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Abstract. Safety properties are crucial when verifying real-time con-
current systems. When reasoning parametrically, i.e., with unknown con-
stants, it is of high interest to infer a set of parameter valuations consis-
tent with such safety properties. We present here algorithms based on the
inverse method for parametric timed automata: given a reference param-
eter valuation, it infers a constraint such that, for any valuation satisfying
this constraint, the discrete behavior of the system is the same as under
the reference valuation in terms of traces, i.e., alternating sequences of
locations and actions. These algorithms do not guarantee the equality
of the trace sets, but are significantly quicker, synthesize larger sets of
parameter valuations than the original method, and still preserve vari-
ous properties including safety (i.e., non-reachability) properties. Those
algorithms have been implemented in Imitator II and applied to various
examples of asynchronous circuits and communication protocols.
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1 Introduction

Timed Automata are finite-state automata augmented with clocks, i.e., real-
valued variables increasing uniformly, that are compared within guards and tran-
sitions with timing delays [AD94]. Although techniques can be used in order to
verify the correctness of a timed automaton for a given set of timing delays, these
techniques become inefficient when verifying the system for a large number of
sets of timing delays, and don’t apply anymore when one wants to verify dense
intervals of values, or optimize some of these delays. It is therefore interesting to
reason parametrically, by assuming that those timing delays are unknown con-
stants, or parameters, which give Parametric Timed Automata (PTAs) [AHV93].

We consider here the good parameters problem [FJK08]: “given a PTA A
and a rectangular domain V bounding the value of each parameter, find all the
parameter valuations within V such that A has a good behavior”. Such good
behaviors can refer to any kind of properties. We will in particular focus here on
safety properties, i.e., the non-reachability of a given set of “bad” locations.



Parameters Synthesis for PTAs. The problem of parameter synthesis is known
to be undecidable for PTAs, although semi-algorithms exist [AHV93] (i.e., if
the algorithm terminates, the result is correct). The synthesis of constraints has
been implemented in the context of PTAs or hybrid systems, e.g., in [AAB00]
using TReX [CS01], or in [HRSV02] using an extension of Uppaal [LPY97] for
linear parametric model checking. In [HRSV02], decidability results are given
for a subclass of PTAs, viz., “L/U automata”.

The problem of parameter synthesis for timed automata has been applied in
particular to communication protocols (e.g., the Bounded Retransmission Proto-
col [DKRT97] using Uppaal and Spin [Hol03], and the Root Contention Protocol
in [CS01] using TReX) and asynchronous circuits (see, e.g., [YKM02,CC07]).

The authors of [KP10] synthesize a set of parameter valuations under which a
given property specified in the existential part of CTL without the next operator
(ECTL−X) holds in a system modeled by a network of PTAs. This is done by
using bounded model checking techniques applied to PTAs.

In the framework of Linear Hybrid Automata, techniques based on counterex-
ample guided abstraction refinement (CEGAR) [CGJ+00] have been proposed.
In [JKWC07], a method of iterative relaxation abstraction is proposed, com-
bining CEGAR and linear programming. In [FJK08], when finding a counterex-
ample, the system obtains constraints that make the counterexample infeasible.
When all the counterexamples have been eliminated, the resulting constraints
describe a set of parameters for which the system is safe. Also note that an
approach similar to the inverse method is proposed in [AKRS08], in order to
synthesize initial values for the variables of a linear hybrid system.

Contribution. We introduced in [ACEF09] the inverse method IM for PTAs.
Different from CEGAR-based methods, this original semi-algorithm for param-
eter synthesis is based on a “good” parameter valuation π0 instead of a set of
“bad” states. IM synthesizes a constraint K0 on the parameters such that, for
all parameter valuation π satisfying K0, the trace set, i.e., the discrete behav-
ior, of A under π is the same as for A under π0. This preserves in particular
linear time properties. However, this equality of trace sets may be seen as a too
strong property in practice. Indeed, one is rarely interested in a strict ordering
of the events, but rather in the partial match with the original trace set, or more
generally in the non-reachability of a given set of bad locations.

We present here several algorithms based on IM , which do not preserve the
equality of trace sets, but preserve various properties. In particular, they all
preserve non-reachability: if a location is not reachable in A under π0, it will not
be reachable in A under π, for π satisfying K0. The main advantage is that these
algorithms synthesize weaker constraints, i.e., larger sets of parameters. Beside,
termination is improved when compared to the original IM and the computation
time is reduced, as shown in practice in the implementation Imitator II.

Plan of the Paper. We briefly recall IM in Section 2. We introduce in Section 3
algorithms based on IM synthesizing weaker constraints for safety properties,



and show their interest compared to IM . We extend in Section 4 these algo-
rithms in order to perform a behavioral cartography of the system. We show in
Section 5 the interest in practice by applying these algorithms to models of the
literature. We also introduce algorithmic optimizations for two variants allowing
to considerably reduce the state space. We conclude in Section 6.

2 The Inverse Method

Preliminaries. 1 Given a setX of clocks and a set P of parameters, a constraint C
over X and P is a conjunction of linear inequalities on X and P . Given a
parameter valuation (or point) π, we write π |= C when the constraint where all
parameters within C have been replaced by their value as in π is satisfied by a
non-empty set of clock valuations. We denote by ∃X : C the constraint over P
obtained from C after elimination of the clocks in X.

Definition 1. A PTA A is (Σ,Q, q0, X, P,K, I,→) with Σ a finite set of ac-
tions, Q a finite set of locations, q0 ∈ Q the initial location, X a set of clocks, P
a set of parameters, K a constraint over P , I the invariant assigning to every
q ∈ Q a constraint over X and P , and → a step relation consisting of elements
(q, g, a, ρ, q′), where q, q′ ∈ Q, a ∈ Σ, ρ ⊆ X is the set of clocks to be reset, and
the guard g is a constraint over X and P .

The semantics of a PTA A is defined in terms of states, i.e., couples (q, C)
where q ∈ Q and C is a constraint over X and P . Given a point π, we say
that a state (q, C) is π-compatible if π |= C. Runs are alternating sequences of
states and actions, and traces are time-abstract runs, i.e., alternating sequences
of locations and actions. The trace set of A corresponds to the traces associated
with all the runs of A. Given A and π, we denote by A[π] the (non-parametric)
timed automaton where each occurrence of a parameter has been replaced by its
constant value as in π. Given two states s1 = (q1, C1) and s1 = (q2, C2), we say
that s1 is included into s2 if q1 = q2 and C1 ⊆ C2, where ⊆ denotes the inclusion
of constraints. One defines Post iA(K)(S) as the set of states reachable from a set S

of states in exactly i steps under K, and Post∗A(K)(S) =
⋃

i≥0 Post iA(K)(S).

Description. Given a PTA A and a reference parameter valuation π0, the inverse
method IM synthesizes a constraint K0 on the parameters such that, for all
π |= K0, A[π0] and A[π] have the same trace sets [ACEF09]. We recall IM in
Algorithm 1, which consists in two major steps.

1. The iterative removal of the π0-incompatible states, i.e., states whose con-
straint onto the parameters is not satisfied by π0, prevents for any π |= K0

the behavior different from π0 (by negating a π0-incompatible inequality J).
2. The final intersection of the projection onto the parameters of the constraints

associated with all the reachable states guarantees that all the behaviors
under π0 are allowed for all π |= K0.

1 Fully detailed definitions are available in [AS11].



Algorithm 1: Inverse method algorithm IM (A, π0)

input : PTA A of initial state s0, parameter valuation π0

output: Constraint K0 on the parameters

1 i← 0 ; K ← true ; S ← {s0}
2 while true do
3 while there are π0-incompatible states in S do
4 Select a π0-incompatible state (q, C) of S (i.e., s.t. π0 6|= C) ;
5 Select a π0-incompatible J in (∃X : C) (i.e., s.t. π0 6|= J) ;

6 K ← K ∧ ¬J ; S ←
⋃i

j=0 Post
j
A(K)({s0}) ;

7 if PostA(K)(S) v S then return
⋂

(q,C)∈S(∃X : C)

8 i← i+ 1 ; S ← S ∪ PostA(K)(S) ; // S =
⋃i

j=0 Post
j
A(K)({s0})

Item 1 is compulsory in order to prevent the system to enter “bad” (i.e., π0-
incompatible) states. However, item 2 can be lifted when one is only interested
in safety properties. Indeed, in this case, it is acceptable that only part of the
behavior of A[π0] is available in A[π] (as long as the behavior absent from A[π0]
is also absent from A[π]).

Properties. The main property of IM is the preservation of trace sets. As a
consequence, linear-time properties are preserved. This is the case of properties
expressed using the Linear Time Logics (LTL) [Pnu77], but also using the SE-
LTL logics [CCO+04], constituted by both atomic state propositions and events.

It has been shown that IM is non-confluent, i.e., several applications of IM
can lead to different results [And10b]. This comes from the non-deterministic
selection of a π0-incompatible inequality J (line 5 in Algorithm 1). IM behaves
deterministically when such a situation of choice is non encountered. The non-
confluence of IM leads to the non-maximality of the output constraint. In other
words, given A and π0, there may exist points π 6|= IM (A, π0) such that A[π]
and A[π0] have the same trace sets. However, it can be shown that, when IM is
deterministic, the output constraint is maximal.

Reachability analysis is known to be undecidable for PTAs [AHV93]. Hence,
although we showed sufficient conditions, IM does not terminate in general.

3 Optimized Algorithms Based on the Inverse Method

A drawback of IM is that the notion of equality of trace sets may be seen as
too strict in some cases. If one is interested in the non-reachability of a certain
set of bad states, then there may exist different trace sets avoiding this set of
bad states. We introduce here several algorithms derived from IM : none of them
guarantee the strict equality of trace sets, but all synthesize weaker constraints
than IM and still feature interesting properties. They all preserve in particular
safety properties, i.e., non-reachability of a given location. In other words, if a
given “bad” location is not reached in A[π0], it will also not be reached by A[π],



for π satisfying the constraint output by the algorithm. The corollary is that the
set of locations reachable in A[π] is included into the set reachable in A[π0].

We introduce algorithms derived from IM , namely IM⊆, IM ∪, and IM K .
We then introduce combinations between these algorithms. For each algorithm,
we briefly state that the constraint is weaker than IM (when applicable), study
the termination, and formally state the properties guaranteed by the output
constraint. (We do not recall the preservation of non-reachability.) The fully
detailed algorithms and all formal properties with proofs can be found in [AS11].

3.1 Algorithm with State Inclusion in the Fixpoint

The algorithm IM⊆ is obtained from IM by terminating the algorithm, not when
all new states are equal to a state computed previously, but when all new states
are included into a previous state.

The constraint output by IM⊆ is weaker than the one output by IM , and
IM⊆ entails an earlier termination than IM for the same input, and hence a
smaller memory usage because states are merged as soon as one is included into
another one. IM⊆ preserves the equality of traces up to length n, where n is the
number of iterations of IM⊆ (i.e., the depth of the state space exploration).

Proposition 1. Suppose that IM⊆(A, π0) terminates with output K0 after n
iterations of the outer do loop. Then, we have:

1. π0 |= K0,
2. for all π |= K0, for each trace T0 of A[π0], there exists a trace T of A[π] such

that the prefix of length n of T0 and the prefix of length n of T are equal,
3. for all π |= K0, for each trace T of A[π], there exists a trace T0 of A[π0] such

that the prefix of length n of T0 and the prefix of length n of T are equal.

Proposition 2. Suppose that IM⊆(A, π0) terminates with output K0. Then, for
all π |= K0, the sets of reachable locations of A[π] and A[π0] are the same.

3.2 Algorithm with Union of the Constraints

The algorithm IM ∪ is obtained from IM by returning, not the intersection of
the constraints associated with all the reachable states, but the union of the
constraints associated with the last state of each run. This notion of last state is
easy to understand for finite runs. When considering infinite (and necessarily2

cyclic) runs, it refers to the second occurrence of a same state within a run, i.e.,
the first time that a state is equal to a previous state of the same run.

The constraint output by IM ∪ is weaker than the one output by IM . Note
that the constraints output by IM⊆ and IM ∪ are incomparable (see example
in Section 3.6 for which two incomparable constraints are synthesized). The
termination is the same as for IM .

2 If the runs are infinite but not cyclic, the algorithm does not terminate.



Although the equality of trace sets is no longer guaranteed for π |=
IM ∪(A, π0), we have the guarantee that, for all π |= K0, the trace set of A[π] is
a subset of the trace set of A[π0]. Furthermore, each trace of A[π0] is reachable
for at least one valuation π |= K0.

Proposition 3. Let K0 = IM ∪(A, π0). Then:

1. π0 |= K0;
2. For all π |= K0, every trace of A[π] is equal to a trace of A[π0];
3. For all trace T of A[π0], there exists π |= K0 such that the trace set of A[π]

contains T .

Finally note that, due to the disjunctive form of the returned constraint, the
synthesized constraint is not necessarily convex.

3.3 Algorithm with Direct Return

The algorithm IM K is obtained from IM by returning only the constraint K
computed during the algorithm instead of the intersection of the constraints
associated to all the reachable states.

The constraint output by IM K is weaker than the one output by IM . Also
note that the constraints output by IM⊆ and IM K are incomparable (see ex-
ample in Section 3.6). Termination is the same for IM K and IM .

Proposition 4. Let K0 = IM K(A, π0). Then, for all π |= K0, every trace
of A[π] is equal to a trace of A[π0].

This algorithm only prevents π0-incompatible states to be reached but, con-
trarily to IM and IM ∪, does not guarantee that any “good” state will be reached.
Hence, this algorithm only preserves the non-reachability of locations.

3.4 Combination: Inclusion in Fixpoint and Union

One combine the variant of the fixpoint (viz., IM⊆) with the first variant of
the constraint output (viz., IM ∪), thus leading to IM ∪

⊆. The constraint out-

put by IM ∪ is weaker than the ones output by both IM⊆ and IM ∪. Note that
the constraints output by IM ∪

⊆ and IM K are incomparable (see example in
Section 3.6 for which two incomparable constraints are synthesized). The termi-
nation is the same as for IM⊆. This algorithm combines the properties of IM⊆
and IM ∪. Although not of high interest in practice, this result implies preser-
vation of non-reachability. Finally note that, due to the disjunctive form of the
returned constraint, the output constraint is not necessarily convex.

3.5 Combination: Inclusion in Fixpoint and Direct Return

One can also combine the variant of the fixpoint (viz., IM⊆) with the second
variant of the constraint output (viz., IM K), thus leading to IM K

⊆ . The con-

straint output by IM K
⊆ is weaker than the ones output by both IM K and IM ∪

⊆.
Termination is the same as for IM⊆. This algorithm only preserves the non-
reachability of locations.



3.6 Summary of the Algorithms

We summarize in Table 1 the properties of each algorithm.

Property IM IM⊆ IM∪ IMK IM∪⊆ IMK
⊆

Equality of trace sets
√

× × × × ×
Equality of trace sets up to n

√ √
× × × ×

Inclusion into the trace set of A[π0]
√

×
√ √

× ×
Preservation of at least one trace

√
×

√
× × ×

Equality of location sets
√ √

× × × ×
Convex output

√ √
×

√
×

√

Preservation of non-reachability
√ √ √ √ √ √

Table 1. Comparison of the properties of the variants of IM

We give in Figure 1 (left) the relation between terminations: an oriented
edge from A to B means that, for the same input, termination of variant A
implies termination of B. We give in Figure 1 (right) the relations between the
constraints synthesized by each variant: for example, given A and π0, we have
that IM (A, π0) ⊆ IM⊆(A, π0). Obviously, the weakest constraint is the one
synthesized by IM K

⊆ . This variant should be thus used when one is interested only
in safety properties; however, when one is interested in stronger properties (e.g.,
preservation of at least one trace of A[π0]), one may want to use another variant
according to their respective properties. We believe that the most interesting
algorithms are IM , for the equality of trace sets, IM ∪, for the preservation of at
least one maximal trace, and IM K

⊆ , for the sole preservation of non-reachability.

IM IM∪ IMK

IM⊆ IM∪⊆ IMK
⊆

IM

IM⊆

IM∪ IMK

IM∪⊆ IMK
⊆

⊆

⊆ ⊆

⊆
⊆

⊆

⊆

Fig. 1. Comparison of termination (left) and constraint output (right)

Non-maximality. Actually, none of these algorithms synthesize the maximal con-
straint corresponding to the property they are characterized with. This is due
to their non-confluence, itself due to the random selection of a π0-incompatible
inequality. However, it can be shown that the constraint is maximal when the
algorithm runs in a fully deterministic way. We address the issue of synthesizing
a maximal constraint in Section 4. Also note that the comparison between the
constraints (see Figure 1 (right)) holds only for deterministic analyses.



Comparison Using an Example of PTA. Let us consider the PTA Avar depicted
below. We consider the following π0: p1 = 1∧p2 = 4. In A[π0], location q4 is not
reachable, and can be considered as a “bad” location.

q0 q1 q2

q3

q4

x1 ≤ 2p1
∧ x1 ≤ 2 x2 ≤ p2

x1 ≤ p2

a
x1 := 0
x2 := 0

x1≥ p2
c

a

x1≥ 3
b

x1 ≥ p1
a

x1 := 0

b

c

Fig. 2. A PTA Avar for comparing the variants of IM

Let us suppose that a bad behavior of Avar corresponds to the fact that a
trace goes into location q4. Under π0, the system has a good behavior. As a
consequence, by the property of non-reachability of a location met by all algo-
rithms, the constraint synthesized by any algorithm also prevents the traces to
enter q4. One can show that the parameter valuations allowing the system to
enter the bad location q4 are comprised in the domain 2 ∗ p1 ≤ p2 ∧ p2 ≤ 2. As
a consequence, the (non-convex) maximal set of parameters avoiding the bad
location q4 is 2 ∗ p1 > p2 ∨ p2 > 2.

We give below the six constraints synthesized by the six versions of the inverse
method. For each graphics, we depict in dark blue the parameter domain covered
by the constraint, and in light red the parameter domain corresponding to a bad
behavior (the constraint itself is given in [AS11]). The “good” zone not covered
by the constraint is depicted in very light gray. The dot represents π0.

This example illustrates well the relationship between the different con-
straints. In particular, the constraint synthesized by IM K

⊆ dramatically improves
the set of parameters synthesized by IM . Also note that we chose on purpose
an example such that none of the methods synthesizes a maximal constraint
(observe that even IM K

⊆ does not cover the whole “good” zone). This will be
addressed in Section 4.

Experimental Validation. The example above shows clearly the gain of the algo-
rithms w.r.t. IM . However, for real case studies, although checking the gain of
these algorithms in terms of computation time is possible, measuring the gain in
terms of the “size” of the constraints synthesized requires measures of polyhedra,
which is not trivial when they are non-convex. Hence, we postpone this study
to the framework of the cartography (see Section 5).
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Fig. 3. Comparison of the constraints synthesized for Avar

4 Behavioral Cartography

Although IM has been shown of interest for a large panel of case studies, its
main shortcoming is the non-maximality of the output constraint. Moreover,
the good parameters problem relates to the synthesis of parameter valuations
corresponding to any good behavior, not to a single one.

The behavioral cartography algorithm BC relies on the idea of covering the
parameter space within a rectangular real-valued parameter domain V0 [AF10].
By iterating IM over all the integer points of V0 (of which there are a finite
number), one is able to decompose V0 into a list Tiling of tiles, i.e., dense sets
of parameters in which the trace sets are the same.

Then, given a property ϕ on trace sets (viz., a linear time property), one can
partition the parameter space between good tiles (for which all points satisfy ϕ)
and bad tiles. This can be done by checking the property for one point in each
tile (using, e.g., Uppaal, applied to the PTA instantiated with the considered
point). Then the set of parameters satisfying ϕ corresponds to the union of the
good tiles. Note that BC is independent from ϕ; only the partition between good
and bad tiles involves ϕ.

In practice, not only the integer valuations of V0 are covered by Tiling , but
also most of the real-valued space of V0. Furthermore, the space covered by Tiling
often largely exceeds the limits of V0. However, there may exist a finite number
of “small holes” within V0 (containing no integer point) that are not covered by
any tile of Tiling . A refinement of BC is to consider a tighter grid, i.e., not only
integer points, but rational points multiple of a smaller step than 1. We showed
that, for a rectangle V0 large enough and a grid tight enough, the full coverage
of the whole real-valued parameter space (inside and outside V0) is ensured for
some classes of PTAs, in particular for acyclic systems (see [And10b] for details).



Combination with the Variants. By replacing within BC the call to IM by a call
to one of the algorithms introduced in Section 3, one changes the properties of
the tiles: for each tile, the corresponding trace set inherits the properties of the
considered variant, and does not necessarily preserve the equality of trace sets.
However, as shown in Section 3, they all preserve (at least) the non-reachability.

The main advantage of the combination of BC with one of the algorithms,
say IM ′, of Section 3 is that the coverage of V0 needs a smaller number of tiles,
i.e., of calls to IM ′. Indeed, due to the weaker constraint synthesized by IM ′,
and hence larger sets of parameters, one needs less calls to IM ′ in order to
cover V0. Furthermore, due to the quicker termination of IM ′ when compared
to IM , the computation time decreases considerably. Finally, due to an earlier
termination IM ′ (i.e., less states computed) and the lower number of calls to IM ′

(hence, less trace sets to remember), the memory consumption also decreases.

5 Implementation and Experiments

All these algorithms, as well as the original IM , have been implemented in
Imitator II [And10a]. We give in Table 2 the summary of various experiments
of parameter synthesis applied to case studies from the literature as well as
industrial case studies. For each case study, we apply each version of BC to
a given V0. Then, we split the tiles between good and bad w.r.t. a property.
Finally, we synthesize a constraint corresponding to this property. For each case
study, V0 is either entirely covered, or “almost entirely covered”. We give from
left to right the name of the case study, the number of parameters varying in
the cartography and the number of points within V0. We then give the number
of tiles and the computation time for each algorithm. We denote by BC⊆ the
variant of BC calling IM⊆ instead of IM (and similarly for the other algorithms).
All experiments were performed on an Intel Core 2 Duo 2,33 Ghz with 3,2 Go
memory, using the no-random, no-dot and no-log options of Imitator II.

Example Tiles Time (s)

Name |P | |V0| BC BC∪ BCK BC⊆ BC∪⊆ BCK
⊆ BC BC∪ BCK BC⊆ BC∪⊆ BCK

⊆
Avar 2 72 14 10 10 7 5 5 0.101 0.079 0.073 0.036 0.028 0.026

Flip-flop 2 644 8 7 7 8 7 7 0.823 0.855 0.696 0.831 0.848 0.699
AND–OR 5 151 200 16 14 16 14 14 14 274 7154 105 199 551 68.4

Latch 4 73 062 5 3 3 5 3 3 16.2 25.2 9.2 15.9 25 9.1
CSMA/CD 3 2 000 139 57 57 139 57 57 112 276 76.0 46.7 88.0 22.6
SPSMALL 2 3 082 272 78 77 272 78 77 894 405 342 894 406 340

Table 2. Comparison of the algorithms for the behavioral cartography

Since V0 is always (at least “almost”) entirely covered by Tiling , the number
of tiles needed to cover V0 gives a measure of the size of each tile in terms of
parameter valuations: the lesser tiles needed, the larger the sets of parameter
valuations are, the more efficient the corresponding algorithm is. Since the good
property for all case studies is a property of (non-)reachability, the constraint



computed is the same for all versions of BC . The latest version3 of Imitator II
as well as all the mentioned case studies can be found on Imitator II’s Web
page4. Details on case studies can be found in [AS11].

As expected from Section 2, all algorithms bring a significant gain in term of
size of the constraint, because the number of tiles needed to cover V0 is almost
always smaller than for IM . Only IM⊆ has a number of tiles often equal to IM ;
however, the computation is often much quicker for IM⊆. As expected, the most
efficient algorithm is IM K

⊆ : both the number of tiles and the computation times
decrease significantly. When one is only interested in reachability properties, one
should then use this algorithm.

The only surprising result is the fact that IM ∪ is sometimes slower than IM ,
although the number of tiles is smaller. This is due to the way it is implemented
in Imitator II. Handling non-convex constraints is a difficult problem; hence,
we compute a list of constraints associated with the last state of each trace.
Unfortunately, many of these constraints are actually equal to each other. For
systems with thousands of traces and hundreds of tiles, we manipulate hundreds
of thousands of constraints; every time a new point is picked up, one should check
whether it belongs to this huge set before calling (or not) IM on this point. This
also explains the relatively disappointing speed performance of IM ∪

⊆. Improving
this implementation is the subject of ongoing work. A possible option would be
to remove the constraints equal to each other in this constraint set; this would
dramatically decrease the size of the set, but would induce additional costs for
checking constraint equality.

On-the-fly Computation of K. We finally introduce here another modification of
some of the algorithms in order to avoid the non-necessary duplication of some
reachable states, leading to a dramatic diminution of the state space. Indeed,
we met cases where two states (q, C) and (q, C ′) are not equal at the time they
are computed, but are equal with the final intersection K of the constraints, i.e.
(q, C∧K) = (q, C ′∧K). Such a situation is depicted in the trace sets of Figure 4,
where identical states under IM (A, π0) are unmerged on the left part of the
figure and merged on the right part. We can solve this problem by performing
dynamically the intersection of the constraints, i.e., adding ∃X : C to all the
states previously computed, every time a new state (q, C) is computed. This has
the effect of merging such states, and hence often considerably decreasing the
state space. With this modification, the algorithm only needs to return K at the
end of the computation, since the intersection is performed on the fly. We give
this algorithm IM otf in Algorithm 2.

This modification can be extended to IM⊆ in a straightforward manner, by
applying to IM otf the fixpoint modification as described in Section 3.1. However,
applying it to other algorithms would modify their correctness, since the final
intersection of the constraints is not performed in the other algorithms.

3 Note that the software named Imitator 3 is an independent fork of Imitator II for
hybrid systems [FK11]. The latest version of Imitator for PTAs is Imitator 2.3.

4 http://www.lsv.ens-cachan.fr/Software/imitator/imitator2.3/



Fig. 4. Example of state space explosion due to unmerged states

Algorithm 2: IM otf (A, π0)

input : PTA A of initial state s0, parameter valuation π0

output: Constraint K0 on the parameters

1 i← 0 ; K ← true ; S ← {s0}
2 while true do
3 foreach s = (q, C) ∈ S do
4 if s is π0-incompatible then
5 Select a π0-incompatible J in (∃X : C)
6 K ← K ∧ ¬J ;
7 foreach (q′, C′) ∈ S do
8 C′ ← C′ ∧ ¬J

9 else
10 K ← K ∧ ∃X : C ;
11 foreach (q′, C′) ∈ S do
12 C′ ← C′ ∧ ∃X : C

13 if PostA(K)(S) v S then return K

14 i← i+ 1 ; S ← S ∪ PostA(K)(S) ; // S =
⋃i

j=0 Post
j
A(K)({s0})

Using this modification, we successfully computed a set of parameters for
the SPSMALL memory designed by ST-Microelectronics. We analyzed a much
larger version of the “small” model considered above (see differences between
these models in [And10b]). The larger model of this memory contains 28 clocks
and 62 parameters. The computation consists in 98 iterations of the outer DO
loop of IM . Without this optimization, IM crashed from lack of memory at
iteration 27 (on a 2 GB memory machine), but the size of the state space was
exponential, so we believe that the full computation would have required a huge
amount of memory, preventing more powerful machine to perform the compu-
tation. Using this optimization, we computed quickly a constraint, made of the
conjunction of 49 linear constraints. Full details are available in [And10b].



6 Conclusion

We introduced here several algorithms based on the inverse method for PTAs.
Given a PTA A and a reference parameter valuation π0, these algorithms syn-
thesize a constraint K0 around π0, all preserving non-reachability properties: if a
location (in general “bad”) is not reached for π0, it is also not reachable for any
π |= K0. Furthermore, each algorithm preserves different properties: strict equal-
ity of trace sets, inclusion within the trace set of A[π0], preservation of at least
one trace of A[π0], etc. The major advantage of these variants is the faster com-
putation of K0, and a larger set of parameter valuations defined by K0. These
algorithms have been implemented in Imitator II and show significant gains of
time and size of the constraint when compared to the original IM . When used in
the behavioral cartography for synthesizing a constraint w.r.t. a given property,
they cover both using less tiles and in general faster the parameter space.

Also recall that, although the algorithms preserve properties based on traces,
i.e., untimed behaviors, it is possible to synthesize constraints guaranteeing timed
properties by making use of an observer; this is the case in particular for the
SPSMALL memory.

As a future work, the inverse method and the cartography algorithm, as well
as the variants introduced here, could be extended in a rather straightforward
way to the backward case.

Furthermore, we presented in [AFS09] an extension of the inverse method to
probabilistic systems: given a parametric probabilistic timed automaton A and
a reference valuation π0, we synthesize a constraint K0 by applying IM to a non-
probabilistic version of A and π0. Then, we guarantee that, for all π |= K0, the
values of the minimum (resp. maximum) probabilities of reachability properties
are the same in A[π]. Studying what properties each of the algorithms presented
here preserves in the probabilistic framework is the subject of ongoing work.

It would also be of interest to consider the combination of these algorithms
with the extension of the inverse method to linear hybrid automata [FK11].
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