find a language
reference proposing an unambiguous grammar.

2Moore (2004) finds an average of 7.2 × 1027 different parse trees per sentence with a
grammar extracted from the Penn treebank!

9

st

if ct

true

then se

if ct

true

then ss

skip

else ss

skip

(a) Parse when preferring shift over reduce.

se

if ct

true

then st

if ct

true

then ss

skip

else ss

skip

(b) Parse when preferring reduce over shift.

Figure 2: Two parses for the ambiguous input “if true then if true then skip
else skip” with the grammar of Example 5.

A nice way of dealing with ambiguities at parse time is to build a parse
forest and filter out the unwanted trees (Klint and Visser, 1994). In contrast
with tinkering with parsers, this allows to implement the ‘side constraints’ pro-
vided in the main text of language references as declarative rules, which, beyond
readability and maintainability concerns (Kats et al., 2010), also enables some
amount of static reasoning and optimization.

Example 5 (Dangling Else). We propose to use PDLtree formulæ to filter out
unwanted parses. Consider the following regular tree grammar for statements:3

S → st(if C then S) | se(if C then S else S)

| sw(while C S) | ss(skip)

C → ct(true) | cf(false)

Feeding this grammar to a LALR(1) parser generator like GNU/bison, we find a
single shift/reduce conflict, where the parser has a choice on inputs like “if true
then if true then skip else skip”, upon reaching the ‘else’ symbol, between reading
further (Figure 2a), and reducing first and leaving this else for later (Figure 2b).
The usual convention in programming languages is a greedy one, where shift is
always chosen. However, disambiguation by choosing between shift or reduce
parsing actions is error-prone, and there are cases where both alternatives are
incorrect on some inputs (see (Schmitz, 2010) for such an example in Standard
ML).

A PDLtree formula that accepts the desired tree of Figure 2a but rejects the
one of Figure 2b should check that no ‘else’ node can be next in a depth-first

3We use a regular tree grammar in a restricted way to label internal nodes differently de-
pending on the chosen production; this allows for a simpler PDLtree formula but has otherwise
no impact as the language remains local.

10

traversal (in the sense of Example 3) from an ‘st’ node:

¬〈↓∗〉(st ∧ 〈≺〉else) .

Observe that a depth-first traversal ≺ is really needed here, because the ‘st’
node can be at the end of an arbitrarily long sequence of ‘sw’ nodes from nested
‘while’ statements.

A very similar approach was proposed by Thorup (1994), who used simple
tree patterns for similar purposes. Both tree patterns and PDLtree formulæ
can be compiled into the grammar, so that only the desired trees can be gener-
ated, allowing to use deterministic parsers or ambiguity checking tools (Schmitz,
2010). PDLtree formulæ are strictly more expressive than patterns; the dangling
else example required an involved extension of patterns in (Thorup, 1996).

Discussion The grammars used for programming languages are always acyclic—
tools like GNU/bison will detect and reject cyclic grammars—but ε-productions
are fairly common.

On the logic side, although the formula of Example 5 is in PDLcp and not in
PDLcore, it uses depth-first traversals in a restricted manner, and they could be
expressed in XPath 1.0 as (descendant::*|following::*)[1], which selects the
first node in document order among all descendants and right siblings. We ex-
pect PDLcp to be expressive enough for most tasks, but layout sensitive syntax
would be beyond its grasp: in programming languages like Haskell or Python,
the indentation level is used to delimit statement blocks—differentiating be-
tween possible parses then requires some limited counting capabilities, or infinite
label sets with order as in a recent formalization by Adams (2013).

Excluding a tree considered individually is one approach among others to
ambiguity filtering (Klint and Visser, 1994). A popular alternative considers
the parse forest as a whole, i.e. the tree automaton AG,w itself. The ambiguity
resolution of Example 5 on the input “if true then if true then skip else skip”
can be simply stated as a preference st > se implying that the rule

(0,S,9) → st
(
(0,if,1)(1,C,2)(2,then,3)(3,S,9)

)
is preferred over the rule

(0,S,9) → se
(
(0,if,1)(1,C,2)(2,then,3)(3,S,7)(7,else,8)(8,S,9)

)
in the automaton AG,w. Such disambiguation rules are easy to write, but they
are also inherently dynamic: they cannot be compiled into the grammar, because
whether the rule will be triggered depends on whether an ambiguity appears
there—an undecidable problem.

4 Complexity Results

We investigate in this section the complexity of the parse forest model-checking
problem. We obtain a classification of complexities depending on the properties
of the grammar (see Figure 3). Interestingly, our hardness results always hold
for a formula ϕ in the rather restricted fragment PDLcore[↓], and generally hold
already for fixed G and/or w. These bounds use logarithmic space reductions.

11

general case

acyclic, ε-free

acyclic ε-free

ExpTime-complete

PSpace-complete

NPTime-complete

Figure 3: The complexity of the PFMC problem, depending on the grammar
characteristics.

Turning first to the complexity in the general case, an immediate conse-
quence of classical results in the field (e.g. Calvanese et al., 2009, Theorem 7)
is that it lies in ExpTime.

Proposition 1. PFMC is in ExpTime.

Proof. One way to proceed is to localize the automaton AG,w by replacing each
rule (i,X, j) → X(α) by (i,X, j) → (i,X, j)(α). We can then apply the con-
struction of Example 2 to the resulting local automaton, thereby obtaining a
PDLtree formula ϕG,w describing a relabeled parse forest of w according to G.
It then suffices to apply the same relabeling to ϕ by interpreting each atomic
proposition X as

∨
1≤i≤j≤n(i,X, j), yielding ϕ′, and to use the ExpTime upper

bound on PDLtree satisfiability of Afanasiev et al. (2005) to the conjunction
ϕ′ ∧ ϕG,w to conclude.

An issue with this proof is that it yields an exponential complexity even if
ϕ is fixed. We can improve on this using automata-based techniques: assume
G to be in quadratic form and ϕ to work on binary trees that encode unranked
trees with the↙ and→ relations from Example 1, as these transformations only
incur a linear cost. Then, construct the tree automaton AG,w of size O(|G|·|w|3)
that recognizes the set of parse trees of w in G and the tree automaton Aϕ of
size 2p(|ϕ|) for a polynomial p that recognizes the models of ϕ: it suffices to
test the emptiness of their product automaton, which can be performed in time
linear in |G| · |w|3 · 2p(|ϕ|) for a polynomial p.

An interesting consequence of the proof of Prop. 1 is that the PFMC problem
is PTime-complete when the PDLtree formula is fixed, pleading for using small
formulæ in practice.

Our proof for Prop. 1 does not benefit from the specificities of the PFMC
problem: any satisfiability problem in presence of a tree language would use
the same algorithm. Therefore, we might still hope for the existence of a more
efficient solution, but adapting the proof of ExpTime-hardness for PDL satis-
fiability from (Blackburn et al., 2001), we obtain:

Proposition 2. PFMC is ExpTime-hard, even for fixed G and w and for ϕ
in PDLcore[↓].

Proof Idea. We go back to low-level arguments4 and reduce from the two-players
corridor tiling game of Chlebus (1986). We fix w = ε and also fix G to generate

4 One could attempt to reduce from the satisfiability problem for PDLtree[↓]—which is
ExpTime-complete (Afanasiev et al., 2005)—, but it seems to us that such a proof would
require changing the structure of the satisfaction witnesses by adding ε-leaves, and we do not
see any straightforward way of handling this modification in the formula.

12

a parse forest encoding game trees; we use a PDLcore[↓] formula ϕ to check that
there exists a winning strategy. See App. A for details.

As can be seen from this proof idea, the fact that w = ε and G is cyclic plays
an important role, because the parse forest is essentially unconstrained. This
is a good incentive to examine what happens when G is acyclic and/or ε-free,
especially since those cases are most relevant for the applications we described
in Section 3.

4.1 The Acyclic ε-free Case: Mixed Model-Theoretic Syn-
tax

Let us therefore consider the other end of our spectrum, which we claimed
was of particular relevance for the mixed approach to model-theoretic syntax
we presented in Section 3.1: if G is acyclic and ε-free, then AG,w is a non-
recursive tree automaton generating a finite parse forest, albeit it might contain
exponentially many trees. This yields an ExpTime algorithm that performs
PDLtree model-checking (in Ptime (Lange, 2006)) on each tree individually.
We can try to refine this first approach and resort to (Benedikt et al., 2008,
Lemma 7.5), which entails that the problem for the PDLcore fragment is in
PSpace, but we can do better:

Proposition 3. PFMC with acyclic and ε-free grammars is NPTime-complete;
hardness holds even for fixed G and for ϕ in PDLcore[↓].

Proof of the Upper Bound. We show that the parse trees in LG,w = L(AG,w)
are of polynomial size in |G| and |w|. The NPTime algorithm then guesses a
tree in LG,w and checks that it is a model in polynomial time (Lange, 2006).

Claim 1. Let G = 〈N,Σ, P, S〉 be an acyclic and ε-free CFG. Let w ∈ Σ∗. Any
parse tree t in LG,w has at most |N |(|w| − 1) + |w| nodes.

Consider the run of AG,w on t: each node of t is labeled by a state (i, A, j)
describing two positions 0 ≤ i ≤ j ≤ n in w and a nonterminal A in N . Because
G is ε-free, we know that i < j. We claim that the set of nodes labelled with
positions (i, j) forms a connected chain.

To see this, suppose two nodes a and b are both labelled with positions (i, j).
Suppose first that neither a nor b is an ancestor of the other. Let then c 6∈ {a, b}
be their least common ancestor (lca): c must have at least two children, and its
children will be labelled with non-overlapping positions—recall that i < j. Only
one of these non-overlapping intervals can contain the interval (i, j). The child
corresponding to that interval would then be the lca of a and b, in contradiction
with c being their lca: hence one of a or b is the lca of a and b.

Suppose now without loss of generality that a is an ancestor of b. Observe
that a descendant of a would be labelled with a sub-interval of (i, j), and an
ancestor of b would be labelled with a super-interval of (i, j). This forces every
node in the path from a to b to be labelled with (i, j). Hence, the nodes labelled
with (i, j) form a connected chain.

Since G is acyclic, each chain of nodes (i, A1, j), (i, A2, j) · · · (i, Ap, j) having
the same positions (i, j) cannot have a non-terminal Ak occuring twice, or the
grammar would allow a cycle. Therefore, each such chain will have at most
|N | nodes. We can ‘collapse’ these chains to form a tree where each (i, j)

13

pair appears at most once, and every node (except the leaves) has at least
two children. Since there are exactly |w| leaves (G is ε-free), there can be at
most |w| − 1 internal nodes in such a tree. We obtain that there were at most
|N |(|w|−1) internal nodes in the original parse tree, i.e. at most |N |(|w|−1)+|w|
nodes in the full parse tree.

Proof Idea for the Lower Bound. We reduce from 3SAT with a fixed grammar
G and a PDLcore[↓] formula ϕ; see App. B for details.

4.2 Non-Recursive DTDs

Let us turn now to the more involved cases where G is either acyclic or ε-free:
we rely in both cases for the upper bounds on the same result that extends
Lemma 7.5 of Benedikt et al. (2008) to handle PDLtree instead of PDLcore:

Proposition 4. Satisfiability of PDLtree in presence of a non-recursive DTD is
PSpace-complete.

In this proposition, a document type definition (DTD) is a generalized CFG
D = 〈N,P, S〉 where P is a mapping from N to content models in Reg(N∗)
the set of regular languages over N—we will assume these content models to be
described by finite automata (NFA). Given D, the derivation relation⇒ relates
βAγ to βαγ iff α is in P (A); a DTD is non-recursive if no nonterminal has a
derivation A ⇒+ βAγ for some β, γ in N∗. Note that a non-recursive DTD
might still generate an infinite tree language, but that all its trees will have a
depth bounded by |N |.

Proof Idea for Prop. 4. The hardness part is proven by Benedikt et al. (2008)
in their Prop. 5.1.

For the upper bound, we reduce to the emptiness problem of a 2-way alter-
nating parity word automaton, which is in PSpace (Serre, 2006). The key idea,
found in Benedikt et al.’s work, is to encode trees of bounded depth as XML
strings (i.e. with opening and closing tags): both the DTD D and the formula
ϕ can then be encoded as alternating parity word automata AD and Aϕ of
polynomial size. Because we handle the full PDLtree instead of only PDLcore,
our construction for Aϕ has to extend that of Benedikt et al.—for instance, we
cannot assume Aϕ to be loop-free. See App. C for details.

4.3 Acyclic Case: Ambiguity Filtering

We are now ready to attack the case of acyclic grammars. This restriction is
enough to ensure that the parse forest is finite, and, more importantly, AG,w is
trivially non-recursive, thus Prop. 4 immediately yields a PSpace upper bound.
In fact, this is optimal:

Proposition 5. PFMC with acyclic grammars is PSpace-complete; hardness
holds even for fixed w and for ϕ in PDLcore[↓].

Proof. Because G is acyclic, for any w, the trimmed version of AG,w is a non-
recursive tree automaton. Indeed, in this automaton, if a state (i0, A, ik) ofAG,w
rewrites in n steps into a tree t with leaves labeled by (i0, X1, i1) · · · (ik−1, Xk, ik),
then by induction on n, A ⇒n X1 · · ·Xk in G. If the automaton is trim, then

14

the existence of a state (i, B, j) implies that B derives the factor ai+1 · · · aj of
w. Thus, if (i, A, j) were to rewrite in at least one step into a tree C[(i, A, j)] in
the trimmed AG,w, then the tree C[ε] has ε as yield, and there would be a cycle
A ⇒+ A in G, a contradiction. It remains to localize AG,w by relabelling the
rules (i, A, j) → A(q1 · · · qm) as (i, A, j) → (i, A, j)(q1 · · · qm) to obtain a local
non-recursive tree automaton, which is just a particular case of a non-recursive
DTD, and interpret the propositions p in V ′ = AP as

∨
0≤i≤j≤n(i, p, j) over

QG,w in ϕ to apply Prop. 4 and obtain the upper bound.
The lower bound holds for the PDLcore[↓] satisfiability problem in presence

of non-recursive and no-star DTDs (Benedikt et al., 2008, Prop. 5.1), which is
easy to reduce to our problem by simply adding ε-leaves in the DTD; this lower
bound thus already holds for a fixed w = ε.

4.4 ε-Free Case: PDLtree Recognition

A key question if model-theoretic syntax is to be used in practice for natural
language processing is the following recognition problem:

PDLtree Recognition Problem.

input a PDLtree formula ϕ, a word w in AP∗, and a distinguished proposition
s in AP,

question does there exist a tree t with yield w and root label s s.t. t |= ϕ?

Note in particular that the statement of the problem excludes ε-labeled
leaves, which would require a different formulation and would yield an Exp-
Time-complete problem.

The recognition problem motivates the last case of our study: Due to cycles,
an ε-free grammar G can have infinitely many parses for a given input string w,
and its parse trees unbounded depth. Nevertheless, recursions in a parse forest
of an ε-free grammar display a particular shape: they are chains of unit rules
qi → Ai(qi+1). The key idea here is that such chains define regular languages
of single-strand branches, which can be encoded in a non-recursive DTD by
‘rotating’ them, i.e. seeing the chain as a siblings sequence instead of a parents
sequence, taking advantage of the DTD’s ability to describe trees of unbounded
rank. This hints at a reduction to the PSpace algorithm of Prop. 4.

4.4.1 PFMC in the ε-free Case

We want to reduce the problem to the satisfiability problem for PDLtree in
presence of a non-recursive DTD and use Prop. 4. Our algorithm starts by
constructing AG,w in polynomial time on binarized trees. As in the proof of
Prop. 5, we consider ‘localized’ rules q → q(q1 q2) of AG,w, and replace them
by productions of the form q → chains(q1)chains(q2) where the chains(qi) are
the languages of single chains out of qi. By suitably labeling our trees, we can
interpret ϕ over those transformed trees.

Proposition 6. PFMC with ε-free grammars is in PSpace.

Proof. Let G = 〈N,Σ, P, S〉, w be a string in Σ∗, and ϕ be a PDLtree formula.
Without loss of generality, we assume G to have productions with right-parts of

15

q0, A0

q1, A1

q2, A2

q3, A3

q4, a1 q5, a2

q6, A6

q7, A7

q8, A8

q9, a3 q10, a4

q11, A9

q12, a5

(a) A run of AQ,w on a tree in a parse forest
of w according to G.

q0

q̄1 q̄2 q3

q4 q5

q̄6 q7

q8

q9 q10

q̄11 q12

(b) The corresponding tree in L(D).

Figure 4: The tree transformation for the proof of Prop. 6.

length at most 2; since G is ε-free, these right-parts have length at least one. We
want to construct a non-recursive DTD D = 〈N ′, P ′, S′〉 and a PDLtree formula
ϕ′ s.t. the parse forest model checking problem on G, w, and ϕ has a solution
iff ϕ is satisfiable in presence of D, thereby reducing our instance to an instance
of a problem in PSpace by Prop. 4.

We build D from the polynomial-sized automaton AG,w by removing chains
of unit rules q → A(q′) of AG,w; recall that this automaton uses states of form
q = (i,X, j) where 0 ≤ i < j ≤ |w| and X is in V . Let for this Q̄G,w be a

disjoint copy of QG,w and define N ′
def
= Q̄G,w]QG,w.

Chain Sequences For each q in QG,w, we consider the set of sequences of suc-
cessive states q = q0, q1, . . . , qn we can visit using only unit rules qi → Ai(qi+1)
of δG,w and such that qn has a binary rule qn → An(q′ q′′) or a nullary rule
qn → a() in δG,w. More precisely, we are interested in the relabeled sequence
q̄ = q̄0, q̄1, . . . , q̄n−1, qn of copies q̄i of qi, except on the very last position. We call
chains(q) the language of such sequences. Formally, chains(q) is a regular lan-

guage over N ′ that we can define thanks to a NFA Aq
def
= 〈N ′, N ′, δq, {q̄}, QG,w〉

with state space N ′ where

δq
def
= {(p̄, p̄, p̄′) | ∃A ∈ N, p→ A(p′) ∈ δG,w}
∪ {(p̄, p, p) | ∃A ∈N, ∃p1, p2∈QG,w, p→ A(p1p2)∈δG,w}
∪ {(p̄, p, p) | ∃a ∈ Σ, p→ a() ∈ δG,w} .

Note that Aq has a size linear in that of AG,w. We can see chains as a regu-

lar substitution from Q∗G,w to N ′
∗

by setting chains(ε)
def
= ε and chains(uv)

def
=

chains(u)chains(v) for all u, v in Q∗G,w.

16

The DTD We can now express the productions P ′ of D:

P (q̄)
def
= ε P (q)

def
=

⋃
q→A(q1 q2)∈δG,w

chains(q1 q2) ∪
⋃

q→a()∈δG,w

ε .

Thus, the symbols in Q̄G,w are leaves and only employed to represent a chain
sequence that has been transformed into a sequence of siblings in the DTD. Also,
because any word in chains(q) for some q is of form up with u in Q̄∗G,w and p in
QG,w, any internal node in a tree of D has exactly two children labeled by states
in QG,w. Therefore, and because G is ε-free, we get that D is non-recursive.
See Figure 4 for an illustration of the tree transformation we operated.

The Formula It remains to define a formula ϕ′ that will be interpreted on the
transformed trees of D. For this, we need to interpret the atomic propositions
in AP = V over the new set of labels N ′, and to interpret the child ↓ and sibling
→ relations.

Regarding the atomic propositions, we can interpret a label X in V as∨
0≤i<j≤|w|

(i,X, j) ∨ (i,X, j) (interpretation of X)

over N ′.
Regarding the relations, we first define bar

def
=
∨
q̄∈Q̄G,w

q̄ to help us differ-
entiate between ‘rotated’ nodes and preserved ones. We then interpret ↓ as a
disjunction of paths depending on whether we are on a rotated node, where the
test [←]¬bar allows to check that the current node is an ‘original’ child:

(¬bar?; ↓; [←]¬bar?) + (bar?;→) (interpretation of ↓)

For →, we set:

([←]¬bar?); (bar?;→)∗;¬bar?;→ . (interpretation of →)

The initial test prevents the nodes taken from a chain from having a right
sibling; then the test sequence advances to the end of the chain before we make
the actual move to the original right sibling.

We can conclude by first noting that both D and ϕ′ can be computed in
logarithmic space in the size of the input, and then by invoking Prop. 4.

Prop. 6 is optimal:

Proposition 7. PFMC with ε-free grammars is PSpace-hard, even for fixed
G and w and for ϕ in PDLcore[↓].

Proof Idea. The proof is by reduction from membership in a linear bounded
automaton. We fix w = a for some symbol a of Σ, and also fix the CFG G to
basically generate any single-strand tree with a root S and a leaf a over a fixed
alphabet. A PDLcore[↓] formula of polynomial size then checks that this tree
encodes an accepting run of the LBA. See App. D for details.

17

4.4.2 PDLtree Recognition

The previous approaches to the recognition problem have used tree automata
techniques (e.g. Cornell, 2000) or tableau-like techniques (Palm, 2004). In both
cases, exponential time upper bounds were reported by the authors—to be fair,
these algorithms solve the parsing problem and find a representation of all the
parses for w compatible with ϕ—, but we can improve on this thanks to Prop. 6:

Corollary 1. PDLtree recognition is PSpace-complete; hardness holds even for
fixed w and for ϕ in PDLcore[↓].

Proof Sketch. The lower bound stems from an easy reduction from Prop. 7: we
can encode the grammar G into a PDLcore[↓] formula ϕG as in Example 2 and
reduce to the recognition problem for w and ϕ ∧ ϕG.

For the upper bound, we can assume as usual ϕ to work on a binary encoding
of trees. The idea is to reduce to the PFMC problem with a ‘universal’ CFG
that accepts all the trees of rank at most 2 over AP. A smallish issue is that we
need to separate between nonterminal and terminal labels, but we can create a

disjoint copy N
def
= {P | p ∈ AP} of AP and interpret ϕ as a formula over N]AP

with P ∨ p as the interpretation of p. This grammar has then S as axiom and
productions A → X Y and A → X for all A in N and X,Y in V , and we can
resort to Prop. 6 to conclude.

5 Conclusion

Because PDLtree formulæ can freely navigate in trees, properties that rely on
long-distance relations are convenient to express, in contrast with the higly local
view provided by a grammar production. However, this expressiveness comes
at a steep price, as recognition problems using PDLtree are ExpTime-complete
instead of PTime-complete on CFGs.

The PDLtree model-checking of the parse trees of a CFG allows to mix the
two approaches, using a grammar for the bulk work of describing trees and
using more sparingly a PDLtree formula for the fine work. We argue that this
trade-off finds natural applications in computational linguistics and compilers
construction, where sensible restrictions on the grammar lower the complexity
to NPTime or PSpace.

An additional consequence is that the recognition problem for PDLtree is in
PSpace. This is a central problem in model-theoretic syntax, and this lower
complexity suggests that ‘lazy’ approaches, in the spirit of the tableau con-
struction of Palm (2004), should perform significantly better than the automata
constructions of Cornell (2000).

More broadly, we think that our initial investigations of model-checking parse
trees open the way to a new range of applications of model-checking techniques
on parse structures and grammars. In particular, as pointed out in our examples,
both in computational linguistics and in ambiguity filtering for programming
languages, there are incentives to look at classes of models that generalize finite
trees over a finite label set—we expect furthermore these generalizations to differ
from the data tree model found in the XML literature.

18

Acknowledgments

The authors thank the anonymous reviewers for their helpful comments; in
particular for pointing out that the PDLtree formula in Example 5 could be
expressed in XPath 1.0.

References

Adams, M.D., 2013. Principled parsing for indentation-sensitive languages: revisiting
Landin’s offside rule. In POPL 2013 , 40th Annual Symposium on Principles of
Programming Languages, pages 511–522. doi:10.1145/2429069.2429129.

Afanasiev, L., Blackburn, P., Dimitriou, I., Gaiffe, B., Goris, E., Marx, M., and de Ri-
jke, M., 2005. PDL for ordered trees. Journal of Applied Non-Classical Logics, 15
(2):115–135. doi:10.3166/jancl.15.115-135.

Bar-Hillel, Y., Perles, M., and Shamir, E., 1961. On formal properties of simple phrase-
structure grammars. Zeitschrift für Phonetik, Sprachwissenschaft, und Kommunika-
tionsforschung, 14:143–172.

Benedikt, M., Fan, W., and Geerts, F., 2008. XPath satisfiability in the presence of
DTDs. Journal of the ACM, 55(2:8). doi:10.1145/1346330.1346333.

Blackburn, P., Gardent, C., and Meyer-Viol, W., 1993. Talking about trees. In
EACL ’93, pages 21–29. ACL Press. doi:10.3115/976744.976748.

Blackburn, P., Meyer-Viol, W., and de Rijke, M., 1996. A proof system for finite
trees. In CSL ’95 , 9th EACSL Annual Conference on Computer Science Logic,
volume 1092 of Lecture Notes in Computer Science, pages 86–105. Springer. doi:
10.1007/3-540-61377-3 33.

Blackburn, P., de Rijke, M., and Venema, Y., 2001. Modal Logic, volume 53 of Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University Press.

Bojańczyk, M. and Lasota, S., 2012. An extension of data automata that captures
XPath. Logical Methods in Computer Science, 8(1):5. doi:10.2168/LMCS-8(1:
5)2012.

Calvanese, D., De Giacomo, G., Lenzerini, M., and Vardi, M., 2009. An automata-
theoretic approach to Regular XPath. In DBPL 2009 , 12th Biennial Symposium
on Database Programming Languages, volume 5708 of Lecture Notes in Computer
Science, pages 18–35. Springer. doi:10.1007/978-3-642-03793-1 2.

Candito, M.H. and Seddah, D., 2012. Le corpus sequoia : annotation syntaxique
et exploitation pour l’adaptation d’analyseur par pont lexical. In TALN 2012 ,
Traitement automatique des langues naturelles. https://gforge.inria.fr/projects/
sequoiabank/.

Chlebus, B.S., 1986. Domino-tiling games. Journal of Computer and System Sciences,
32(3):374–392. doi:10.1016/0022-0000(86)90036-X.

Cornell, T., 2000. Parsing and grammar engineering with tree automata. In AMiLP
2000 , Algebraic Methods in Language Processing, pages 267–274.

Figueira, D., 2012. Alternating register automata on finite words and trees. Logical
Methods in Computer Science, 8(1):22. doi:10.2168/LMCS-8(1:22)2012.

Fischer, M.J. and Ladner, R.E., 1979. Propositional dynamic logic of regular pro-
grams. Journal of Computer and System Sciences, 18(2):194–211. doi:10.1016/
0022-0000(79)90046-1.

Göller, S., Lohrey, M., and Lutz, C., 2009. PDL with intersection and converse:
satisfiability and infinite-state model checking. Journal of Symbolic Logic, 74(1):
279–314. doi:10.2178/jsl/1231082313.

19

http://dx.doi.org/10.1145/2429069.2429129
http://dx.doi.org/10.3166/jancl.15.115-135
http://dx.doi.org/10.1145/1346330.1346333
http://dx.doi.org/10.3115/976744.976748
http://dx.doi.org/10.1007/3-540-61377-3_33
http://dx.doi.org/10.1007/3-540-61377-3_33
http://dx.doi.org/10.2168/LMCS-8(1:5)2012
http://dx.doi.org/10.2168/LMCS-8(1:5)2012
http://dx.doi.org/10.1007/978-3-642-03793-1_2
https://gforge.inria.fr/projects/sequoiabank/
https://gforge.inria.fr/projects/sequoiabank/
http://dx.doi.org/10.1016/0022-0000(86)90036-X
http://dx.doi.org/10.2168/LMCS-8(1:22)2012
http://dx.doi.org/10.1016/0022-0000(79)90046-1
http://dx.doi.org/10.1016/0022-0000(79)90046-1
http://dx.doi.org/10.2178/jsl/1231082313

Gottlob, G. and Koch, C., 2002. Monadic queries over tree-structured data. In LICS
2002 , 17th Annual IEEE Symposium on Logic in Computer Science, pages 189–202.
doi:10.1109/LICS.2002.1029828.

Ishihara, Y., Morimoto, T., Shimizu, S., Hashimoto, K., and Fujiwara, T., 2009. A
tractable subclass of DTDs for XPath satisfiability with sibling axes. In Gardner,
P. and Geerts, F., editors, DBPL 2009 , 12th Biennial Symposium on Database
Programming Languages, volume 5708 of Lecture Notes in Computer Science, pages
68–83. Springer. doi:10.1007/978-3-642-03793-1 5.

Kallmeyer, L., Lichte, T., Maier, W., Parmentier, Y., Dellert, J., and Evang, K., 2008.
TuLiPA: towards a multi-formalism parsing environment for grammar engineering.
In GEAF 2008 , Workshop on Grammar Engineering Across Frameworks, pages
1–8. ACL Press.

Kats, L.C., Visser, E., and Wachsmuth, G., 2010. Pure and declarative syntax defini-
tion: paradise lost and regained. In OOPSLA 2010 , ACM international conference
on Object oriented programming systems languages and applications, pages 918–932.
ACM. doi:10.1145/1869459.1869535.

Klint, P. and Visser, E., 1994. Using filters for the disambiguation of context-free
grammars. In Pighizzini, G. and San Pietro, P., editors, ASMICS Workshop on
Parsing Theory, Technical Report 126-1994, pages 89–100. Università di Milano.

Klint, P., Lämmel, R., and Verhoef, C., 2005. Toward an engineering discipline for
grammarware. ACM Transactions on Software Engineering and Methodology, 14
(3):331–380. doi:10.1145/1072997.1073000.

Kracht, M., 1995. Syntactic codes and grammar refinement. Journal of Logic, Lan-
guage, and Information, 4(1):41–60. doi:10.1007/BF01048404.

Lai, C. and Bird, S., 2010. Querying linguistic trees. Journal of Logic, Language, and
Information, 19(1):53–73. doi:10.1007/s10849-009-9086-9.

Lange, M., 2006. Model checking propositional dynamic logic with all extras. Journal
of Applied Logic, 4(1):39–49. doi:10.1016/j.jal.2005.08.002.

Libkin, L. and Sirangelo, C., 2010. Reasoning about XML with temporal logics and
automata. Journal of Applied Logic, 8(2):210–232. doi:10.1016/j.jal.2009.09.005.

Marx, M., 2005. Conditional XPath. ACM Transactions on Database Systems, 30(4):
929–959. doi:10.1145/1114244.1114247.

Montazerian, M., Wood, P., and Mousavi, S., 2007. XPath query satisfiability is in
PTIME for real-world DTDs. In Barbosa, D., Bonifati, A., Bellahsène, Z., Hunt, E.,
and Unland, R., editors, XSym 2007 , 5th International XML Database Symposium,
volume 4704 of Lecture Notes in Computer Science, pages 17–30. Springer. doi:
10.1007/978-3-540-75288-2 3.

Moore, R.C., 2004. Improved left-corner chart parsing for large context-free gram-
mars. In New Developments in Parsing Technology, pages 185–201. Springer.
doi:10.1007/1-4020-2295-6 9. See http://www.informatics.sussex.ac.uk/research/
groups/nlp/carroll/cfg-resources/.

Palm, A., 1999. Propositional tense logic of finite trees. In MOL 6 , 6th Biennial
Conference on Mathematics of Language.

Palm, A., 2004. Model theoretic syntax and parsing: An application to tem-
poral logic. In FG-MOL 2001 , Joint meeting of the 6th Conference on For-
mal Grammar and the 7th Conference on Mathematics of Language, volume 53
of Electronic Notes in Theoretical Computer Science, pages 261–273. Elsevier.
doi:10.1016/S1571-0661(05)82588-5.

Pullum, G.K. and Scholz, B.C., 2001. On the distinction between model-theoretic
and generative-enumerative syntactic frameworks. In LACL 2001 , 4th International
Conference on Logical Aspects of Computational Linguistics, volume 2099 of Lecture

20

http://dx.doi.org/10.1109/LICS.2002.1029828
http://dx.doi.org/10.1007/978-3-642-03793-1_5
http://dx.doi.org/10.1145/1869459.1869535
http://dx.doi.org/10.1145/1072997.1073000
http://dx.doi.org/10.1007/BF01048404
http://dx.doi.org/10.1007/s10849-009-9086-9
http://dx.doi.org/10.1016/j.jal.2005.08.002
http://dx.doi.org/10.1016/j.jal.2009.09.005
http://dx.doi.org/10.1145/1114244.1114247
http://dx.doi.org/10.1007/978-3-540-75288-2_3
http://dx.doi.org/10.1007/978-3-540-75288-2_3
http://dx.doi.org/10.1007/1-4020-2295-6_9
http://www.informatics.sussex.ac.uk/research/groups/nlp/carroll/cfg-resources/
http://www.informatics.sussex.ac.uk/research/groups/nlp/carroll/cfg-resources/
http://dx.doi.org/10.1016/S1571-0661(05)82588-5

Notes in Computer Science, pages 17–43. Springer. doi:10.1007/3-540-48199-0 2.

Rogers, J., 1998. A Descriptive Approach to Language Theoretic Complexity. CSLI
Publications.

Schmitz, S., 2010. An experimental ambiguity detection tool. Science of Computer
Programming, 75(1–2):71–84. doi:10.1016/j.scico.2009.07.002.

Serre, O., 2006. Parity games played on transition graphs of one-counter pro-
cesses. In Aceto, L. and Ingólfsdóttir, A., editors, FoSSaCS 2006 , 9th Interna-
tional Conference on Foundations of Software Science and Computational Struc-
tures, volume 3921 of Lecture Notes in Computer Science, pages 337–351. Springer.
doi:10.1007/11690634 23.

ten Cate, B. and Segoufin, L., 2010. Transitive closure logic, nested tree walk-
ing automata, and XPath. Journal of the ACM, 57(3):18:1–18:41. doi:10.1145/
1706591.1706598.

Thorup, M., 1994. Controlled grammatic ambiguity. ACM Transactions on Program-
ming Languages and Systems, 16(3):1024–1050. doi:10.1145/177492.177759.

Thorup, M., 1996. Disambiguating grammars by exclusion of sub-parse trees. Acta
Informatica, 33(5):511–522. doi:10.1007/BF03036460.

21

http://dx.doi.org/10.1007/3-540-48199-0_2
http://dx.doi.org/10.1016/j.scico.2009.07.002
http://dx.doi.org/10.1007/11690634_23
http://dx.doi.org/10.1145/1706591.1706598
http://dx.doi.org/10.1145/1706591.1706598
http://dx.doi.org/10.1145/177492.177759
http://dx.doi.org/10.1007/BF03036460

A General Case

PDL satisfiability is known to be ExpTime-complete in general (Fischer and
Ladner, 1979). The general case of the parse forest model-checking problem, i.e.
when G is an arbitrary grammar, is also ExpTime-complete. The upper bound
follows from classical techniques (Calvanese et al., 2009)—see the proof sketch
of Proposition 1.

The lower bound could be proven by a reduction from PDL satisfiability
using a ‘universal’ CFG as in the proof of Corollary 1. However, this proof does
not lend itself very easily to the restricted case we want to consider, where w
and G are fixed and ϕ is a downward PDLcore[↓] formula. We present in this
section a reduction from the two-player corridor game, which is known to be
ExpTime-hard (Chlebus, 1986), adapted from a similar proof for the hardness
of PDL satisfiability by Blackburn et al. (2001, Theorem 6.52).

Two Player Corridor Game sees two players, Eloise and Abelard, compete
by tiling a corridor. The tiles are squares decorated by s+ 2 different patterns
T = {t0, . . . , ts+1}; two binary relations U and R over T tell if a tile can be
placed on top of the other and to the right of the other. Two tiles are distin-
guished: t0 is called the white tile and ts+1 the winning tile. The corridor is
made of n + 2 columns of infinite height, with the first and last columns filled
with white tiles t0 and delimiting n columns for the play. The initial bottom
row is tiled by a sequence I1 · · · In of tiles, which is assumed to be correct, i.e.
to respect the R relation.

The players alternate and choose a next tile in T and place it in the next
position, which is the lowest leftmost free one—thus the chosen tile should match
the tile to its left (using R) and the tile below (using U)—; see Figure 5a. Eloise
starts the game and wins if after a finite number of rounds, the winning tile ts+1

is put in column 1. Given an instance of the 2-players corridor tiling game, i.e.
〈s+ 2, I1 · · · In, R, U〉, deciding whether Eloise has a winning strategy, i.e. a way
of winning no matter what Abelard plays, is ExpTime-complete.

Notation We represent strategy trees as parse trees. Our PDLcore[↓] formula
ϕ will ensure that the parse tree is indeed a valid game tree, and that it encodes
a winning strategy for Eloise.

A game turn is encoded locally by an X-labeled node and its immediate
children, with the next reachable configurations reachable through a path of
M -labeled nodes. More precisely, each X node has the following children (see
Figure 5b):

• a node labeled either W or L, stating that the configuration is winning or
not for Eloise,

• a node labeled either E or A, stating whether it is Eloise’s or Abelard’s
turn to move,

• a chain of i P -labeled nodes, stating that the current playing column is
Ci,

• a chain of j + 1 T -labeled nodes, stating that the chosen tile at this turn
is tj ,

i

t0

t0

t0

t0

..

.

C0

I1

tk1

C1

I2

tk2

C2

· · ·

· · ·

· · ·

Ii−1

tki−1

Ci−1

Ii

tki

Ci

Ii+1

tki+1

Ci+1

· · ·

· · ·

In

tkn

Cn

t0

t0

t0

t0

..

.

Cn+1

tj

R?

U?

Eloise’s turn, move a:

(a) One of Eloise’s turns in the game.

X

M

X M

X

M

X M

ε

next
m

o
v
es

L

ε

E

ε


P
...
P

ε

i
ti

m
es


T
T
...
T

ε

j
+

1
ti

m
es

C

C

1
0
...
1



a
in

b
in

a
ry

ε


T
T
...
T

ε

k
1

+
1

ti
m

es

C
T
T
..
.
T

ε

k
2

+
1

ti
m

es C
T
T
...
T

ε

C

T

ε

T

ε

k
n

+
1

ti
m

es

(b) The tree encoding of the turn.

Figure 5: A turn of the 2-players corridor game and its tree encoding.

• a comb-shaped subtree of n+2 nodes labeled by C, describing the contents
of the top layer in the corridor (which in general spans two rows), with a
strand of k + 1 T -labeled nodes telling for each column that tile tk is on
top,

• a chain of m nodes labeled 0 or 1, encoding in binary the number of

the moves made so far; this chain does not need to be longer than m
def
=

dlog(2ns+3)e—or some move would have been repeated.

The Grammar We fix w
def
= ε and G

def
= 〈N, ∅, P,X〉 over the nonterminal

alphabet N = {X,M,W,L,E,A, P, T, C, 0, 1} with productions (with a slightly
extended syntax with alternatives built-in the productions right-hand sides):

X →M (W | L) (E | A)P T C (0 | 1) M → XM | ε C → T | T C
P → P | ε T → T | ε W → ε

L→ ε E → ε A→ ε

0→ 0 | 1 | ε 1→ 0 | 1 | ε

ii

Observe that all the tree encodings of strategies are generated by G, but that
not all the trees of G encode a strategy: for instance, the number of C’s might
be different from n+ 2, or the described tiling might not respect the placement
constraints, etc. The formula will check these conditions.

Game Structure and Mechanics We use the non-terminal labels and ε as
atomic propositions in our PDLtree formula. Because there are at most s + 2
choices of tiles at each turn, we can define the path

move
def
=

s+2∑
i=1

(↓;M?)i; ↓;X?

that relates two successive configurations. Further define the following formulæ
for 0 ≤ i ≤ n+ 1, 0 ≤ j ≤ s+ 1, 1 ≤ a ≤ m and b in {0, 1}:

p(i)
def
= 〈(↓;P?)i; ↓〉ε t(j)

def
= 〈(↓;T?)j+1; ↓〉ε

q(a, b)
def
= 〈(↓; (0 + 1)?)a〉b c(i, j)

def
= 〈(↓;C?)i+1; (↓;T?)j+1; ↓〉ε

In an X node, p(i) holds if the current column is Ci, t(j) if the chosen tile is
Tj , c(i, ki) if tile Tki is on top of column Ci, and q(m, b) if the binary encoding
of the current move number has bit a set to b.

We ensure some preliminary structure on the game tree: At the start of the
play, the current player must be Eloise, and the referee should have placed the
initial tiles in the first row. The counter must be initialized to zero.

ϕ1
def
= X ∧ (〈↓〉E) ∧ p(1) ∧

n∧
i=1

c(i, Ii) ∧
m∧
a=1

q(a, 0) .

In every state, the tiles in columns 0 and n+ 1 should be the white tile t0.

ϕ2
def
= [↓∗]X ⇒ c(0, 0) ∧ c(n+ 1, 0) .

In every state with current column i, the next move should be at position
(imod n) + 1.

ϕ3
def
=

n∧
i=1

[↓∗](X ∧ p(i))⇒ [move]p((imod n) + 1) .

The columns are updated with the correct tiles.

ϕ4
def
=

n∧
i=1

s+1∧
j=0

[↓∗](X ∧ p(i) ∧ t(j))⇒ [move]c(i, j)

∧
n∧

i 6=j=1

s+1∧
k=0

(X ∧ p(i) ∧ c(j, k))⇒ [move]c(j, k) .

Players alternate.

ϕ5
def
= [↓∗](X ∧ 〈↓〉E ≡ [move]〈↓〉A) .

iii

The chosen tiles verify the adjacency constraints: define for this the Boolean:

adj(i, j, k, `)
def
= t` U tj ∧ (i > 0⇒ tk R tj) ∧ (i = 0⇒ t0 R tj) ∧ (i = n⇒ tj R t0)

ϕ6
def
=

n∧
i=1

s+1∧
j,k,`=0

[↓∗](X ∧ p(i) ∧ t(j) ∧ c(i− 1, k) ∧ c(i, `))⇒ adj(i, j, k, `) .

The counter is incremented.

ϕ7
def
=

m∧
d=1

d−1∧
a=1

∧
b∈{0,1}

[↓∗]
(
X ∧ q(a, b) ∧ q(d, 0) ∧

m∧
e=d+1

q(e, 1)
)

⇒ [move]
(
q(a, b) ∧ q(d, 1) ∧

m∧
e=d+1

q(e, 0)
)
.

Winning Strategy The previous formulæ were making sure that the tree
would be a proper game tree. We want now to check that it describes a winning
strategy for Eloise: We should check that all the possible moves of Abelard are
tested:

ϕ8
def
=

n∧
i=1

s+1∧
j,k,`=0

[↓∗](X ∧ p(i) ∧ 〈↓〉E ∧ t(k) ∧ c((imod n) + 1, `) ∧ adj(i, j, k, `))⇒ 〈move〉t(j) .

Finally, the winning condition should be met:

ϕ9
def
= (〈↓〉W) ∧ [↓∗](X ∧ 〈↓〉W)⇒

(
c(1, s+ 1)

(the game is immediately winning)

∨ ((〈↓〉E) ∧ (〈move; ↓〉W))
(Eloise can win later)

∨ (〈↓〉A) ∧ (〈move〉>) ∧ [move]〈↓〉W)
)
.

(None of Abelard’s moves can prevent Eloise from winning)

Finally, our final PDLcore[↓] formula is ϕ
def
=
∧9
i=1 ϕi. Because G and w

are fixed and ϕ can be computed in space logarithmic in the size of the game
instance, we have therefore shown the general PFMC problem to be ExpTime-
hard.

B Acyclic and ε-Free Case: Proposition 3

We prove here the lower bound part of Proposition 3: the PFMC problem is
NPTime-hard for acyclic and ε-free grammars.

Proof. We reduce 3SAT to our problem.

Fix the grammar G
def
= 〈{S, F, T}, {a}, P, S〉 with productions:

S → S F | S T | F | T F → a T → a

and consider an instance ψ =
∧m
i=1 Ci of 3SAT where each Ci is a disjunction

of literals over n variables {x1, . . . , xn}. Define w
def
= an.

iv

Any parse tree t of w will have a ‘comb’ shape of length n with S-labeled
nodes, each giving rise to one of F or T as a child. The parse forest is thus in
bijection with the set of valuations of {x1, . . . , xn}: if the value of variable xi
is 0, then in our encoding, the ith S node has a node with label F as a child;
otherwise, it has a node with label T as a child.

Given such an encoded valuation, our formula ϕ must verify that each clause
is satisfied. For a clause Ci = `i,1∨`i,2∨`i,3 with `i,j = xkj or `i,j = ¬xkj , define

ϕi
def
=
∨3
j=1〈(S; ↓)kj 〉βi,j where βi,j = F if `i,j = ¬xkj and βi,j = T otherwise.

Finally, let ϕ
def
=
∧m
i=1 ϕi. Then t |= ϕ if and only if the corresponding assignment

of the variables is a satisfying assignment. Because G is fixed and w and ϕ can
be computed in space logarithmic in the size of the 3SAT instance, this shows
the NPTime-hardness of the PFMC problem in the acyclic ε-free case. Note
that ϕ is in PDLcore[↓].

C Model-Checking Non-Recursive DTDs: Propo-
sition 4

We present in this section a proof of Proposition 4: the satisfiability of a PDLtree

formula ϕ in presence of a non-recursive DTD D is PSpace-complete.
The lower bound is proved as Proposition 5.1 by Benedikt et al. (2008),

and we follow their general proof plan from Lemma 7.5 for the upper bound.
As presented in the main text, the fact that we consider a non-recursive DTD
means that the height of any tree of interest is bounded by |N | the number
of nonterminals of the DTD. The proof plan is then to consider XML word
encodings of trees, and construct two 2-way alternating parity word automata
(2APWA) AD and Aϕ of polynomial size which will respectively recognize the
XML encodings of the trees of D and of the models of ϕ of height bounded by
|N |. Then, by taking the conjunction of the two automata, we reduce the initial
satisfiability problem to a 2APWA emptiness problem, which is known to be in
PSpace by the results of Serre (2006).

We can find a suitable construction for an automaton AD for D as Claim 7.7
of (Benedikt et al., 2008), thus we will only present the construction of Aϕ.

XML Encoding Define the alphabet

XML(N)
def
= {〈X〉, 〈/X〉 | X ∈ N}

and choose a fresh root symbol r not inN . We encode our a tree t as 〈r〉stream(t)〈/r〉
where the XML streaming function is defined inductively on terms by

stream(f(t1 · · · tm))
def
= 〈f〉stream(t1) · · · stream(tm)〈/f〉 .

2-Way Alternating Parity Word Automata A positive boolean formula
f in B+(X) over a set X of variables is defined by the syntax

f ::= > | ⊥ | f ∧ f | f ∨ f .

A subset X ′ ⊆ X satisfies a formula f , written X ′ |= f , if the formula is satisfied
by the valuation x 7→ > whenever x ∈ X ′ and x 7→ ⊥ if x ∈ X ′ \X.

v

A 2-way alternating parity word automaton is a tuple A = 〈Q,Σ, δ, q0, c〉
where Q is a finite set of states, Σ a finite alphabet, q0 ∈ Q an initial state, c a
coloring from Q to a finite set of priorities C ⊆ N, and δ a transition function
from Q×Σ to B+(Q×{−1, 0, 1}) that associates to a current state and current
symbol boolean formulæ on pairs (q′, d) of a new state q′ and a direction d.

A run of a 2APWA on a finite word w = a1 · · · an in Σ∗ is a generally infinite
tree with labels in Q×{1, . . . , n} holding a current state and a current position
in w, such that the root is labeled (q0, 1), and every node labeled (q, i) with has
a children set {(q1, i1), . . . , (qm, im)} that satisfies δ(q, ai). A run is accepting iff
for every branch, the smallest priority c(q) that occurs infinitely often among
the nodes (q, i) is even—this also means in particular that any finite run is
accepting—, and w is accepted if there exists some accepting run for it.

Inductive Construction We construct Aϕ
def
= 〈Qϕ,Σ, δϕ, q0,ϕ, cϕ〉 by induc-

tion on the subterms of the formula ϕ. We work with the alphabet Σ
def
=

XML(N)] {〈r〉, 〈/r〉} and set n
def
= |N |—which is the maximum height of any

tree of D. The guiding principles in this construction is that our inductively
constructed automaton will track their height relative to that of their start-
ing position. Because we are working on trees of bounded depth, this can be
achieved by considering states that combine a ‘control’ state with a height in
{−n, . . . , n}.

Let us start with the base cases for node formulæ: by convention, our au-
tomata for a node formulæ must check that their starting positions are labeled
by opening tags:

Ap The automaton checks if it starts at an opening node 〈p〉. It immediately

goes into either an accepting or rejecting state. Formally, Qp
def
= {qp,0},

the coloring cp maps qp,0 to 1, and δ(qp,0, 〈p〉)
def
= > and δp(qp,0, X) = ⊥

for all X 6= 〈p〉.

A> The automaton immediately goes into an accepting state, unless it is at a

closing node or the root node. Formally, Q
def
= {q>,0} and c> is defined by

c>(q>,0)
def
= 1; δ>(q0, X) is defined as > for X = 〈p〉 in XML(N) and as ⊥

otherwise.

The automata Aπ for π a path formula additionally carry a distinguished
subset Cπ ⊆ Qπ of continuation states, such that there is a ‘partial run’ from
some initial position with branches starting from their initial state, which are
either infinite but verifying the parity condition, or are finite but end in a
continuation state in a position related to the initial one through JπK. Let us
see this at work with the base cases of path formulæ:

A↓ The automaton moves right from the initial node while maintaining the
depth relative to this initial node. It stops (goes into a dead state) if
it reaches a node at the same or lesser depth than the initial node. All
the visited nodes with a relative depth of 1 are direct children of the
initial node, and therefore visited by continuation states. We set where

Q↓
def
= {q0, q1, · · · , qn} with q↓,0

def
= q0; the coloring c↓ is identically 1 on

vi

Q↓, C↓ = {q1}, and δ↓ is defined by:

δ↓(qi, 〈p〉)
def
= (1, qi+1), i < n, p ∈ N δ↓(qn, 〈p〉)

def
= ⊥, p ∈ N

δ↓(qi, 〈/p〉)
def
= (1, qi−1), i > 1, p ∈ N δ↓(q0, 〈/p〉)

def
= δ↓(q1, 〈/p〉)

def
= ⊥, p ∈ N

δ↓(qi, 〈/r〉) def
= ⊥, i ∈ {0, . . . , n} .

A→ Similarly to A↓, the automaton moves right while maintaining the depth
relative to the initial node. It fails if it reaches a node at a lesser depth
that the initial node. Otherwise, it finds the next node at a same depth

as the initial node. Formally, Q→
def
= {q0, q1, . . . , qn, qf}, q→,0

def
= q0, the

coloring c→ is identically 1 on Q↓, there is a unique continuation state

C→
def
= {qf} when reaching the right sibling, and δ→ is defined by

δ→(qi, 〈p〉)
def
= (1, qi+1), i < n, p ∈ N δ→(qn, 〈p〉)

def
= ⊥, p ∈ N

δ→(qi, 〈/p〉)
def
= (1, qi−1), i > 1, p ∈ N δ→(q1, 〈/p〉)

def
= (1, qf), p ∈ N

δ→(q0, 〈/p〉)
def
= ⊥, p ∈ N δ→(qf , X)

def
= ⊥, X ∈ Σ

δ→(qi, 〈/r〉) def
= ⊥, i ∈ {0, . . . , n} .

A↑ ,A← We define these automata similarly to A↓ and A→. Observe however
that, because we always finish on opening brackets, it is not enough to
exchange −1 and 1 in the directions of transitions.

Next, we consider the induction step for path formulæ:

Aπ1;π2 We combine the automata Aπ1 and Aπ2 . We add transitions from
the continuation states of Aπ1 at opening nodes to the initial state of

Aπ2 . Formally, Qπ1;π2

def
= Qπ1] Qπ2 , qπ1;π2

def
= qπ1,0, cπ1;π2 preserves the

priorities of cπ1
and cπ2

, Cπ1;π2

def
= Cπ2

and δπ1;π2
is defined by

δπ1;π2
(q1, X)

def
= δπ1

(q1, X), q1 ∈ Qπ1
\ Cπ1

δπ1;π2(q1, 〈p〉)
def
= δπ1(q1, 〈p〉) ∨ (0, qπ2,0), q1 ∈ Cπ1

δπ1;π2
(q1, 〈/p〉)

def
= δπ1

(q1, 〈/p〉), q1 ∈ Cπ1

δπ1;π2
(q2, X)

def
= δπ2

(q2, X), q2 ∈ Qπ2

for X in Σ and p in N .

Aπ1+π2 This is a straightforward union: We define Qπ1+π2

def
= Qπ1

] Qπ2
]

{qπ1+π2,0}, Cπ1+π2

def
= Cπ1

∪ Cπ2
, cπ1+π2

def
= cπ1

∪ cπ2
∪ {(qπ1+π2,0, 1)},

δπ1+π2

def
= δπ1 ∪ δπ2 ∪ {(qπ1+π2,0, X, (0, qπ1,0) ∨ (0, qπ2,0)) | X ∈ Σ}.

Aπ∗ This case is similar to that of Aπ1;π2 ; we add transitions from the critical

states of Aπ to its own initial state. Define Qπ∗
def
= Qπ] {qπ∗,0}, Cπ∗

def
=

{qπ∗,0}, cπ∗
def
= cπ ∪ {(qπ∗,0, 1)}, and

δπ∗(qπ∗,0, X)
def
= (0, qπ,0), δπ∗(q, 〈/p〉)

def
= δπ(q,X), q ∈ Cπ

δπ∗(q,X)
def
= δπ(q,X), q ∈ Qπ \ Cπ δπ∗(q, 〈p〉)

def
= δπ(q,X) ∨ (0, qπ∗,0), q ∈ Cπ

vii

for X in Σ and p in N . Because we assigned an odd priority to qπ∗,0, the
automaton cannot loop indefinitely in qπ∗,0 and must eventually continue.

Aψ? DefineQψ?
def
= Qψ]{qψ?,0, qf}, Cψ?

def
= {qf}, cψ? extends cψ with cψ?(qψ?,0) =

cψ?(qf) = 1, and

δψ?(qψ?,0, X)
def
= (0, qf) ∧ (0, qψ,0), δψ?(qf , X)

def
= ⊥, δψ?(q,X)

def
= δψ(q,X),

for X in Σ and q in Qψ.

Finally, we consider the induction step for node formulæ:

A〈π〉ψ We construct the automaton by joining the critical states of Aπ with

the initial state of Aψ. Define Q〈π〉ψ
def
= Qπ]Qψ, q〈π〉ψ,0

def
= qπ,0, c〈π〉ψ

def
=

cπ ∪ cψ, and δ〈π〉ψ by

δ〈π〉ψ(p,X)
def
= δπ(p,X), p ∈ Qπ \ Cπ δ〈π〉ψ(q,X)

def
= δψ(q,X), q ∈ Qψ

δ〈π〉ψ(p,X)
def
= δπ(p,X) ∨ (0, qψ,0), p ∈ Cπ

for X in Σ.

Aψ1∧ψ2 We do a simple conjunction of the automata Aψ1
and Aψ2

: define

Qψ1∧ψ2

def
= Qψ1

] Qψ2
] {qψ1∧ψ2,0}, cψ1∧ψ2

def
= cψ1

∪ cψ2
∪ {(qψ1∧ψ2,0, 1)},

δψ1∧ψ2

def
= δψ1 ∪ δψ2 ∪ {(qψ1∧ψ2,0, X, (0, qψ1,0) ∧ (0, qψ2,0)) | X ∈ Σ}.

A¬ψ We essentially construct the dual dual(Aψ) of Aψ: the latter accepts the
complement of the language accepted by Aψ. However, we need to en-
sure that only opening nodes 〈p〉 are accepted, thus intersect with the
automaton A> that only accepts opening nodes. Formally, dual(Aψ) =

〈Qψ,Σ, δψ, qψ,0, c¬ψ〉 where δ¬ψ(q,X)
def
= dual(δψ(q,X)) and c¬ψ(q)

def
=

cψ(q) + 1 for all q ∈ Q and X ∈ Σ. Here, dual is a function from
B+(Q × {−1, 0, 1}) to itself that applies the usual DeMorgan’s law. It
is easy to check that dual(Aψ) accepts the complement of L(Aψ).

D ε-Free Case

We prove in this section Proposition 7, thus showing that the PFMC problem
is PSpace-hard in this case.

Proof. We reduce from the membership problem of linear bounded automata
(LBA). Suppose we are given an LBA M = 〈Q,Γ,Σ, δ, q1, F 〉 with state set
Q, tape alphabet Γ, input alphabet Σ ⊆ Γ, transition relation δ ⊆ Q × Γ ×
Q × Γ × {−1, 0, 1}, initial state q1 ∈ Q, and set of final states F ⊆ Q. Let
Q = {q1, . . . , q`}; we assume that Γ = {a1, a2, . . . , am} contains two endmarkers
a1 = / and a2 = . that surround the input and are never erased nor crossed
during the run of the machine.

We are also given a string x = b1b2 · · · bn with each bi ∈ Σ; b1 = / and bn = ..
We have to decide whether x is accepted by M . We are going to construct a
word w, a CFG G, and a PDLcore[↓] formula ϕ, s.t. the PFMC problem has a
solution for 〈w,G,ϕ〉 iff M accepts x.

viii

Encoding as Linear Trees A configuration of M is a sequence of length
n of form /γqγ′. where q is the current state in Q, /γγ′. is the current tape
contents, and | / γ| = h indicates that the head is currently on the last symbol
of /γ, i.e. the hth symbol of the tape.

We encode such a configuration by a contiguous sequence α of nodes as
follows:

• The first node is S and it is followed by a sequence of n nodes, among
which one is labeled H and the others H̄; the position of H in this sequence
denotes the position of the head in the configuration of M .

• This sequence is followed by a sequence of ` nodes, one labeled C and the
others C̄, which together describe the current state as qk if the occurrence
of C is the kth symbol in the sequence.

• Then we encode the tape contents as n successive sequences each of length
m of nodes, with each time one labeled A and the others Ā. The ith such
sequence encodes the contents of the ith cell of the tape of M with A
occurring at the jth position indicating that this cell contains aj .

Thus α is of length 1 + n+ `+ nm.

String and Grammar We fix w
def
= a andG

def
= 〈{S,H, H̄, A, Ā, C, C̄}, {a}, P, S〉

with productions

S → H | H̄
H → H | H̄ | C | C̄ C → C | C̄ | A | Ā A→ A | Ā | S | a
H̄ → H | H̄ | C | C̄ C̄ → C | C̄ | A | Ā Ā→ A | Ā | S | a .

Therefore, the trees in the parse forest LG,w are essentially sequences over N∗ ·
{a}. Clearly, all the encodings of finite runs of any LBA M will be in this set;
it will be the formula’s task to look for an accepting run of our particular M on
x among all these trees.

The Formula ϕM,x Let us turn to the definition of our PDLcore[↓] formula.
We start by defining low-level formulæ useful for testing the properties of the
current configuration: assume we are on an S-labeled node:

h(h)
def
= (〈↓h〉H) ∧

∧
i∈{1,...,n}\{h}

〈↓j〉H̄

tests whether the head is at position h. In the same way,

q(k)
def
= 〈↓n〉

(
(〈↓k〉C) ∧

∧
k′∈{1,...,`}\{k}

〈↓k
′
〉C̄
)

then tests whether the current state is qk, and

p(i, j)
def
= 〈↓n+`+im〉

(
(〈↓j〉A) ∧

∧
j′∈{1,...,m}\{j}

〈↓j
′
〉Ā
)

ix

tests whether the i position on the tape is symbol aj . Finally, we can go to the
next configuration by the path

next
def
=↓n+`+nm .

We can now check that a parse tree of LG,w is really the encoding of an accepting
run of M on x. First, at each S node, we should find a full configuration:

ϕconf
def
= [↓∗]S ⇒

n∨
h=1

h(h) ∧
∨̀
k=1

q(k) ∧
n∧
i=1

m∨
j=1

p(i, j) ∧ 〈next〉a ∨ S .

The initial configuration should have its head on the initial position 1, be in the
initial state q1, and have x = b1 · · · bn as tape contents:

ϕinit
def
= S ∧ h(1) ∧ q(1) ∧

n∧
i=1

p(i, bi) .

The leaf of the tree should be reached in a final configuration:

ϕfinal
def
= [↓∗](S ∧ 〈next〉a)⇒

∨
qk∈F

q(k) .

Successive configurations should respect the transition relation:

ϕtrans
def
= [↓∗](S ∧ ¬〈next〉a)⇒

n∨
h=1

∨̀
k=1

m∨
c=1

∨
(qk,ac,qk′ ,ac′ ,d)∈δ

(
h(h) ∧ q(k) ∧ p(h, c)

∧
(n∧
h 6=i=1

m∨
j=1

p(i, j) ∧ 〈next〉p(i, j)
)
∧ 〈next〉(h(h+ d) ∧ q(k′) ∧ p(h, c′))

)
.

We finally define our PDLcore[↓] formula as the conjunction of the previous
formulæ:

ϕM,x
def
= ϕconf ∧ ϕinit ∧ ϕfinal ∧ ϕtrans .

To conclude, we observe that a tree in LG,w is a model of ϕM,x iff there is an
accepting run of M on x. As G and w are fixed and ϕM,x can be computed in
space logarithmic in the size of 〈M,x〉, this proves the PSpace-hardness of the
PFMC problem in the ε-free case.

x

	1 Introduction
	2 Propositional Dynamic Logic on Trees
	2.1 Syntax and Semantics
	2.2 The Conditional Fragment

	3 Model-Checking Parse Trees
	3.1 Application: Computational Linguistics
	3.2 Application: Ambiguity Filtering

	4 Complexity Results
	4.1 The Acyclic -free Case: Mixed Model-Theoretic Syntax
	4.2 Non-Recursive DTDs
	4.3 Acyclic Case: Ambiguity Filtering
	4.4 -Free Case: PDL#tree Recognition
	4.4.1 PFMC in the -free Case
	4.4.2 PDL#tree Recognition

	5 Conclusion
	A General Case
	B Acyclic and -Free Case: Proposition 3
	C Model-Checking Non-Recursive DTDs: Proposition 4
	D -Free Case

