
On Reachability for Hybrid Automata
over Bounded Time⋆

Thomas Brihaye1, Laurent Doyen2, Gilles Geeraerts3,
Joël Ouaknine4, Jean-François Raskin3, and James Worrell4

1 Université de Mons, Belgium
2 LSV, ENS Cachan & CNRS, France

3 Université Libre de Bruxelles, Belgium
4 Oxford University Computing Laboratory, UK

Abstract. This paper investigates the time-bounded version of the reachability
problem for hybrid automata. This problem asks whether a given hybrid automa-
ton can reach a given target location withinT time units, whereT is a constant
rational value. We show that, in contrast to the classical (unbounded) reachability
problem, the timed-bounded version isdecidablefor rectangular hybrid automata
provided only non-negative rates are allowed. This class ofsystems is of practical
interest and subsumes, among others, the class of stopwatchautomata. We also
show that the problem becomes undecidable if either diagonal constraints or both
negative and positive rates are allowed.

1 Introduction

The formalism of hybrid automata [1] is a well-established model for hybrid systems
whereby a digital controller is embedded within a physical environment. The state of a
hybrid system changes both through discrete transitions ofthe controller, and continu-
ous evolutions of the environment. The discrete state of thesystem is encoded by the
location ℓ of the automaton, and the continuous state is encoded byreal-valued vari-
ablesX evolving according to dynamical laws constraining the firstderivativeẊ of the
variables. Hybrid automata have proved useful in many applications, and their analysis
is supported by several tools [6, 5].

A central problem in hybrid-system verification is thereachability problemwhich
is to decide if there exists an execution from a given initiallocationℓ to a given goal
locationℓ′. While the reachability problem is undecidable for simple classes of hybrid

⋆ Work supported by the projects:(i) QUASIMODO (FP7- ICT-STREP-214755),
Quasimodo: “Quantitative System Properties in Model-Driven-Design of Embedded”,
http://www.quasimodo.aau.dk/, (ii) GASICS (ESF-EUROCORES LogiCCC),
Gasics: “Games for Analysis and Synthesis of Interactive Computational Systems”,
http://www.ulb.ac.be/di/gasics/, (iii) Moves: “Fundamental Issues in Mod-
elling, Verification and Evolution of Software”,http://moves.ulb.ac.be, a PAI
program funded by the Federal Belgian Government,(iv) the ARC project AUWB-2010–
10/15-UMONS-3,(v) the FRFC project 2.4515.11 and(vi) a grant from the National Bank
of Belgium.

automata (such as linear hybrid automata [1]), the decidability frontier of this problem
is sharply understood [7, 8]. For example, the reachabilityproblem is decidable for the
class of initialized rectangular automata where (i) the flowconstraints, guards, invari-
ants and discrete updates are defined by rectangular constraints of the forma ≤ ẋ ≤ b

or c ≤ x ≤ d (wherea, b, c, d are rational constants), and (ii) whenever the flow con-
straint of a variablex changes between two locationsℓ andℓ′, thenx is reset along the
transition fromℓ to ℓ′. Of particular interest is the class of timed automata whichis a
special class of initialized rectangular automata [2].

In recent years, it has been observed that new decidability results can be obtained
in the setting of time-bounded verification of real-time systems [10, 11]. Given a time
boundT ∈ N, the time-bounded verification problems consider only traces with dura-
tion at mostT. Note that due to the density of time, the number of discrete transitions
may still be unbounded. Several verification problems for timed automata and real-time
temporal logics turn out to be decidable in the time-boundedframework (such as the
language-inclusion problem for timed automata [10]), or tobe of lower complexity
(such as the model-checking problem forMTL [11]). The theory of time-bounded veri-
fication is therefore expected to be more robust and better-behaved in the case of hybrid
automata as well.

Following this line of research, we revisit the reachability problem for hybrid au-
tomata with time-bounded traces. Thetime-bounded reachability problemfor hybrid
automata is to decide, given a time boundT ∈ N, if there exists an execution of du-
ration less thanT from a given initial locationℓ to a given goal locationℓ′. We study
the frontier between decidability and undecidability for this problem and show how
bounding time alters matters with respect to the classical reachability problem. In this
paper, we establish the following results. First, we show that the time-bounded reacha-
bility problem isdecidablefor non-initialized rectangular automata when only positive
rates are allowed5. The proof of this fact is technical and, contrary to most decidabil-
ity results in the field, does not rely on showing the existence of an underlying finite
(bi)simulation quotient. We study the properties of time-bounded runs and show that if
a location is reachable withinT time units, then it is reachable by a timed run in which
the number of discrete transitions can be bounded. This in turn allows us to reduce the
time-bounded reachability problem to the satisfiability ofa formula in the first-order
theory of real addition, decidable inEXPSPACE [4].

Second, we show that the time-bounded reachability problemis undecidablefor
non-initialized rectangular hybrid automata if both positive and negative rates are al-
lowed. Third, we show that the time-bounded reachability problem isundecidablefor
initialized rectangular hybrid automata with positive singular flows if diagonal con-
straints in guards are allowed. These two undecidability results allow to precisely char-
acterise the boundary between decidability and undecidability.

The undecidability results are obtained by reductions fromthe halting problem for
two-counter machines. We present novel encodings of the execution of two-counter
machines that fit into time-bounded executions of hybrid automata with either negative
rates, or diagonal constraints.

5 This class is interesting from a practical point of view as itincludes, among others, the class
of stopwatch automata [3], for which unbounded reachability is undecidable.

2

2 Definitions

Let I be the set of intervals of real numbers with endpoints inZ ∪ {−∞, +∞}. Let X
be a set of continuous variables, and letX ′ = {x′ | x ∈ X} andẊ = {ẋ | x ∈ X} be
the set of primed and dotted variables, corresponding respectively to variable updates
and first derivatives. Arectangular constraintoverX is an expression of the formx ∈ I

wherex belongs toX andI to I. A diagonal constraintoverX is a constraint of the
form x − y ∼ c wherex, y belong toX , c to Z, and∼ is in {<,≤, =,≥, >}. Finite
conjunctions of diagonal and rectangular constraints overX are calledguards, overẊ
they are calledrate constraints, and overX ∪ X ′ they are calledupdate constraints. A
guard or rate constraint isrectangularif all its constraints are rectangular. An update
constraint isrectangularif all its constraints are either rectangular or of the formx = x′.
We denote byG (X),R (X),U (X) respectively the sets of guards, rate constraints, and
update constraints overX .

Linear hybrid automata.A linear hybrid automaton(LHA) is a tupleH = (X, Loc,
Edges, Rates, Inv, Init) whereX = {x1, . . . , x|X|} is a finite set of continuousvari-
ables; Loc is a finite set oflocations; Edges ⊆ Loc × G (X) × U (X) × Loc is a
finite set ofedges; Rates : Loc 7→ R (X) assigns to each location a constraint on the
possible variable rates; Inv : Loc 7→ G (X) assigns aninvariant to each location; and
Init ∈ Loc is aninitial location. For an edgee = (ℓ, g, r, ℓ′), we denote bysrc (e) and
trg (e) the locationℓ andℓ′ respectively,g is called theguardof e andr is theupdate
(or reset) of e. In the sequel, we denote byrmax the maximal constant occurring in the
constraints of{Rates(ℓ) | ℓ ∈ Loc}

A LHA H is singular if for all locationsℓ and for all variablesx of H, the only
constraint oveṙx in Rates(ℓ) is of the formẋ ∈ I whereI is a singular interval; it is
fixed rateif for all variablesx of H there existsIx ∈ I such that for all locationsℓ of H,
the only constraint oṅx in Rates(ℓ) is the constrainṫx ∈ Ix. It is multirate if it is not
fixed rate. It isnon-negative rateif for all variablesx, for all locationsℓ, the constraint
Rates(ℓ) implies thatẋ must be non-negative.

Rectangular hybrid automata.A rectangular hybrid automaton(RHA) is a linear hy-
brid automaton in which all guards, rates, and invariants are rectangular. In this case, we
view each resetr as a functionX ′ 7→ I ∪ {⊥} that associates to each variablex ∈ X

either an interval of possible reset valuesr(x), or ⊥ when the value of the variablex
remains unchanged along the transition. When it is the case thatr(x) is either⊥ or a
singular interval for eachx, we say thatr is deterministic. In the case of RHA, we can
also view rate constraints as functionsRates : Loc × X → I that associate to each
locationℓ and each variablex an interval of possible ratesRates(ℓ)(x). A rectangular
hybrid automatonH is initialized if for every edge(ℓ, g, r, ℓ′) of H, for everyx ∈ X , if
Rates(ℓ)(x) 6= Rates(ℓ′)(x) thenr(x) 6= ⊥, i.e., every variable whose rate constraint
is changed must be reset.

LHA semantics.A valuationof a set of variablesX is a functionν : X 7→ R. We
further denote by0 the valuation that assigns0 to each variable.

3

Given an LHAH = (X, Loc, Edges, Rates, Inv, Init, X), a stateof H is a pair
(ℓ, ν), whereℓ ∈ Loc andν is a valuation ofX . The semantics ofH is defined as
follows. Given a states = (ℓ, ν) of H, anedge step(ℓ, ν)

e
−→ (ℓ′, ν′) can occur and

change the state to(ℓ′, ν′) if e = (ℓ, g, r, ℓ′) ∈ Edges, ν |= g, ν′(x) = ν(x) for all x

s.t. r(x) = ⊥, andν′(x) ∈ r(x) for all x s.t. r(x) 6= ⊥; given a time delayt ∈ R
+,

a continuous time step(ℓ, ν)
t
−→ (ℓ, ν′) can occur and change the state to(ℓ, ν′) if

there exists a vectorr = (r1, . . . r|X|) such thatr |= Rates(ℓ), ν′ = ν + (r · t), and
ν + (r · t′) |= Inv(ℓ) for all 0 ≤ t′ ≤ t.

A pathinH is a finite sequencee1, e2, . . . , en of edges such thattrg (ei) = src (ei+1)
for all 1 ≤ i ≤ n − 1. A cycleis a pathe1, e2, . . . , en such thattrg (en) = src (e1). A
cyclee1, e2, . . . , en is simpleif src (ei) 6= src (ej) for all i 6= j. A timed pathof H is a
finite sequence of the formπ = (t1, e1), (t2, e2), . . . , (tn, en), such thate1, . . . , en is a
path inH andti ∈ R

+ for all 0 ≤ i ≤ n. We lift the notions of cycle and simple cycle
to the timed case accordingly. Given a timed pathπ = (t1, e1), (t2, e2), . . . , (tn, en),
we denote byπ[i : j] (with 1 ≤ i ≤ j ≤ n) the timed path(ti, ei), . . . , (tj , ej).

A run in H is a sequences0, (t0, e0), s1, (t1, e1), . . . , (tn−1, en−1), sn such that:

– (t0, e0), (t1, e1), . . . , (tn−1, en−1) is a timed path inH, and

– for all 1 ≤ i < n, there exists a states′i of H with si
ti−→ s′i

ei−→ si+1.

Given a runρ = s0, (t0, e0), . . . , sn, let first (ρ) = s0 = (ℓ0, ν0), last (ρ) = sn,
duration (ρ) =

∑n−1
i=1 ti, and|ρ| = n + 1. We say thatρ is (i) strict if ti > 0 for all

1 ≤ i ≤ n − 1; (ii) k-variable-bounded(for k ∈ N) if ν0(x) ≤ k for all x ∈ X , and

si
ti−→ (ℓi, νi) implies thatνi(x) ≤ k for all 0 ≤ i ≤ n; (iii) T-time-bounded(for

T ∈ N) if duration (ρ) ≤ T.
Note that a unique timed pathTPath (ρ) = (t0, e0), (t1, e1), . . . , (tn−1, en−1), is

associated to each runρ = s0, (t0, e0), s1, . . . , (tn−1, en−1), sn. Hence, we sometimes
abuse notation and denote a runρ with first (ρ) = s0, last (ρ) = s andTPath (ρ) = π

by s0
π
−→ s. The converse however is not true: given a timed pathπ and an initial

states0, it could be impossible to build a run starting froms0 and followingπ because
some guards or invariants alongπ might be violated. However, if such a run exists it is
necessarily uniquewhen the automaton is singular and all resets are deterministic. In
that case, we denote byRun (s0, π) the function that returns the unique runρ such that
first (ρ) = s0 andTPath (ρ) = π if it exists, and⊥ otherwise.

Time-bounded reachability problem for LHA.While the reachability problem asks to
decide the existence of any timed run that reaches a given goal location, we are only
interested in runs having bounded duration.

Problem 1 (Time-bounded reachability problem).Given an LHAH = (X, Loc, Edges,
Rates, Inv, Init), a locationGoal ∈ Loc and a time boundT ∈ N, the time-bounded
reachability problemis to decide whether there exists a finite runρ = (Init,0)

π
−→

(Goal, ·) of H with duration (ρ) ≤ T.

In the following table, we summarize the known facts regarding decidability of the
reachability problem for LHA, along with the results on time-bounded reachability that

4

we prove in the rest of this paper. Note that decidability forinitialized rectangular hybrid
automata (IHRA) follows directly from [7]. We show decidability for (non-initialized)
RHA that only have non-negative rates in Section 3. The undecidability of the time-
bounded reachability problem for RHA and LHA is not a consequence of the known
results from the literature and require new proofs that are given in Section 4.

HA classes ReachabilityTime-Bounded Reachability
LHA U [1] U (see Section 4)
RHA U [7] U (see Section 4)

non-negative rates RHA U [7] D (see Section 3)
IRHA D [7] D [7]

3 Decidability for RHA with Non-Negative Rates

In this section, we prove that the time-bounded reachability problem isdecidablefor
the class of (non-initialized)rectangularhybrid automata havingnon-negative rates,
while it is undecidablefor this class in the classical (unbounded) case [7]. Note that this
class is interesting in practice since it contains, among others, the important class of
stopwatch automata, a significant subset of LHA that has several useful applications [3].
We obtain decidability by showing that for RHA with non-negative rates, a goal location
is reachable withinT time units iff there exists a witness run of that automaton which
reaches the goal (withinT time units) by a runρ of length |ρ| ≤ KH

T
whereKH

T

is a parameter that depends onT and on the size of the automatonH. Time-bounded
reachability can thus be reduced to the satisfiability of a formula in the first order theory
of the reals encoding the existence of runs of length at mostKH

T
and reachingGoal.

For simplicity of the proofs, we consider RHA with the following restrictions: (i) the
guardsdo not contain strict inequalities, and (ii) the rates aresingular. We argue at the
end of this section that these restrictions can be made without loss of generality. Then,
in order to further simplify the presentation, we show how tosyntactically simplify the
automaton while preserving the time-bounded reachabilityproperties. The details of the
constructions can be found in the appendix.

Proposition 1. Let H be a singular RHA with non-negative rates and without strict
inequalities, and letGoal be a location ofH. We can build a hybrid automatonH′ with
the following the properties:

H1 H′ is a singular RHA with non-negative rates
H2 H′ contains only deterministic resets
H3 for every edge(ℓ, g, r, ℓ′) of H′, g is eithertrue or of the formx1 = 1 ∧ x2 =

1 ∧ · · · ∧ xk = 1, andr ≡ x′
1 = 0 ∧ · · · ∧ x′

k = 0.

and a set of locationsS ofH′ such thatH admits aT-time bounded run reachingGoal
iff H′ admits a strict1-variable-bounded, andT-time bounded run reachingS.

Proof (Sketch).The proof exposes three transformations that we apply toH in order to
obtainH′. The first transformation turnsH into DetReset (H), containing determinis-
tic resets only. The idea is to replace (non-deterministic)resets inH with resets to0 in

5

DetReset (H) and to compensate by suitably altering the guards of subsequent transi-
tions inDetReset (H). To achieve this, locations inDetReset (H) are elements of the
form (ℓ, ρ), whereℓ is a location ofH andρ associates an interval to each variable,
whereρ(j) represents the interval in which variablexj was last reset.

With the second transformation, we can restrict our analysis to runs where the vari-
ables are bounded by1. The idea is to encode the integer parts of the variables in the
locations, and to adapt the guards and the resets. LetH′ be an RHA obtained from the
first step, with maximal constantcmax. We buildCBound (H′) whose locations are of
the form(ℓ, i), whereℓ is a location ofH′, andi is a function that associates a value
from {0, . . . , cmax} to each variable. Intuitively,i(j) represents the integer part ofxj

in the original run ofH′, whereas the fractional part is tracked byxj (hence all the
variables stay in the interval[0, 1]). Guards and resets are adapted consequently.

The third and last construction allows to consider only runswhere time is stricly in-
creasing. We describe it briefly assuming all the invariantsaretrue to avoid technicali-
ties. Consider a sequence of edges and null time delays of theforme1, 0, e2, 0, . . . , 0, en

(remark that this sequence ends and starts with an edge). Since all time delays are null,
the only effect of firing such as sequence is to reset (to zero by the first construction) all
the variables that are reset by one of theei’s. Thus, this sequence can be replaced by a
single edgee = (ℓ, g, r, ℓ′) with the same effect, that is, whereℓ is the origin ofe1, ℓ′ is
the destination ofen, r resets to zero all the variables that are reset by one of theei’s and
g summarises the guards of all theei’s (taking the resets into account). Moreover, we
only need to consider sequences wheree1, e2, . . . , en is a path where each simple loop
appears at most once (traversing a second time a simple loop would only reset variables
that are already equal to zero because the time delays are null). Thus, the construction
amounts to enumerate all the possible pathsπ where each simple loop appears at most
once, and to add to the automaton an edgeeπ that summarisesπ as described above.
Since there are finitely many suchπ the construction is effective.

As a consequence, to prove decidability of time-bounded reachability of RHA with non-
negative rates, we only need to prove that we can decide whether an RHA respecting
H1 throughH3 admits astrict run ρ reaching the goal withinT time units, and where
all variables are bounded by1 alongρ.

Bounding the number of equalities.As a first step to obtain a witness of time-bounded
reachability, we bound the number of transitions guarded byequalities along a run of
bounded duration:

Proposition 2. LetH be an LHA, with set of variablesX and respecting hypothesisH1

throughH3. Letρ be aT-time bounded run ofH. Then,ρ contains at most|X |·rmax·T
transitions guarded by an equality.

Bounding runs without equalities.Unfortunately, it is not possible to bound the number
of transitions that do not contain equalities, even along a time-bounded run. However,
we will show that, given a time-bounded runρ without equality guards, we can build a
run ρ′ that is equivalent toρ (in a sense that its initial and target states are the same),
and whose length isboundedby a parameter depending on the size of the automaton.
More precisely:

6

Proposition 3. LetH be an RHA with non-negative rates. For any1-variable bounded
and 1

rmax+1 -time bounded runρ = s0
π
−→ s of H that contains no equalities in the

guards,H admits a1-variable bounded and 1
rmax+1 -time bounded runρ′ = s0

π′

−→ s

such that|ρ′| ≤ 2|X |+ (2|X | + 1) · |Loc| · (2(|Edges|+1) + 1).

Note that Proposition 3 applies only to runs of duration at most 1
rmax+1 . However,

this is not restrictive, since anyT-time-bounded run can always be split into at most
T·(rmax+1) subruns of duration at most 1

rmax+1 , provided that we add a self-loop with
guardtrue and no reset on every location (this can be done without loss of generality
as far as reachability is concerned).

To prove Proposition 3, we rely on acontraction operationthat receives atimed
pathand returns another one of smaller length. Letπ = (t1, e1), (t2, e2), . . . , (tn, en)
be a timed path. We defineCnt (π) by considering two cases. Letj, k, j′, k′ be four
positions such that1 ≤ j ≤ k < j′ ≤ k′ ≤ n andej . . . ek = e′j . . . e′k is a simple
cycle. If suchj, k, j′, k′ exist, then let:

Cnt (π) = π[1 : j − 1] · (ej , tj + tj′) · · · (ek, tk + tk′) · π[k + 1 : j′ − 1] · π[k′ + 1 : n]

Otherwise, we letCnt (π) = π. Observe thatπ andCnt (π) share the same source and
target locations, even whenπ[k′ + 1 : n] is empty.

Then, given a timed pathπ, we letCnt0 (π) = π, Cnti (π) = Cnt
(

Cnti−1 (π)
)

for
any i ≥ 1, andCnt∗ (π) = Cntn (π) wheren is the least value such thatCntn (π) =
Cntn+1 (π). Clearly, sinceπ is finite, and since|Cnt (π)| < |π| or Cnt (π) = π for
anyπ, Cnt∗ (π) always exists. Moreover, we can always bound the length ofCnt∗ (π).
This stems from the fact thatCnt∗ (π) is a timed path that contains at most one occur-
rence of each simple cycle. The length of such paths can be bounded using classical
combinatorial arguments.

Lemma 1. For any timed pathπ of an LHAH with |Loc| locations and|Edges| edges:
|Cnt∗ (π)| ≤ |Loc| · (2(|Edges|+1) + 1).

Note that the contraction operation is purely syntactic andworks on the timed path
only. Hence, given a runs0

π
−→ s, we have no guarantee thatRun (s0, Cnt∗ (π)) 6=

⊥. Moreover, even in the alternative, the resulting run mightbe s0
Cnt

∗(π)
−−−−−→ s′ with

s 6= s′. Nevertheless, we can show thatCnt∗ (π) preserves some properties ofπ. For
a timed pathπ = (t1, e1), . . . , (tn, en) of an LHA H with rate functionRates, we let
Effect (π, x) =

∑n

i=1 Rates(ℓi)(x) · ti, whereℓi is the initial location ofei for any
1 ≤ i ≤ n. Note thus that, for any run(ℓ, ν)

π
−→ (ℓ′, ν′), for any variablex which is not

reset alongπ, ν′(x) = ν(x)+Effect (π, x). It is easy to see thatCnt∗ (π) preserves the
effect ofπ. Moreover, the duration ofCnt∗ (π) andπ are equal.

Lemma 2. For any timed pathπ: (i) duration (π) = duration (Cnt∗ (π)) and(ii) for
any variablex: Effect (π, x) = Effect (Cnt∗ (π) , x).

We are now ready to show, given a timed pathπ (with duration (π) ≤ 1
rmax+1 and

without equality tests in the guards), how to build a timed path Contraction (π) that
fully preserves the values of the variable, as stated in Proposition 3. The key ingredient

7

to obtainContraction (π) is to applyCnt∗ to selected portions ofπ, in such a way that
for each edgee that resets a variable for thefirst or the last time alongπ, the time
distance between the occurrence ofe and the beginning of the timed path is the same in
bothπ andContraction (π).

The precise construction goes as follows. Letπ = (t1, e1), . . . , (tn, en) be a timed
path. For each variablex, we denote bySπ

x the set of positionsi such thatei is either
the first or the last edge inπ to resetx (hence|Sπ

x | ∈ {0, 1, 2} for anyx). Then, we
decomposeπ as:π1 · (ti1 , ei1) · π2 · (ti2 , ei2) · · · (tik

, eik
) · πk+1 with {i1, . . . , ik} =

∪xSπ
x . From this decomposition ofπ, we letContraction (π) = Cnt∗ (π1) · (ti1 , ei1) ·

Cnt∗ (π2) · (ti2 , ei2) · · · (tik
, eik

) · Cnt∗ (πk+1).
We first note that, thanks to Lemma 1,|Contraction (π)| is bounded.

Lemma 3. Let H be an LHA with set of variableX , set of edgesEdges and set of
locationLoc, and letπ be a timed path ofH. Then|Contraction (π)| ≤ 2 · |X | + (2 ·
|X | + 1) · |Loc| · (2(|Edges|+1) + 1).

We can now prove Proposition 3.

Proof (Sketch – Proposition 3).Let π = TPath (ρ) and letπ′ denoteContraction (π).

We letρ′ = s0
π′

−→ (ℓ′, ν′), and prove(i) that firingπ′ from s0 will always keep all the
variable values≤ 1, which impliesRun (s0, π

′) 6= ⊥, and(ii) thatρ = s0
π
−→ (ℓ, ν)

implies ℓ′ = ℓ andν = ν′. These two points hold becauseduration (Cnt∗ (πj)) =
duration (πj) for any j. Hence, the first and last resets of each variable happen at the
same time (relatively to the beginning of the timed path) in bothπ andContraction (π).
Intuitively, preserving the time of occurrence of the first reset (of some variablex) guar-
antees thatx will never exceed1 alongContraction (π), asduration (Contraction (π)) =
duration (π) ≤ 1

rmax+1 . Symmetrically, preserving the last reset of some variablex

guarantees that the final value ofx will be the same in bothπ andContraction (π).
Moreover, the contraction preserves the value of the variables that are not reset, by
Lemma 2.

Handling ‘<’ and non-singular rates.Let us now briefly explain how we can adapt the
construction of this section to cope with strict guards and non-singular rates. First, when
the RHAH contains strict guards, the RHAH′ of Proposition 1 will also contain guards
with atoms of the formx < 1. Thus, when building a ‘contracted path’ρ′ starting from
a pathρ (as in the proof of Proposition 3), we need to ensure that these strict guards will
also be satisfied alongρ′. It is easy to use similar arguments to establish this: if some
guardx < 1 is not satisfied inρ′, this is necessarily before the first reset ofx, which
means that the guard was not satisfied inρ either. On the other hand, to take non-singular
rates into account, we need to adapt the definition of timed path. A timed path is now
of the form(t0, r0, e0) · · · (tn, rn, en), where eachri is a vector of reals of size|X |,
indicating the actual rate that was chosen for each variablewhen thei-th continuous
step has been taken. It is then straightforward to adapt the definitions ofCnt, Effect

andContraction to take those rates into account and still keep the properties stated in
Lemma 1 and 3 and in Proposition 3 (note that we need to rely on the convexity of the
invariants in RHA to ensure that proper rates can be found when buildingCnt (π)).

8

Theorem 1. The time-bounded reachability problem is decidable for theclass of rect-
angular hybrid automata with non-negative rates.

Proof (Sketch).Given an RHAH , a boundK, and a goalGoal, we can build a for-
mulaϕ of FO(R,≤, +) that is satisfiable iffH admits a run of length≤ K reaching
Goal. By Proposition 1 (and taking into account the above remarksto cope with strict
guards and rectangular rates), this is sufficient to decide time-bounded reachability on
RHA with non-negative rates. The required result now follows from the decidability of
satisfiability forFO(R,≤, +). ⊓⊔

4 Undecidability Results

In this section, we show that the time-bounded reachabilityproblem for linear hybrid
automata becomes undecidable if either both positive and negative rates are allowed,
or diagonal constraints are allowed in the guards. Along with the decidability result of
Section 3, these facts imply that the class of rectangular hybrid automata having positive
rates only and no diagonal constraints forms a maximal decidable class. Our proofs rely
on reductions from the halting problem for Minsky two-counters machines.

A two-counter machineM consists of a finite set of control statesQ, an initial state
qI ∈ Q, a final stateqF ∈ Q, a setC of counters (|C| = 2) and a finite setδM of
instructions manipulating two integer-valued counters. Instructions are of the form:

q : c := c + 1 goto q′, or
q : if c = 0 then goto q′ elsec := c − 1 gotoq′′.

Formally, instructions are tuples(q, α, c, q′) whereq, q′ ∈ Q are source and target states
respectively, the actionα ∈ {inc, dec, 0?} applies to the counterc ∈ C.

A configurationof M is a pair(q, v) whereq ∈ Q andv : C → N is a valuation of
the counters. Anaccepting runof M is a finite sequenceπ = (q0, v0)δ0(q1, v1)δ1 . . .

δn−1(qn, vn) whereδi = (qi, αi, ci, qi+1) ∈ δM are instructions and(qi, vi) are con-
figurations ofM such thatq0 = qI , v0(c) = 0 for all c ∈ C, qn = qF , and for
all 0 ≤ i < n, we havevi+1(c) = vi(c) for c 6= ci, and (i) if α = inc, then
vi+1(ci) = vi(ci) + 1, (ii) if α = dec, thenvi(ci) 6= 0 andvi+1(ci) = vi(ci) − 1,
and (iii) if α = 0?, thenvi+1(ci) = vi(ci) = 0. Thehalting problemasks, given a two-
counter machineM , whetherM has an accepting run. This problem is undecidable [9].

Undecidability for RHA with negative rates. Given a two-counter machineM , we
construct an RHAHM (thus without diagonal constraints) such thatM has an accepting
run if and only if the answer to the time-bounded reachability problem for(HM , Goal)
with time bound1 is YES. The construction ofHM crucially makes use of both positive
and negative rates.

Theorem 2. The time-bounded reachability problem is undecidable for rectangular hy-
brid automata even if restricted to singular rates.

9

ẋ=−k
ẏ =1

ẋ= 1
ẏ =−k

x/k2

y = 0 x = 0 y = 0

x

y

ν(x)

ν(x)/k2

time

Fig. 1. Gadget for division of a variablex by k2. The variabley is internal to the gadget. The
duration of the division isv · (1

k
+ 1

k2) wherev is the value ofx before division.

Proof (Sketch).First, remark that the main difficulty of the reduction is to encodeun-
boundedcomputations ofM within aboundedtime slot. The execution steps ofM are
simulated inHM by a (possibly infinite) sequence ofticks within one time unit. The
ticks occur at timet0 = 0, t1 = 1 − 1

4 , t2 = 1 − 1
16 , etc. The counters are encoded as

follows. If the value of counterc ∈ C afteri execution steps ofM is v(c), then the vari-
ablexc in HM has value 1

4i+v(c) at timeti. Note that this encoding is time-dependent
and that the value ofxc at timeti is always smaller than1 − ti = 1

4i , and equal to1
4i

if the counter value is0. To maintain this encoding (if a counterc is not modified in
an execution step), we need to dividexc by 4 before the next tick occurs. We use the
divisor gadget in Fig. 1 to do this. Using the diagram in the figure, it is easy to check
that the value of variablexc is divided byk2 wherek is a constant used to define the
variable rates. Note also that the division ofν(xc) by k2 takesν(xc) · (1

k
+ 1

k2) time

units, which is less than3·ν(xc)
4 for k ≥ 2. Sinceν(xc) ≤

1
4i at stepti, the duration of

the division is at most34i = ti+1 − ti, the duration of the next tick.
The divisor gadget can also be used to construct an automatonAtick that generates

the ticks. Finally, we obtainHM by taking the product ofAtick with an automaton that
encodes the instructions of the machine. For example, assuming the set of counters is
C = {c, d} the instruction(q, inc, c, q′) is encoded by connecting a locationℓq to a
locationℓq′ , synchronized with divisor gadgets that dividexc by 16 andxd by 4 (details
omitted).

Undecidability with diagonal constraints. We now show that diagonal constraints
also leads to undecidability. The result holds even if everyvariable has a positive, sin-
gular, fixed rate.

Theorem 3. The time-bounded reachability problem is undecidable for LHA that use
only singular, strictly positive, and fixed-rate variables.

Proof. The proof is again by reduction from the halting problem for two-counter ma-
chines. We describe the encoding of the counters and the simulation of the instructions.

Given a counterc, we representc via two auxiliary counterscbot andctop such that
v(c) = v(ctop) − v(cbot).

10

Incrementing and decrementingc are achieved by incrementing eitherctop or cbot.
Zero-testing forc corresponds to checking whether the two auxiliary countershave the
same value. Therefore, we do not need to simulate decrementation of a counter.

We encode the value of countercbot using two real-valued variablesx andy, by
postulating that|x − y| = 1

2v(cbot)
. Bothx andy have rateẋ = ẏ = 1 at all times and

in all locations of the hybrid automaton. Incrementingcbot now simply corresponds to
halving the value of|x − y|. In order to achieve this, we use two real-valued variables
z andw with rateż = 2 andẇ = 3.

All operations are simulated in ‘rounds’. At the beginning of a round, we require
that the variablesx, y, z, w have respective value 1

2v(cbot)
, 0, 0, 0. We first explain how

we merelymaintainthe value ofcbot throughout a round:

1. Starting from the beginning of the round, let all variables evolve untilx = z, which
we detect via a diagonal constraint. Recall thatz evolves at twice the rate ofx.

2. At that point,x = 2
2v(cbot)

andy = 1
2v(cbot)

. Resetx andz to zero.
3. Now let all variables evolve untily = z, and resety, z andw to zero. It is easy to

see that all variables now have exactly the same values as they had at the beginning
of the round. Moreover, the invariant|x − y| = 1

2v(cbot)
is maintained throughout.

Note that the total duration of the above round is2
2v(cbot)

. To incrementcbot, we proceed
as follows:

1′. Starting from the beginning of the round, let all variablesevolve untilx = w. Recall
that the rate ofw is three times that ofx.

2′. At that point,x = 1.5
2v(cbot)

andy = 0.5
2v(cbot)

= 1
2v(cbot)+1 . Resetx, z, andw to zero.

3′. Now let all variables evolve untily = z, and resety, z andw to zero. We now have
x = 1

2v(cbot)+1 , and thus the value of|x − y| has indeed been halved as required.

Note that the total duration of this incrementation round is1
2v(cbot)

, wherev(cbot) de-
notes the value of countercbot prior to incrementation.

Clearly, the same operations can be simulated for counterctop (using further auxil-
iary real-valued variables). Note that the durations of therounds forcbot andctop are
in general different—in factcbot-rounds are never faster thanctop-rounds. But because
they are powers of12 , it is always possible to synchronize them, simply by repeating
maintain-rounds forcbot until the round forctop has completed.

Finally, zero-testing the original counterc (which corresponds to checking whether
cbot = ctop) is achieved by checking whether the corresponding variables have the
same value at the very beginning of acbot-round (since thecbot- andctop-rounds are
then synchronized).

We simulate the second counterd of the machine using further auxiliary counters
dbot anddtop. It is clear that the time required to simulate one instruction of a two-
counter machine is exactly the duration of the slowest round. Note however that since
counterscbot, ctop, dbot, anddtop are never decremented, the duration of the slowest
round is at most22p , wherep is the smallest of the initial values ofcbot anddbot. If a
two-counter machine has an accepting run of lengthm, then the total duration of the
simulation is at most2m

2p .

11

In order to bound this value, it is necessary before commencing the simulation to
initialize the counterscbot, ctop, dbot, anddtop to a sufficiently large value, for example
any number greater thanlog2(m) + 1. In this way, the duration of the simulation is at
most 1.

Initializing the counters in this way is straightforward. Starting with zero counters
(all relevant variables are zero) we repeatedly incrementcbot, ctop, dbot, anddtop a
nondeterministic number of times, via a self-loop. When each of these counters has
valuek, we can increment all four counters in a single round of duration 1

2k as explained
above. So over a time period of duration at most

∑∞
k=0

1
2k = 2 the counters can be

initialized to⌈log2(m) + 1⌉.
Let us now combine these ingredients. Given a two-counter machineM , we con-

struct a hybrid automatonHM such thatM has an accepting run iffHM has a run of
duration at most 3 that reaches the final stateGoal.

HM uses the real-valued variables described above to encode the counters ofM . In
the initialization phase,HM nondeterministically assigns values to the auxiliary coun-
ters, hence guessing the length of an accepting run ofM , and then proceeds with the
simulation ofM . This ensures a correspondence between an accepting run ofM and a
time-bounded run ofHM that reachesGoal.

References

1. R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.TCS, 138(1), 1995.

2. R. Alur and D. L. Dill. A theory of timed automata.Th. Comp. Sci., 126(2):183–235, 1994.
3. F. Cassez and K. G. Larsen. The impressive power of stopwatches. InProc. of CONCUR,

LNCS 1877, pages 138–152. Springer, 1877.
4. J. Ferrante and C. Rackoff. A decision procedure for the first order theory of real addition

with order.SIAM J. Comput., 4(1):69–76, 1975.
5. G. Frehse. Phaver: algorithmic verification of hybrid systems past hytech.Int. J. Softw. Tools

Technol. Transf., 10:263–279, May 2008.
6. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: A modelchecker for hybrid systems.

In Proc. of CAV, LNCS 1254, pages 460–463. Springer, 1997.
7. T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable about hybrid au-

tomata?J. Comput. Syst. Sci., 57(1):94–124, 1998.
8. T. A. Henzinger and J.-F. Raskin. Robust undecidability of timed and hybrid systems. In

Proc. of HSCC, LNCS 1790, pages 145–159. Springer, 2000.
9. M. L. Minsky. Computation: finite and infinite machines. Prentice-Hall Inc., Englewood

Cliffs, N.J., 1967. Prentice-Hall Series in Automatic Computation.
10. J. Ouaknine, A. Rabinovich, and J. Worrell. Time-bounded verification. InProc. of CON-

CUR, LNCS 5710, pages 496–510. Springer, 2009.
11. J. Ouaknine and J. Worrell. Towards a theory of time-bounded verification. InProc. of

ICALP (II), LNCS 6199, pages 22–37. Springer, 2010.

12

