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Abstract. This paper investigates the time-bounded version of thehiality
problem for hybrid automata. This problem asks whether arghybrid automa-
ton can reach a given target location witflihtime units, wheréT is a constant
rational value. We show that, in contrast to the classiaabéunded) reachability
problem, the timed-bounded versiordiscidablefor rectangular hybrid automata
provided only non-negative rates are allowed. This clasystems is of practical
interest and subsumes, among others, the class of stopaattoimata. We also
show that the problem becomes undecidable if either didgomatraints or both
negative and positive rates are allowed.

1 Introduction

The formalism of hybrid automata [1] is a well-establishedd®l for hybrid systems
whereby a digital controller is embedded within a physicali@nment. The state of a
hybrid system changes both through discrete transitiotiseo€ontroller, and continu-
ous evolutions of the environment. The discrete state ofyis¢em is encoded by the
location /¢ of the automaton, and the continuous state is encodeddiyalued vari-
ablesX evolving according to dynamical laws constraining the fiestivativeX of the
variables. Hybrid automata have proved useful in many apfitins, and their analysis
is supported by several tools [6, 5].

A central problem in hybrid-system verification is treachability problemwhich
is to decide if there exists an execution from a given init@ation/ to a given goal
location/’. While the reachability problem is undecidable for simgksses of hybrid
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automata (such as linear hybrid automata [1]), the deditiabbntier of this problem

is sharply understood [7, 8]. For example, the reachalglibblem is decidable for the
class of initialized rectangular automata where (i) the ftmmstraints, guards, invari-
ants and discrete updates are defined by rectangular dotswéthe forma < & < b
orc < z < d (wherea, b, ¢, d are rational constants), and (ii) whenever the flow con-
straint of a variable: changes between two locatichand?’, thenz is reset along the
transition from¢ to ¢'. Of particular interest is the class of timed automata wlisca
special class of initialized rectangular automata [2].

In recent years, it has been observed that new decidalektylts can be obtained
in the setting of time-bounded verification of real-timetsyss [10, 11]. Given a time
boundT € N, the time-bounded verification problems consider onlydsawith dura-
tion at mostT. Note that due to the density of time, the number of discretesitions
may still be unbounded. Several verification problems foeti automata and real-time
temporal logics turn out to be decidable in the time-bounfdashework (such as the
language-inclusion problem for timed automata [10]), ob&of lower complexity
(such as the model-checking problem kéTL [11]). The theory of time-bounded veri-
fication is therefore expected to be more robust and betteal®d in the case of hybrid
automata as well.

Following this line of research, we revisit the reachapifitoblem for hybrid au-
tomata with time-bounded traces. Ttime-bounded reachability problefor hybrid
automata is to decide, given a time boulide N, if there exists an execution of du-
ration less tharm from a given initial locatior? to a given goal locatio’. We study
the frontier between decidability and undecidability fbistproblem and show how
bounding time alters matters with respect to the classeadhability problem. In this
paper, we establish the following results. First, we shaat the time-bounded reacha-
bility problem isdecidablefor non-initialized rectangular automata when only positi
rates are allowet The proof of this fact is technical and, contrary to mostidiiil-
ity results in the field, does not rely on showing the existeatan underlying finite
(bi)simulation quotient. We study the properties of tinmtbded runs and show that if
a location is reachable withilr time units, then it is reachable by a timed run in which
the number of discrete transitions can be bounded. Thigimallows us to reduce the
time-bounded reachability problem to the satisfiabilityaoformula in the first-order
theory of real addition, decidable EXPSPACE [4].

Second, we show that the time-bounded reachability prolidenmdecidablefor
non-initialized rectangular hybrid automata if both piwsitand negative rates are al-
lowed. Third, we show that the time-bounded reachabiliybhpem isundecidabldor
initialized rectangular hybrid automata with positive gitar flows if diagonal con-
straints in guards are allowed. These two undecidabilgulte allow to precisely char-
acterise the boundary between decidability and undeditjabi

The undecidability results are obtained by reductions ftieenhalting problem for
two-counter machines. We present novel encodings of theutiea of two-counter
machines that fit into time-bounded executions of hybridansta with either negative
rates, or diagonal constraints.

5 This class is interesting from a practical point of view amiudes, among others, the class
of stopwatch automata [3], for which unbounded reachahgitindecidable.



2 Definitions

LetZ be the set of intervals of real numbers with endpoint& in { —co, +00}. Let X

be a set of continuous variables, andXt= {z’ | z € X} andX = {i | = € X} be
the set of primed and dotted variables, corresponding otisply to variable updates
and first derivatives. Aectangular constrainbver X is an expression of the forme I
wherez belongs toX and/ to Z. A diagonal constrainbver X is a constraint of the
formz — y ~ ¢ wherez, y belong toX, cto Z, and~ is in {<, <,=, >, >}. Finite
conjunctions of diagonal and rectangular constraints évare calledguards over X
they are calledate constraintsand overX U X' they are calledipdate constraintsA
guard or rate constraint igctangularif all its constraints are rectangular. An update
constraintigectangulaiif all its constraints are either rectangular or of the farms 2’.
We denote by (X), R (X),U (X) respectively the sets of guards, rate constraints, and
update constraints ovef.

Linear hybrid automata.A linear hybrid automatorfLHA) is a tupleH = (X, Loc,
Edges, Rates, Inv, Init) whereX = {z1,...,z|x} is afinite set of continuousari-
ables Loc is a finite set oflocations Edges C Loc x G (X) x U (X) x Loc is a
finite set ofedgesRates : Loc — R (X) assigns to each location a constraint on the
possible variable ratednv : Loc — G (X) assigns aimmvariantto each location; and
Init € Loc is aninitial location. For an edge = (¢, g,r, ¢'), we denote byrc (¢) and
trg (e) the location? and?’ respectivelyy is called theguard of e andr is theupdate
(orrese) of e. In the sequel, we denote byhax the maximal constant occurring in the
constraints of Rates(¢) | £ € Loc}

A LHA H is singularif for all locations/¢ and for all variables: of H, the only
constraint ovet: in Rates(¢) is of the formi € I wherelI is a singular interval; it is
fixed rateif for all variablesxz of H there existd,, € Z such that for all locationéof H,
the only constraint ot in Rates(¢) is the constraing € I,.. It is multirateif it is not
fixed rate. It isnon-negative raté for all variablesz, for all locations/, the constraint
Rates(¢) implies thati must be non-negative.

Rectangular hybrid automataA rectangular hybrid automato(RHA) is a linear hy-
brid automaton in which all guards, rates, and invariardsectangular. In this case, we
view each reset as a functionX’ — Z U {_L} that associates to each variable X
either an interval of possible reset valués), or L when the value of the variable
remains unchanged along the transition. When it is the d¢ate (tz) is either L or a
singular interval for each, we say that is deterministic In the case of RHA, we can
also view rate constraints as functioRstes : Loc x X — Z that associate to each
location? and each variable an interval of possible ratd3ates(¢)(x). A rectangular
hybrid automatori is initialized if for every edgg?, g, r, ¢') of H, for everyz € X, if
Rates(¢)(xz) # Rates(¢’)(x) thenr(z) # L, i.e., every variable whose rate constraint
is changed must be reset.

LHA semantics.A valuationof a set of variables{ is a functionr : X — R. We
further denote by the valuation that assigristo each variable.



Given an LHA'H = (X, Loc, Edges, Rates, Inv, Init, X ), a stateof H is a pair
(¢,v), wherel € Loc andv is a valuation ofX. The semantics of{ is defined as
follows. Given a stata = (¢,v) of H, anedge steg¢,v) = (¢',v') can occur and
change the state (@', ') if e = (¢,¢9,7,¢') € Edges, v |= ¢, V'(z) = v(z) for all z
st.r(z) = L, andv/(z) € r(x) for all z s.t.r(z) # L; given a time delay € R,
a continuous time steg?, v) 5 (¢,v") can occur and change the state(tov’) if
there exists a vector = (r1,...7x|) such that- = Rates(¢), v = v + (r - t), and
v+ (r-t') EInv(¢) forall 0 < ¢ <t.

A pathin H is a finite sequencg , eo, . . ., e,, 0f edges such thatg (e;) = src (e;41)
forall1 <i < mn—1.Acycleis a pathey, es, .. ., e, such thatrg (e,,) = src(e1). A
cycleey, es, ..., ey, issimpleif src(e;) # src(e;) for all i # j. A timed pathof H is a
finite sequence of the form = (t1, e1), (t2,€2), ..., (tn, en), Such thaey, ... e, isa
path inH andt; € R™ for all 0 < 7 < n. We lift the notions of cycle and simple cycle
to the timed case accordingly. Given a timed path- (¢1,e1), (t2,€2), ..., (tn,en),
we denote byr[i : j] (with 1 <14 < j < n)the timed patht;, e;), ..., (t;,¢;).

A runin H is a sequencey, (to, €o), s1, (t1,€1), -, (tn—1, €n—1), S» SUCh that:

— (to,e0), (t1,€1),-.., (tn—1,en—1) is a timed path ir{, and
— forall 1 < i < n, there exists a staté of H with s; ~ s} < 5.

Given a runp = sg, (to,€0),- .-, Sn, letfirst(p) = so = (Yo, 10), last (p) = sn,
duration (p) = >_7", t;, and|p| = n + 1. We say thap is (¢) strictif ¢, > 0 for all
1 < i < n—1; (i0) k-variable-boundedfor & € N) if vy(x) < kforallz € X, and
S; LN (4;,v;) implies thaty;(z) < k forall 0 < ¢ < n; (iii) T-time-boundedfor
T € N) if duration (p) < T.

Note that a unique timed paffiPath (p) = (to,€0), (t1,€1), .-, (tn-1,€n—1), IS
associated to each run= s, (to, €0), $1,- - -, (tn—1, €n—1), $Sn. Hence, we sometimes
abuse notation and denote a with first (p) = so, last (p) = s andTPath (p) = 7
by so = s. The converse however is not true: given a timed patind an initial
statesy, it could be impossible to build a run starting framand followingr because
some guards or invariants aloagnight be violated. However, if such a run exists it is
necessarily uniquezhen the automaton is singular and all resets are determiiniB
that case, we denote Run (sg, 7) the function that returns the unique rusuch that

first (p) = so andTPath (p) = = if it exists, and L otherwise.

——

Time-bounded reachability problem for LHAVhile the reachability problem asks to
decide the existence of any timed run that reaches a givenagzion, we are only
interested in runs having bounded duration.

Problem 1 (Time-bounded reachability proble®@jven an LHAH = (X, Loc, Edges,
Rates, Inv, Init), a locationGoal € Loc and a time bound € N, thetime-bounded
reachability problemis to decide whether there exists a finite run= (Init,0) =
(Goal, -) of H with duration (p) < T.

In the following table, we summarize the known facts regagdiecidability of the
reachability problem for LHA, along with the results on tirbeunded reachability that



we prove in the rest of this paper. Note that decidabilityridralized rectangular hybrid
automata (IHRA) follows directly from [7]. We show decidbtyi for (non-initialized)
RHA that only have non-negative rates in Section 3. The uddédity of the time-
bounded reachability problem for RHA and LHA is not a consame of the known
results from the literature and require new proofs that arergin Section 4.

HA classes ReachabilityTime-Bounded Reachabiliy
LHA U [1] U (see Section 4)
RHA U [7] U (see Section 4)
non-negative rates RHA U [7] D (see Section 3)
IRHA D[7] D[7]

3 Decidability for RHA with Non-Negative Rates

In this section, we prove that the time-bounded reachghplioblem isdecidablefor
the class of (non-initialized)ectangularhybrid automata havingon-negative rates
while it is undecidabldor this class in the classical (unbounded) case [7]. Nattttiis
class is interesting in practice since it contains, amohgrst the important class of
stopwatch automata significant subset of LHA that has several useful apptioat3].
We obtain decidability by showing that for RHA with non-négarates, a goal location
is reachable withirT time units iff there exists a witness run of that automatoricivh
reaches the goal (withil' time units) by a rurp of length|p| < KX where K}
is a parameter that depends ‘®rand on the size of the automatah Time-bounded
reachability can thus be reduced to the satisfiability ofrenfda in the first order theory
of the reals encoding the existence of runs of length at fidsand reachingzoal.

For simplicity of the proofs, we consider RHA with the followg restrictions: (i) the
guardsdo not contain strict inequalitie®nd (ii) the rates arsingular. We argue at the
end of this section that these restrictions can be made wuiitbes of generality. Then,
in order to further simplify the presentation, we show howyatactically simplify the
automaton while preserving the time-bounded reachalpititperties. The details of the
constructions can be found in the appendix.

Proposition 1. Let H be a singular RHA with non-negative rates and without strict
inequalities, and leGoal be a location ofH{. We can build a hybrid automatd’ with
the following the properties:

H; M’ is a singular RHA with non-negative rates

H, H’ contains only deterministic resets

H; for every edgé?, g,r,¢') of H', g is eithertrue or of the formz; = 1 A zy =
IAN---Azg=1,andr=2} =0A--- Az} =0.

and a set of location$§ of H’ such thatH admits aT'-time bounded run reachingoal
iff H' admits a strictl-variable-bounded, an@-time bounded run reachin§.

Proof (Sketch)The proof exposes three transformations that we appty ito order to
obtain’. The first transformation turr® into DetReset (), containing determinis-
tic resets only. The idea is to replace (non-determiniséisgts irt{ with resets td in



DetReset (H) and to compensate by suitably altering the guards of sulesedransi-
tions in DetReset (). To achieve this, locations iDetReset () are elements of the
form (¢, p), where/ is a location ofH andp associates an interval to each variable,
wherep(j) represents the interval in which variablgwas last reset.

With the second transformation, we can restrict our ansgsiuns where the vari-
ables are bounded by The idea is to encode the integer parts of the variablesein th
locations, and to adapt the guards and the resetsLbe an RHA obtained from the
first step, with maximal constantnax. We build CBound (H’) whose locations are of
the form(¢,i), where/ is a location ofH’, andi is a function that associates a value
from {0, ..., cmax} to each variable. Intuitivelyi(j) represents the integer part.of
in the original run of{’, whereas the fractional part is tracked by (hence all the
variables stay in the intervi, 1]). Guards and resets are adapted consequently.

The third and last construction allows to consider only nwhgre time is stricly in-
creasing. We describe it briefly assuming all the invariant$rue to avoid technicali-
ties. Consider a sequence of edges and null time delays fufttne:;, 0, 2,0, ..., 0, e,
(remark that this sequence ends and starts with an edgeg 8iirtime delays are null,
the only effect of firing such as sequence is to reset (to zgtbdfirst construction) all
the variables that are reset by one of th's. Thus, this sequence can be replaced by a
single edge = (¢, g, r, ¢') with the same effect, that is, whefés the origin ofey, ¢ is
the destination of,,, r resets to zero all the variables that are reset by one ef thand
g summarises the guards of all thgs (taking the resets into account). Moreover, we
only need to consider sequences wheres, . .., e, is a path where each simple loop
appears at most once (traversing a second time a simple loolawnly reset variables
that are already equal to zero because the time delays dyeThuls, the construction
amounts to enumerate all the possible pathghere each simple loop appears at most
once, and to add to the automaton an edgé¢hat summarises as described above.
Since there are finitely many suetthe construction is effective.

As a consequence, to prove decidability of time-boundechr&aility of RHA with non-
negative rates, we only need to prove that we can decide ehathRHA respecting
H; throughH3 admits astrict run p reaching the goal withi' time units, and where
all variables are bounded lyalongp.

Bounding the number of equalities a first step to obtain a witness of time-bounded
reachability, we bound the number of transitions guardeddyalities along a run of
bounded duration:

Proposition 2. LetH be an LHA, with set of variable¥ and respecting hypothedig
throughHs. Letp be aT-time bounded run of(. Thenp contains at mostX |- rmax-T
transitions guarded by an equality.

Bounding runs without equalitiedJnfortunately, it is not possible to bound the number
of transitions that do not contain equalities, even alonignatounded run. However,
we will show that, given a time-bounded rgrwithout equality guards, we can build a
run p’ that is equivalent te (in a sense that its initial and target states are the same),
and whose length iboundedby a parameter depending on the size of the automaton.
More precisely:



Proposition 3. Let’H be an RHA with non-negative rates. For anyariable bounded
and ——-time bounded rum = s, — s of H that contains no equalities in the

rmax+1

guards,H admits al-variable bounded and———-time bounded rup’ = s s

Tmax—+1

such thatp/| < 2|X| + (2|X]| + 1) - [Loc]| - (2(Fdeesl+1) 1 1),

Note that Proposition 3 applies only to runs of duration ast@gﬁ. However,
this is not restrictive, since ari¥-time-bounded run can always be split into at most
T (rmax+1) subruns of duration at mom, provided that we add a self-loop with
guardtrue and no reset on every location (this can be done without lbgsmerality
as far as reachability is concerned).

To prove Proposition 3, we rely on@ntraction operatiorthat receives dmed
pathand returns another one of smaller length. ket (¢1,e1), (t2,€2),..., (tn, en)
be a timed path. We definént (7) by considering two cases. Lg¢t k, j/, ¥’ be four
positions such that < j < k < j° <k’ < nande;...ex = € ...¢ is asimple
cycle If suchy, k, j/, k' exist, then let:

Cnt(m)=m[l:5—1]-(ej,tj+tj) - (en,tp+tw) wk+1:5 =1 -7k’ +1:n]

Otherwise, we letCnt (7) = 7. Observe that andCnt () share the same source and
target locations, even whetk’ + 1 : n] is empty.

Then, given a timed path, we letCnt’ (r) = 7, Cnt’ (1) = Cnt (Cnt'~" (7)) for
anyi > 1, andCnt” (w) = Cnt" (7) wheren is the least value such th@&nt" () =
Cnt"*! (7). Clearly, sincer is finite, and sincéCnt (7)| < |x| or Cnt (7) = = for
anym, Cnt" (7) always exists. Moreover, we can always bound the lengtinef ().
This stems from the fact th&int™ () is a timed path that contains at most one occur-
rence of each simple cycle. The length of such paths can bededuusing classical
combinatorial arguments.

Lemma 1. For any timed pathr of an LHAH with |Loc| locations andEdges| edges:
|Cnt* ()| < |Loc] - (2(/Edeesl+1) 4 1),

Note that the contraction operation is purely syntactic@ocks on the timed path

only. Hence, given a rup, — s, we have no guarantee th&tn (so, Cnt* (7)) #

. . : Cnt* .
L. Moreover, even in the alternative, the resulting run might, L7(m), s’ with

s # s'. Nevertheless, we can show thait* (r) preserves some propertiesaf For

atimed pathr = (t1,e1), ..., (tn, en) Of an LHA H with rate functionRates, we let

Effect (r,z) = >, Rates(¢;)(x) - t;, where/; is the initial location ofe; for any

1 <4 < n. Note thus that, for any ruft, v) N (¢, "), for any variabler which is not
reset alongr, v'(z) = v(z) 4 Effect (, z). It is easy to see th&nt” (7) preserves the
effect of m. Moreover, the duration dint”* (7r) andr are equal.

Lemma 2. For any timed pathr: (i) duration (7) = duration (Cnt™ (7)) and (i%) for
any variablex: Effect (7, ) = Effect (Cnt" (7), x).

We are now ready to show, given a timed patfwith duration (7) < rmalx-‘,-l and
without equality tests in the guards), how to build a timethp@ontraction (7) that
fully preserves the values of the variable, as stated ind%itipn 3. The key ingredient



to obtainContraction () is to applyCnt™ to selected portions of, in such a way that
for each edge that resets a variable for tHest or the last time along, the time
distance between the occurrence aind the beginning of the timed path is the same in
both7 andContraction (7).

The precise construction goes as follows. ket (t1,€e1),..., (t,,e,) be atimed
path. For each variable, we denote by5T the set of positions such thatk; is either
thefirst or thelast edge inw to resetr (hence|ST| € {0,1,2} for anyz). Then, we
decomposer as:my -« (i, €iy) - T2 - (tigs €in) -+ (tiy, €4y, ) - Th1 With {i1, ... i} =
U, ST. From this decomposition of, we letContraction (7) = Cnt™ (m1) - (£, €, ) -
Cnt” (772) ’ (tizaeiz) e (tik7eik) - Cnt” (ﬂ-k-ﬁ-l)'

We first note that, thanks to Lemma|Cpntraction (7)| is bounded.

Lemma 3. Let H be an LHA with set of variable, set of edge&dges and set of
locationLoc, and letw be a timed path oH. Then|Contraction (7)] < 2- | X|+ (2 -
|X|+ 1) - |Loc| - (2(/Bdeesl+1) 1 1),

We can now prove Proposition 3.

Proof (Sketch — Proposition 3)et 7 = TPath (p) and letr’ denoteContraction (7).
We letp’ = s -, (¢,v"), and prove) that firingw’ from sy will always keep all the
variable values< 1, which impliesRun (s, 7') # L, and(i4) thatp = so = (¢,v)
implies¢’ = ¢ andv = /. These two points hold becauderation (Cnt* (7;)) =
duration (7;) for any j. Hence, the first and last resets of each variable happee at th
same time (relatively to the beginning of the timed path)athbr andContraction (7).
Intuitively, preserving the time of occurrence of the fiesset (of some variable) guar-
antees that will never exceed alongContraction (), asduration (Contraction (7)) =
duration (7) < ﬁ Symmetrically, preserving the last reset of some variable
guarantees that the final value ofwill be the same in bothr and Contraction (7).
Moreover, the contraction preserves the value of the vimsathat are not reset, by
Lemma 2.

Handling ‘<’ and non-singular ratesL et us now briefly explain how we can adapt the
construction of this section to cope with strict guards ama-singular rates. First, when
the RHAH contains strict guards, the RHA' of Proposition 1 will also contain guards
with atoms of the formx < 1. Thus, when building a ‘contracted pai#i’starting from

a pathp (as in the proof of Proposition 3), we need to ensure thaetheit guards will
also be satisfied along. It is easy to use similar arguments to establish this: ifessom
guardz < 1 is not satisfied irp’, this is necessarily before the first resetzofwhich
means that the guard was not satisfied @ither. On the other hand, to take non-singular
rates into account, we need to adapt the definition of timel. gatimed path is now
of the form (to, 70, €0) - - - (tn, ™, €n), Where eachr; is a vector of reals of sizgX|,
indicating the actual rate that was chosen for each variabkn thei-th continuous
step has been taken. It is then straightforward to adapt efiaitions of Cnt, Effect
andContraction to take those rates into account and still keep the propestaged in
Lemma 1 and 3 and in Proposition 3 (note that we need to relh@wcdnvexity of the
invariants in RHA to ensure that proper rates can be foundwaloéding Cnt (7)).



Theorem 1. The time-bounded reachability problem is decidable fordlass of rect-
angular hybrid automata with non-negative rates.

Proof (Sketch)Given an RHAH, a boundK, and a goalGoal, we can build a for-
mulay of FO(R, <, +) that is satisfiable iff{ admits a run of lengtk< K reaching
Goal. By Proposition 1 (and taking into account the above remtirk®pe with strict
guards and rectangular rates), this is sufficient to dedide-bounded reachability on
RHA with non-negative rates. The required result now fodvom the decidability of
satisfiability forFO(R, <, +). 0

4 Undecidability Results

In this section, we show that the time-bounded reachalglibplem for linear hybrid
automata becomes undecidable if either both positive agdtive rates are allowed,
or diagonal constraints are allowed in the guards. Along Wit decidability result of
Section 3, these facts imply that the class of rectangularitiputomata having positive
rates only and no diagonal constraints forms a maximal éebécclass. Our proofs rely
on reductions from the halting problem for Minsky two-coenstmachines.

A two-counter machin@/ consists of a finite set of control stat@san initial state
qr € Q, afinal stategr € Q, a setC of counters [C| = 2) and a finite set,, of
instructions manipulating two integer-valued counteamstiuctions are of the form:

q: c:=c+1goto ¢, or
q : if ¢=0thengoto ¢’ elsec := c— 1gotoq”.

Formally, instructions are tuplés, «, ¢, ¢') whereg, ¢’ € Q) are source and target states
respectively, the action € {inc, dec, 0?7} applies to the countere C.

A configurationof M is a pair(q, v) whereq € @ andv : C — N is a valuation of
the counters. Amccepting rurof M is a finite sequence = (qo, v9)do(q1,v1)01 - . .
On—1(qn,vn) Whered; = (g;, o, ¢i,qi+1) € dpr are instructions andy;, v;) are con-
figurations of M such thatgy = q;, vo(c¢) = 0 forall ¢ € C, ¢, = qr, and for
all 0 < i < n, we havev,11(c) = v;(c) for ¢ # ¢;, and (i) if « = inc, then
vir1(ci) = vi(e;) + 1, (i) if a = dec, thenv;(c;) # 0 andwv;i1(c;) = vi(e;) — 1,
and (iii) if & = 07, thenv;41(¢;) = vi(¢;) = 0. Thehalting problemasks, given a two-
counter machind/, whetherM has an accepting run. This problem is undecidable [9].

Undecidability for RHA with negative rates. Given a two-counter machink&/, we
constructan RHAY ;s (thus without diagonal constraints) such thathas an accepting
run if and only if the answer to the time-bounded reachahilibblem for(H ;, Goal)
with time boundl is YES. The construction of{,, crucially makes use of both positive
and negative rates.

Theorem 2. The time-bounded reachability problem is undecidabledatangular hy-
brid automata even if restricted to singular rates.



Fig. 1. Gadget for division of a variable by k*. The variabley is internal to the gadget. The
duration of the division i - (+ + k,%) wherew is the value ofc before division.

Proof (Sketch)First, remark that the main difficulty of the reduction is tacedeun-
boundeccomputations of\/ within aboundedime slot. The execution steps df are
simulated inH; by a (possibly infinite) sequence ttks within one time unit. The
ticks occur attimgg = 0,¢; = 1 — i,tz =1- %6 etc. The counters are encoded as
follows. If the value of counter € C afteri execution steps af/ is v(c), then the vari-
ablex,. in Hjs has valuewlm at timet;. Note that this encoding is time-dependent
and that the value of, at timet; is always smaller thah — ¢; = 4i and equal toj—i

if the counter value i9. To maintain this encoding (if a counteris not modified in
an execution step), we need to divide by 4 before the next tick occurs. We use the
divisor gadget in Fig. 1 to do this. Using the diagram in theifig it is easy to check
that the value of variable. is divided byk? wherek is a constant used to define the

variable rates. Note also that the divisionudfc.) by k* takesv(z.) - (§ + %) time

units, which is less thaﬁ'”fl—xc) for k > 2. Sincev(z.) < % at stept;, the duration of
the division is at mosf—i = t;41 — t;, the duration of the next tick.

The divisor gadget can also be used to construct an autornhigrthat generates
the ticks. Finally, we obtaift{,; by taking the product afd;;, with an automaton that
encodes the instructions of the machine. For example, asguire set of counters is
C = {¢,d} the instruction(q, inc, ¢, ¢’) is encoded by connecting a locatiépto a
location?,, synchronized with divisor gadgets that divideby 16 andz, by 4 (details

omitted).

Undecidability with diagonal constraints. We now show that diagonal constraints
also leads to undecidability. The result holds even if evaryable has a positive, sin-
gular, fixed rate.

Theorem 3. The time-bounded reachability problem is undecidable idAlthat use
only singular, strictly positive, and fixed-rate variables

Proof. The proof is again by reduction from the halting problem fso{counter ma-
chines. We describe the encoding of the counters and théagionuof the instructions.

Given a countet, we represent via two auxiliary countersy,o, andc, such that
v(e) = v(ctop) — v(Chot)-
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Incrementing and decrementingire achieved by incrementing eithes;, or cpos.
Zero-testing fore corresponds to checking whether the two auxiliary couritare the
same value. Therefore, we do not need to simulate decretitentd a counter.

We encode the value of countey,; using two real-valued variablesandy, by
postulating thatz — y| = 2v<—1bon Bothx andy have ratet = ¢y = 1 at all times and
in all locations of the hybrid automaton. Incrementifg, now simply corresponds to
halving the value ofx — y/|. In order to achieve this, we use two real-valued variables
z andw with rateZ = 2 andw = 3.

All operations are simulated in ‘rounds’. At the beginninfgaoround, we require
that the variables, y, z, w have respective valugj(ij, 0,0, 0. We first explain how
we merelymaintainthe value ot throughout a round:

1. Starting from the beginning of the round, let all varia@d®olve untik: = z, which
we detect via a diagonal constraint. Recall thavolves at twice the rate af

2. Atthat point = 52— andy = 5;-—. Resetr andz to zero.

3. Now let all variables evolve until = z, and resey, z andw to zero. It is easy to
see that all variables now have exactly the same valuesyh#itkat the beginning
of the round. Moreover, the invariapt — y| = m is maintained throughout.

Note that the total duration of the above roungﬁ?m. Toincrement,,, we proceed
as follows:

1’. Starting from the beginning of the round, let all varial#eslve untilx = w. Recall
that the rate ofv is three times that of.

2'. Atthat point,r = 522 andy = 525 = 5o - Resetr, z, andw to zero.

3’. Now let all variables evolve unti} = z, and resey, z andw to zero. We now have
x = and thus the value of — y| has indeed been halved as required.

1
ov(epot)+17

Note that the total duration of this incrementation roung;'kém, wherev(cpot) de-
notes the value of counteg,,; prior to incrementation.

Clearly, the same operations can be simulated for coupigKusing further auxil-
iary real-valued variables). Note that the durations ofrtiunds forcy,., andc.p, are
in general different—in facty.:-rounds are never faster thajp,-rounds. But because
they are powers o%, it is always possible to synchronize them, simply by reipgat
maintain-rounds foe,,, until the round fore,, has completed.

Finally, zero-testing the original countefwhich corresponds to checking whether
Chot = Ctop) IS achieved by checking whether the corresponding vatabbhve the
same value at the very beginning ot;a,-round (since they,.- andcg,p-rounds are
then synchronized).

We simulate the second countéof the machine using further auxiliary counters
dpbot @anddy,p. It is clear that the time required to simulate one instarcof a two-
counter machine is exactly the duration of the slowest rotitude however that since
counterschot, Crops dhot, aNddyep are never decremented, the duration of the slowest
round is at mostz%, wherep is the smallest of the initial values of; anddy;. If a
two-counter machine has an accepting run of lengttthen the total duration of the
simulation is at mos§Z:.
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In order to bound this value, it is necessary before comnmgnitie simulation to
initialize the countersyt, Cop, dbot, @aNddop, t0 @ sufficiently large value, for example
any number greater thdog,(m) + 1. In this way, the duration of the simulation is at
most 1.

Initializing the counters in this way is straightforwardaBing with zero counters
(all relevant variables are zero) we repeatedly incremggt ciop, doot, anddiep a
nondeterministic number of times, via a self-loop. Whenheatthese counters has
valuek, we can increment all four counters in a single round of danaf; as explained
above. So over a time period of duration at mp3f” ; 5= = 2 the counters can be
initialized to[log,(m) + 1].

Let us now combine these ingredients. Given a two-countehina M, we con-
struct a hybrid automatoH ,, such thatM has an accepting run ifft; has a run of
duration at most 3 that reaches the final statel.

‘H s uses the real-valued variables described above to encedetimters of\/. In
the initialization phasel{ ,; nondeterministically assigns values to the auxiliary coun
ters, hence guessing the length of an accepting rulf pénd then proceeds with the
simulation of M. This ensures a correspondence between an accepting fdraofl a
time-bounded run of{,, that reache&oal.
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